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Fuzzy PCA-Guided Robust k-Means Clustering
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Abstract—This paper proposes a new approach to robust clus-
tering, in which a robust k-means partition is derived by using a
noise-rejection mechanism based on the noise-clustering approach.
The responsibility weight of each sample for the k-means process is
estimated by considering the noise degree of the sample, and cluster
indicators are calculated in a fuzzy principal-component-analysis
(PCA) guided manner, where fuzzy PCA-guided robust k-means is
performed by considering responsibility weights of samples. Then,
the proposed method achieves cluster-core estimation in a deter-
ministic way. The validity of the derived cluster cores is visually
assessed through distance-sensitive ordering, which considers re-
sponsibility weights of samples. Numerical experiments demon-
strate that the proposed method is useful for capturing cluster
cores by rejecting noise samples, and we can easily assess cluster
validity by using cluster-crossing curves.

Index Terms—Clustering, data mining, kernel trick, principal-
component analysis (PCA).

I. INTRODUCTION

ADETERMINISTIC procedure for k-means clustering was
proposed by Ding and He [1], based on the close rela-

tion between principal component analysis (PCA) and k-means
clustering. k-means [2] is a popular clustering method that
uses prototypes (centroids) to represent clusters by minimizing
within-cluster errors. PCA has been often jointly used with clus-
tering techniques, especially in pattern-recognition tasks. The
combined applications can roughly be classified into three cate-
gories: 1) dimension reduction by PCA before clustering [3], [4];
2) clusterwise local PCA after clustering [5]–[7]; and 3) initial-
ization of model parameters in clustering by PCA [8], [9], i.e.,
PCA is performed to preprocess or postprocess clustering tasks.
On the other hand, Ding and He introduced a new technique to
directly apply PCA to cluster-indicator estimation in clustering
tasks. In the PCA-guided k-means [1], the objective function of
k-means clustering is redefined by a centroidless formulation,
and the relaxed cluster-indicator vectors that represent cluster
memberships are calculated by a PCA-like manner, in which
the indicator vectors are identified with the eigenvectors of a
within-cluster (inner product) similarity matrix, i.e., a continu-
ous (relaxed) solution of the cluster membership indicators in
k-means is identified with principal components in PCA.

This paper considers a new robust k-means algorithm that
is based on a fuzzy PCA-guided clustering procedure. Fuzzy
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PCA [10] is a fuzzy version of the conventional PCA in which
covariance structure of datasets are analyzed by considering
the fuzzy-membership degree of data samples. In the proposed
method, a responsibility weight of each sample for the k-means
process is estimated based on the noise-fuzzy-clustering mech-
anism [11], [12] that is identified with the robust M-estimation
technique [13] in the single-cluster case. Cluster membership
indicators in the k-means process are derived as fuzzy prin-
cipal components by considering the responsibility weights in
fuzzy PCA. In this sense, the proposed method is a fuzzified
PCA-guided robust k-means method.

The proposed method has some connections with the cluster-
core concepts. Trimmed k-means [14], [15] extracts k distinct
cluster cores by trimming noise samples previous to the conven-
tional k-means process. Yang et al. [16] extended the cluster-
core concept to fuzzy-clustering models with α-cut implementa-
tion. In the α-cut implementation, samples within cluster cores
have full membership degree, while samples out of cluster cores
have a relatively small (fuzzy) membership degree. Yang et al.
demonstrated that the fuzzy approach outperforms the trimmed
k-means in the sense of the sensitivity to initialization. Noise
clustering [11] and possibilistic fuzzy c-means clustering [17]
also extract cluster cores in a fuzzy manner by decreasing the
responsibility of noise samples, while they do not extract crisp
cores because even core samples have fuzzy-membership de-
grees. Possibilistic c-means [18] and its relatives [19] detect
cluster cores independently in each cluster by giving up the prob-
abilistic constraint in the k-means-type clustering techniques.
These alternate optimization approaches, however, suffer from
the initialization problem, and we often have several different
results with the multistart strategy. Then, we need to evaluate
the cluster validity to select the optimal one.

Several sequential approaches were also proposed to extract
cluster cores one by one. Sequential fuzzy-cluster extraction
(SFCE) [20] estimates memberships for each cluster core by
using the eigenvector corresponding to the largest eigenvalue
of a modified similarity matrix in each iteration step. A similar
concept has been extended to spectral clustering with graph-
based approaches [21], [22]. Although the sequential cluster
extraction is performed in a deterministic manner, we need to
iterate the cluster-core estimation k times to identify k clusters
by using a different (modified) objective function in each step.

The proposed fuzzy PCA-guided robust k-means (FPR k-
means) performs k cluster-core identification in a deterministic
manner where cluster indicators for k clusters are calculated in
a batch process considering responsibility weights of samples,
while the responsibility weights are estimated in an iterative
optimization frame.

The remainder of this paper is organized as follows: Section II
briefly reviews the PCA-guided k-means and robust cluster-
ing algorithms. Section III proposes fuzzy PCA-guided robust
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k-means (FPR k-means) that is a new approach to robust cluster-
core identification in k-means clustering. Section IV presents
several experimental results to reveal characteristic features of
the proposed methods. Section V gives summary conclusions.

II. PRINCIPLE-COMPONENT ANALYSIS-GUIDED k-MEANS AND

ROBUST CLUSTERING

A. k-Means by PCA-Guided Manner

Assume that we have n samples with s-dimensional obser-
vation xi , where i = 1, . . . , n, and the goal is to partition the
samples into several clusters, where samples belonging to same
cluster are similar, while samples belonging to different clusters
are dissimilar.

k-means [2] is a nonhierarchical prototype-based clustering
method where prototypes (centroids) are used to represent clus-
ters. The objective function is defined as the sum of within-
cluster errors

Lkm =
K∑

k=1

∑

i∈Gk

‖xi − bk‖2 (1)

where K is the predefined number of clusters, and bk is the
representative prototype (centroid) of cluster Gk . The k-means
process is composed of two phases, i.e., prototype estimation
and sample assignment, and the two phases are iterated until the
solution is trapped in a local minimum. Although the process
is very simple and useful in many cases, we suffer from the
initialization problem, i.e., the greedy nature of the updating
algorithm sometimes converges to different local optima with
different initialization.

Recently, Ding and He [1] pointed out a close relation be-
tween PCA and k-means clustering and proposed an analytical
(deterministic) means for k-means clustering in a PCA-guided
manner. The k-means objective function of (1) can be redefined
by a centroidless formulation as follows [23]:

Lkm =
n∑

i=1

‖xi‖2 −
K∑

k=1

1
nk

∑

i,j∈Gk

x�
i xj (2)

where nk is the number of samples belonging to cluster Gk ,
and � represents the transpose of a vector (or matrix). Here,
the first term is a constant, while the second term is the sum of
within-cluster (inner product) similarities. The solution of (hard)
k-means clustering is represented by K nonnegative indicator
vectors HK = (h1 , . . . ,hK ) as

hki =






1
n

1/2
k

, if sample i belongs to cluster Gk

0, otherwise

where H�
K HK = IK , and IK is the K × K unit matrix. Because∑K

k=1 n
1/2
k hki = 1, the indicator vectors have redundancies. In

order to remove the redundancies and derive a unique solution,
Ding and He introduced a K × K orthogonal transformation
T = {tij} as

QK = (q1 , . . . , qK ) = HK T (3)

and set the last column of T as

tK =
(√

n1/n, . . . ,
√

nK /n
)�

. (4)

From the mutual orthogonality of hk , where k = 1, . . . , K and
qK = (

√
1/n, . . . ,

√
1/n)�, we have the following relations:

Q�
K−1QK−1 = IK−1 (5)

n∑

i=1

qki = 0, k = 1, . . . ,K − 1 (6)

where QK−1 = (q1 , . . . , qK−1), and qk = (qk1 , . . . , qkn )�.
Then, the k-means objective function can be written as

Lkm =
n∑

i=1

‖xi‖2 − 1
n

e�X�Xe − Tr(Q�
K−1X

�XQK−1)

(7)
where X = (x1 , . . . ,xn ), and e is the n-dimensional vector,
whose all elements are 1.

Because the k-means problem does not distinguish the origi-
nal data xi and the centered data yi , the aforementioned objec-
tive function can be replaced with

Lkm =
n∑

i=1

‖yi‖2 − Tr(Q�
K−1Y

�Y QK−1) (8)

where Y = (y1 , . . . ,yn ), and Y e = 0. The optimal solutions
for QK−1 are derived by maximizing Tr(Q�

K−1Y
�Y QK−1),

and continuous (relaxed) solutions are the eigenvectors corre-
sponding to the K − 1 largest eigenvalues of Y �Y , i.e., K − 1-
dimensional principal-component scores in PCA. This way, a
continuous solution for k-means clustering is derived from a
PCA-guided manner.

However, if we want to know the cluster structure from the
(continuous) solution of QK−1 , we need to compute the optimal
transformation T , although it is not easy in many case. In [1],
cluster connectivity analysis is performed by calculating the
following connectivity matrix C = {cij}:

C = HK H�
K

∼= QK Q�
K =

1
n

ee� +
K−1∑

k=1

qkq�
k . (9)

If cij > 0, xi and xj are in a same cluster. Then, a probability
for the connectivity between samples i and j is given as

pij =
cij√
ciicjj

(10)

and cij may be set as 0 when pij < 0.5 in order to decrease
noise influences.

B. Visual Assessment of Cluster Structure in Connectivity
Matrix

A potential approach to visual assessment of cluster structure
is distance-sensitive ordering of samples (objects) [24]. Assume
that P = {pij} is the similarity (connectivity) matrix among n
objects and that the object arrangement is performed by the
index permutation π(1, 2, . . . , n) = (π1 , π2 , . . . , πn ). The goal
of sample ordering is to estimate πi so that adjacent objects are
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similar, while the larger the distance between the objects, the
less similar the two objects are.

The objective function for distance-sensitive ordering is de-
fined as

J(π) =
1
2

∑

i,j

(π−1
i − π−1

j )2pij (11)

where π−1
i is the inverse permutation. It was shown that a relaxed

solution for the inverse permutation r is the solution of the
following problem:

min
r

J̃ =
r�(G − P )r

r�Gr

s.t. r�G1 = 0

r�Gr = 1 (12)

where G is the diagonal matrix whose diagonal element is the
sum of the corresponding row (gii =

∑
j pij ). Then, the optimal

r is the solution (the eigenvector with the smallest eigenvalue
except for r0 = e) of the eigenvalue problem

(G − P )r = ζGr (13)

and, transforming as r = G−1/2z, we have

G−1/2PG−1/2z = δz, δ = 1 − ζ. (14)

The optimal r is derived by searching the largest eigenvalue of
G−1/2PG−1/2 , except for z0 = e, and the inverse permutation
is given as

ri < rj → π−1
i < π−1

j . (15)

After distance-sensitive ordering, cluster structure is shown in
the diagonal block structure of the connectivity matrix. To find
cluster boundaries, Ding and He [24] defined “cluster crossing”
as

ρ̃(i) =
1
4
ρ

(
i +

1
2

)
+

1
2
ρ (i) +

1
4
ρ

(
i − 1

2

)
(16)

where

ρ(i) =
m∑

j=1

pπ−1
i−j

,π−1
i + j

ρ

(
i ± 1

2

)
=

m∑

j=1

pπ−1
i−j

,π−1
i + j ±1

. (17)

Cluster crossing is the sum along the antidiagonal direction
in the connectivity matrix with a bandwidth m and takes a
minimum at the cluster boundaries between clusters, i.e., each
cluster forms a “mountain” in the cluster-crossing curve. By
finding “mountains” and “valleys” in the curve, we can visually
capture the cluster structures in the connectivity matrix. In the
numerical experiments given in Section IV, m was set as 10 so
that the minimum cluster volume is assumed to be 10.

C. Robust Clustering

Noise fuzzy clustering [11] is a robustified version of well-
known fuzzy c-means (FCM) clustering [25] and is identified

with robust possibilistic clustering [18] or robust M-estimation
[13] in the case of a single cluster. In this paper, a single-cluster
case is considered in order to remove noise samples from the
modeling process, i.e., an alternative selection, whether a sam-
ple has some responsibility in the modeling process or not, is
considered. In this paper, the degree of responsibility is called
“responsibility weight” in order to distinguish it from the con-
ventional cluster memberships (cluster indicators). Using a cer-
tain criterion di and a responsibility weight of sample i for
prototype estimation ui ∈ [0, 1], the objective function in noise
fuzzy clustering is written as

Lnf c =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i di (18)

where θ is the weighting exponent used to estimate “fuzzy”
memberships. The larger the θ, the fuzzier the memberships.
A recommended value of θ is θ = 2, and θ = 1.5 can also be
used for clear partitioning in real applications. γ is an additional
penalty weight and tunes the noise sensitivity of solutions. The
solution that satisfies the necessary condition for the optimality
is given as follows:

ui =

[
1 +

(
di

γ

)1/θ−1
]−1

. (19)

Since ui = 0.5 for di = γ and ui becomes small as di increases,
it is obvious that we have many noise samples with small γ. On
the other hand, ui becomes close to 1 with large γ. Therefore,
γ is used to select the responsibility boundary. In possibilistic
c-means [18], γ is often set as

γ = β

∑n
i=1 uθ

i di∑n
i=1 uθ

i

(20)

and we can tune the noise sensitivity by changing β, while a
recommended value of β is β = 1.

III. FUZZY PRINCIPLE COMPONENT ANALYSIS-GUIDED

ROBUST k-MEANS PROCEDURE

In this section, a new algorithm for robust k-means cluster-
ing is proposed by modifying the PCA-guided k-means algo-
rithm. The k-means algorithm is sensitive to noise because of
the probabilistic constraint for memberships that forces all sam-
ples (including even noise samples) to belong to a cluster. In
this paper, a responsibility weight of each sample in k-means
process is estimated based on the noise-fuzzy-clustering mech-
anism [11], [12], and cluster-membership indicators in k-means
process are derived as fuzzy principal components by consider-
ing the responsibility weights in fuzzy PCA [10].

A. Robust k-Means by Fuzzy PCA-Guided Manner

Fuzzy PCA [10] is a fuzzified version of PCA, in which prin-
cipal components are extracted by considering membership de-
gree of samples. When we have fuzzy memberships of samples
ui , where i = 1, . . . , n, and a (fuzzily) normalized data matrix
Y , the principal-component vectors are the principal eigenvec-
tors of fuzzy scatter matrix Y UY �, where U is a diagonal matrix
whose ith diagonal element is ui .
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Introducing the noise-clustering mechanism, the objective
function for robust k-means clustering is defined as

Lrkm =
n∑

i=1

(1 − ui)θγ +
K∑

k=1

∑

i∈Gk

uθ
i ‖xi − bk‖2 (21)

where ui is the responsibility degree of xi for k-means cluster-
ing. If ui is small, i.e., there is no cluster center in the neigh-
borhood of xi , then xi is classified as “noise” and is removed
from the k-means process. The cluster centroid bk satisfying the
necessary condition for the optimality is calculated as

bk =

∑
i∈Gk

uθ
i xi∑

i∈Gk
uθ

i

. (22)

Considering the fuzzy-membership weights ui , we can also ob-
tain a centroidless formulation as follows:

Lrkm =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

−
K∑

k=1

∑
i,j∈Gk

uθ
i x

�
i xj u

θ
j∑

j∈Gk
uθ

j

. (23)

With fixed ui , a robust k-means cluster assignment is de-
rived in a similar manner with PCA-guided k-means. As-
sume that the solution is represented by K indicator vectors
HK = (h1 , . . . ,hK )

hki =






(uθ
j )

1 / 2

(∑
j ∈G k

uθ
j

)1 / 2 , if i belongs to Gk

0, otherwise

and H�
K HK = IK . Here, the membership indicator hki repre-

sents the degree of responsibility for cluster Gk by considering
noise degree. If xi is a noise sample, then hki are small in all
clusters. If xi is not a noise sample, then hki have large value in
the cluster to which xi belongs. Using the transformed discrete-
membership-indicator vectors QK = HK T , (23) is written as

Lrkm =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

− Tr(H�
K Uθ/2X�XUθ/2HK )

=
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

− Tr(Q�
K Uθ/2X�XUθ/2QK ) (24)

where U is a diagonal matrix whose ith diagonal element is ui .
Here, assume that Y is a normalized data matrix so that

Y u = 0, where u = (uθ
1 , . . . , u

θ
n )�. This condition is achieved

by the centering process from the view point of the least-square
method, where the mean vector is given as (22). Under the
constraint of

tK =




√∑

i∈G1
uθ

i∑n
i=1 uθ

i

, . . . ,

√∑
i∈GK

uθ
i∑n

i=1 uθ
i




�

(25)

qK is given as

qK =

(
u

θ/2
1(∑n

i=1 uθ
i

)1/2 , . . . ,
u

θ/2
n

(∑n
i=1 uθ

i

)1/2

)�

(26)

and we have Y Uθ/2qK = 0. Then, by using the normalized
data matrix Y , (24) is written as

Lrkm =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖yi‖2

− Tr(Q�
K−1U

θ/2Y �Y Uθ/2QK−1). (27)

Because the first and second terms of (27) are constant, the
transformed discrete-membership-indicator vectors QK−1 are
derived by maximizing Tr(Q�

K−1U
θ/2Y �Y Uθ/2QK−1), and

continuous (relaxed) solutions are the eigenvectors correspond-
ing to the K − 1 largest eigenvalues of Uθ/2Y �Y Uθ/2 . Here,
qk is identified with the fuzzy principal-component-score vec-
tor given in fuzzy PCA using a generalized membership weight
uθ

i instead of ui .

B. Responsibility Weight for k-Means Process

Next, with fixed k-means cluster assignment, responsibility
of each sample for the k-means process is estimated. In the
noise-clustering formulation, the objective function is given as

Lrkm =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i di (28)

where di is the responsibility criterion for noise clustering. In
order to calculate the criterion, the objective function of (23) is
transformed as follows:

Lrkm =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

−
K∑

k=1

∑
i,j∈Gk

uθ
i x

�
i xj u

θ
j∑

j∈Gk
uθ

j

=
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

−
K∑

k=1

∑
i,j∈Gk

(uθ
i )

1/2(uθ
j )

1/2(uθ
i )

1/2(uθ
j )

1/2x�
i xj

(∑
j∈Gk

uθ
j

)1/2 (∑
j∈Gk

uθ
j

)1/2

∼=
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

−
n∑

i=1

(uθ
i )

1/2
n∑

j=1

K∑

k=1

hkihkjx
�
i xj (uθ

j )
1/2 . (29)
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From HK H�
K = QK T�TQ�

K = QK Q�
K , we have∑K

k=1 hkihkj =
∑K

k=1 qkiqkj . Then, Lrkm is reformulated as

Lrkm =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

−
n∑

i=1

(uθ
i )

1/2
n∑

j=1

K∑

k=1

qkiqkjx
�
i xj (uθ

j )
1/2

=
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖xi‖2

−
n∑

i=1

uθ
i

n∑

j=1

K∑

k=1

qkiqkjx
�
i xj

(
uθ

j

uθ
i

)1/2

(30)

and the criterion with fixed-weight ratio uj/ui is reduced to the
following formula:

di = ‖xi‖2 −
K∑

k=1

n∑

j=1

qkiqkjx
�
i xj

(
uj

ui

)θ/2

. (31)

Then, ui is estimated as

ui =

[
1 +

(
di

γ

)1/(θ−1)
]−1

(32)

so that the necessary condition for the optimality of (28) is
satisfied.

C. Algorithm for Fuzzy PCA-Guided Robust k-Means

The aforementioned two phases of cluster-indicator estima-
tion and responsibility estimation are repeated until conver-
gence, and a connectivity matrix C is calculated as C = QK Q�

K .
Then, a probability for the connectivity between samples i and
j is given by considering the responsibilities of samples as

pij = uθ
i u

θ
j

cij√
ciicjj

. (33)

Here, pij is large only when samples i and j are in a same
cluster, and none of them is a noise sample, i.e., noise samples
have small connectivity with all other samples.

Then, the proposed algorithm is written as follows:
Algorithm: Fuzzy PCA-guided Robust k-Means (FPR
k-Means)
Step 1. Initialize responsibility weights ui , i = 1, . . . , n as

ui = 1, and choose the noise sensitivity weight β and
the termination condition ε.

Step 2. Calculate the normalized data matrix Y so that Y u = 0
where u = (uθ

1 , . . . , u
θ
n )�.

Step 3. Calculate the transformed indicator vectors QK−1 =
(q1 , . . . , qK−1) from the K − 1 principal eigenvectors
of Uθ/2Y �Y Uθ/2 , and set qK as (26).

Step 4. Calculate responsibility criteria di , i = 1, . . . , n and γ
using (31) and (20), respectively. Update ui using (32).
(γ should be updated only in a first few iteration in the
same manner with possibilistic clustering [18].)

Step 5. If maxi | uNEW
i − uOLD

i |< ε, then output connec-
tivity matrix C or P = {pij}. Otherwise, return to
Step 2.

The proposed method is equivalent to the conventional PCA-
guided k-means if all ui are 1 (or γ is extremely large), i.e.,
the initial partition is given by a deterministic procedure based
on the conventional PCA-guided k-means. Then, the follow-
ing robustification process is also performed in a deterministic
manner.

To assess the cluster validity, we should take into account
the responsibilities of samples in the visual-assessment ap-
proach [24]. Because the derived connectivity matrix P re-
veals the probability of the mutual connectivity among sam-
ples by considering the responsibility weights for k-means pro-
cess, noise samples that have small responsibility weights may
be inserted in irrelevant positions without significant loss of
cluster-crossing values. In this paper, samples having smaller
responsibility weights than a predefined threshold are removed
before distance-sensitive ordering. Then, the remaining samples
are arranged by considering the following objective function:

J(π) =
1
2

∑

i,j

uθ
i u

θ
j

(
π−1

i − π−1
j

)2
pij (34)

and a relaxed solution for the inverse permutation r is the solu-
tion of the following problem:

min
r

J̃ =
r�Uθ/2(G − P )Uθ/2r

r�Uθ/2GUθ/2r

s.t. r�GUθ/21 = 0

r�Uθ/2GUθ/2r = 1 (35)

where the normalization constraints are also modified by consid-
ering responsibility weights. Then, the optimal r is the solution
(the eigenvector with the smallest eigenvalue except for r0 = e)
of the eigenvalue problem

Uθ/2(G − P )Uθ/2r = ζUθ/2GUθ/2r. (36)

Transforming as r = G−1/2U−θ/2z, we have

G−1/2PG−1/2z = δz, δ = 1 − ζ. (37)

The optimal r is derived by searching the largest eigenvalue of
G−1/2PG−1/2 , except for z0 = e, and the inverse permutation
is given as

ri < rj → π−1
i < π−1

j . (38)

Here, it should be noted that the main difference of the con-
ventional distance-sensitive ordering method is to consider
the responsibility in recovering the inverse permutation as
r = G−1/2U−θ/2z, i.e., samples having small responsibility
weights are pulled away from center position. This is because
they have small connectivity values with all samples so that they
might be gathered into center position.

D. Application of Kernel Trick

The conventional PCA technique derives at most the same
number of significant principal components with the data
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dimension and is not applicable to capture nonlinear cluster
boundaries. In [1], the solution for kernel k-means was also
given by kernel PCA, in which data points are mapped into a
higher dimensional space via kernels. In this section, the kernel
method is applied to FPR k-means in order to extract a larger
number of clusters than the dimensionality of a dataset having
nonlinear boundaries.

The following nonlinear transformation (mapping) to the
higher dimensional space is considered:

xi → φ(xi). (39)

After mapping, the objective function for FPR k-means cluster-
ing is given as

Lkrkm =
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i ‖φ(xi)‖2

−
K∑

k=1

∑
i,j∈Gk

uθ
i φ(xi)�φ(xj )uθ

j∑
j∈Gk

uθ
j

=
n∑

i=1

(1 − ui)θγ +
n∑

i=1

uθ
i wii

− Tr(Q�
K Uθ/2WUθ/2QK ) (40)

where W = {wij} is the kernel matrix whose element is
wij = φ(xi)�φ(xj ). With fixed ui , the first and second term
of (40) are constant, and the clustering problem is reduced to
the maximization of the (negative) third term.

In the kernel method (or also called kernel trick) [26], we do
not have an exact form of function φ(xi) but assume that the
scalar product of kernel function K(x,y) is given as

K(x,y) =< φ(x), φ(y) > (41)

where < ·, · > is the inner product. Without having the ex-
act form of function φ(xi) (or constructing the exact high-
dimensional feature space), we can apply several types of anal-
ysis such as k-means (or FCM) [27] and PCA [28]. The poly-
nomial kernel

K(x,y) = (< x,y > +c)d (42)

and the Gaussian kernel

K(x,y) = exp(−λ‖x − y‖2) (43)

are widely used. Here, a kernel matrix may not be centered,
while the PCA-guided k-means is formulated for centered data.
Therefore, in [1], centering of the kernel was performed as

W → SWS (44)

S = In − ee�. (45)

After centering of the kernel, all indicator vectors qk satisfy
q�

k e = 0. Then, the solution to kernel k-means is given by kernel
PCA components.

In the same way, with kernel PCA-guided k-means, we can
derive the optimal solution to minimize (40) by maximizing
Tr(Q�

K Uθ/2WUθ/2QK ). In order to normalize the feature vec-
tors in the high-dimensional feature space by considering re-

Fig. 1. Artificial dataset. (a) 2-D plots of dataset. (b) Cluster-crossing curve
derived by PCA-guided k-means with K = 5.

sponsibility weights for k-means process, the kernel matrix is
centered as follows:

W → SWS (46)

S = In − 1
u�e

ue� (47)

where u = (uθ
1 , . . . , u

θ
n )�. After the normalization, we can de-

rive the optimal QK−1 by calculating the eigenvectors cor-
responding to the K − 1 largest eigenvalues of Uθ/2WUθ/2

because feature vectors φ(xi) in the high-dimensional fea-
ture space are centered as ΦSU�e = Φ̃U�e = 0, where Φ =
(φ(x1), . . . , φ(xn )). Here, qK is also given by (26).

Next, the responsibility weight of each sample is estimated
using the kernel matrix. The responsibility criterion di is calcu-
lated as follows:

di = wii −
K∑

k=1

n∑

j=1

qkiqkjwij

(
uj

ui

)θ/2

. (48)

Then, ui is updated using (32) with fixed weight uj/ui .

IV. NUMERICAL EXPERIMENTS

This section shows several experimental results to demon-
strate the characteristic features of the proposed methods.

A. Artificial Dataset

A numerical experiment was performed with an artificially
generated dataset shown in Fig. 1(a), in which five cluster cores
with 30 samples, each drawn from spherical normal distributions
having equal variances, are buried in 50 noise samples from
uniform distribution.

1) Cluster Validation: First, the conventional PCA-guided
k-means was applied with K = 5, and the cluster-crossing curve
shown in Fig. 1(b) was derived. The kernel trick was applied with
a Gaussian kernel (λ = 5.0) in order to capture the nonlinear
cluster boundary. Because of many noise samples, five cluster
cores were concealed, and the figure indicates that there are six
clusters. Then, the clustering algorithm was reapplied with K =
6, and the cluster-crossing curve shown in Fig. 2(a) was derived.
The figure implies that there are six clusters, although we have
only five cluster cores. Fig. 2(b) shows the derived six clusters,
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Fig. 2. Cluster-crossing curve and cluster partition derived by PCA-guided
k-means with K = 6. (a) Cluster-crossing curve. (b) Cluster partition.

Fig. 3. Cluster-crossing curve and cluster partition derived by proposed
method with K = 3. (a) Cluster-crossing curve. (b) Cluster partition.

in which the noise cluster (×) was also extracted as a proper
(nonnoise) cluster. This way, the conventional PCA-guided
k-means is easily influenced by noise samples and is not useful
to capture cluster cores.

Next, the proposed FPR k-means was applied with various
cluster numbers. In the robust k-means, the weight for noise
penalty β was set to 1.0, and the same kernel function was used.
Before cluster arrangement, noise samples whose responsibil-
ity weights are lower than 0.4 were rejected, and the cluster-
crossing curves were constructed by using the remaining sam-
ples. Figs. 3–6 show the derived cluster-crossing curves and
cluster partitions where small × are noise (rejected) samples.
When K is 3–5, we can find the corresponding clusters in the
cluster-crossing curves. Here, it should be noted that several
cluster cores were rejected, as shown in Figs. 3(b) and 4(b), when
K was smaller than 5. This is because the proposed method re-
jects the samples out of K cores. On the other hand, when K
is 6, we cannot find the six cluster structures in the cluster-
crossing curve shown in Fig. 2, i.e., the proper cluster number
is K = 5.

However, when K is 2, only one cluster core is extracted, as is
shown in Fig. 7, while all other samples were assigned relatively
smaller responsibilities (0.4 < ui < 0.5), although no sample
was rejected. Using the constraint of (26), the case of K = 2
uses only the most principal eigenvector (a single vector) that is
responsible for alternative selection, and the process worked for
noise selection. It may be because the initial partition given by

Fig. 4. Cluster-crossing curve and cluster partition derived by proposed
method with K = 4. (a) Cluster-crossing curve. (b) Cluster partition.

Fig. 5. Cluster-crossing curve and cluster partition derived by proposed
method with K = 5. (a) Cluster-crossing curve. (b) Cluster partition.

Fig. 6. Cluster-crossing curve derived by proposed method with K = 6.

Fig. 7. Cluster-crossing curve and cluster partition derived by proposed
method with K = 2. (a) Cluster-crossing curve. (b) Cluster partition.
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Fig. 8. Cluster-crossing curve and cluster partition derived by the proposed
method with several noise weights. (a) Cluster crossing (β = 2). (b) Cluster
partition (β = 2). (c) Cluster crossing (β = 5). (d) Cluster partition (β = 5).
(e) Cluster crossing (β = 10). (f) Cluster partition (β = 10).

the conventional PCA-guided k-means regarded the all samples
out of the cluster core as one cluster. This process implies that the
proposed method can be applied to sequential cluster extraction
[20], while the application is remained in future work.

2) Noise Sensitivity: Noise sensitivity of the proposed
method is compared with several noise weights β. Fig. 8 shows
the clustering results derived with β = 2, 5, and 10 and indi-
cates that we have fewer noise samples (larger cluster cores)
with larger β, i.e., noise sensitivity of the proposed algorithm
is tuned by the noise weight. However, the result of β = 5.0
implies that a larger β generates a noise cluster [× in Fig. 8(d)]
with small cluster-crossing mountain [samples 73–91 in Fig.
8(c)]. Furthermore, when β is too large (e.g., β = 10.0), we
have a similar result with that of the conventional PCA-guided
k-means.

3) Comparison With Noise Fuzzy Clustering: The result
given by the proposed method is compared with that of the

Fig. 9. Comparison of cluster partitions derived by noise fuzzy clustering with
different initializations. (a) K = 4 (type I). (b) K = 4 (type II). (c) K = 5 (type
I). (d) K = 5 (type II). (e) K = 6 (type I). (f) K = 6 (type II).

conventional noise fuzzy clustering [11]. When we consider the
multicluster (K clusters) case, the objective function of noise
fuzzy clustering is defined as follows:

Lnf c =
n∑

i=1

(1 − u∗i)θγ +
K∑

k=1

n∑

i=1

uθ
ki‖xi − bk‖2 (49)

where u∗i =
∑K

k=1 uki , and “1 − u∗i” means the membership
degree to the noise cluster. Fig. 9 compares the clustering results
(maximum membership classification) with different initializa-
tions (types I and II). In the figure, small × means the noise
samples. Fig. 9(a) and (b) indicates that the noise fuzzy clus-
tering also has the ability of capturing fewer numbers of cluster
cores in the same manner with the proposed method when the
cluster number is smaller than the appropriate one. However,
the missing cores are dependent on initialization, i.e., different
cores are missing with different initializations. Fig. 9(c) and (d)
compares the two partitions for the K = 5 case with different
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TABLE I
COMPARISON OF CLUSTER-CORE PURENESS (PURE.) AND REJECTION RATIO

(REJECT.) WITH WINE DATA

initializations and show that the optimal cluster cores can be ex-
tracted with the appropriate initialization, while inappropriate
partition may be given with bad initialization in which one core
was missing and another core was divided into two subcores.
Fig. 9(e) and (f) shows the result with the larger cluster-number
case. If the cluster number is larger than the optimal one, cluster
cores would be divided. Additionally, it is also the case that
some cluster cores are illegally divided into subcores with miss-
ing several cores, as is shown in Fig. 9(f).

This way, the proposed method can derive the best solution
of the conventional noise fuzzy clustering in a deterministic
procedure, although noise fuzzy clustering may generate ille-
gal solutions with bad initializations. Additionally, the noise
fuzzy clustering also suffers from the partition-validation prob-
lems that are used to search the optimal cluster number and
initialization.

B. Real-World Datasets

In this section, comparative experiments on cluster-core esti-
mation are performed with three real-world datasets. The pure-
ness of the cluster cores estimated by the proposed method
is compared with Yang’s α-cut FCM [16]. α-cut FCM is a
k-means-type cluster-core-estimation (robust clustering) tech-
nique based on the alternate optimization scheme. In this ex-
periment, the performance is compared with α-cut FCM be-
cause Yang et al. reported that α-cut FCM outperformed the
other methods in robust cluster-core estimation. In α-cut FCM,
cluster-core samples are estimated by α-cut implementation
where samples having larger memberships than a cutting level
(CL) (α) are assigned a full membership (membership degree is
1). The CL is usually set as larger than or equal to 0.5 in order
to avoid overlapping of cluster cores.

1) Wine Dataset: In the first experiment, wine dataset, which
is available from the University of California (UC) Irvine Ma-
chine Learning Repository [29], was used. The dataset includes
178 samples with 13 attributes drawn from three classes (class
1: 59 samples, class 2: 71 samples, and class 3: 48 samples), and
it is known that the three classes are almost linearly separable. In
this experiment, the cluster number was fixed as K = 3, and the
Gaussian kernel with λ = 0.1 was used in PCA-guided methods.

Table I shows the pureness ratio of cluster cores and noise-
rejection ratio given by the proposed method with various noise
weights (β), PCA-guided k-means, and α-cut FCM with various

CLs. [FPR: FPR k-means, PCA: PCA-guided k-means, FCMα

(ave.): average performance in α-cut FCM, and FCMα (best):
best performance in α-cut FCM with its frequency (freq.)] The
degree of fuzziness in noise-rejection mechanism and the noise
threshold were set as 1.5 and 0.5, respectively, for clearly dis-
tinguishing noise samples. The pureness ratio is the average
pureness of clusters after cluster labeling based on maximum
numbers of sample classes in each cluster. Here, each class label
was assigned only to one cluster. The noise-rejection ratio was
the proportion of samples having responsibility memberships
smaller than noise threshold, i.e., samples out of cores. In α-cut
FCM, 100 trials were performed based on the multistart strategy,
where initial cluster centers are randomly generated.

The proposed method gave 100 % pure cluster cores with
noise weight β = 1, while 54.5 % samples were rejected as
noise. The larger the noise weight, the smaller the pureness
and rejection ratio. The cluster-core pureness without rejection
(the case of β = 1.3) was 96.5% and is very similar to the
conventional PCA-guided k-means.

Here, the performance of α-cut FCM seems to be almost
equal to or slightly better than that of the proposed method.
For example, the proposed method achieved 99.2% pureness
with 34.3% rejection (β = 1.1), while α-cut FCM achieved the
pureness with only 1% rejection (CL = 0.5). When all clusters
are clearly isolated, like Wine dataset, alternate optimization
approaches derive a single optimal solution in almost every
trial and work well. Therefore, the performance of the proposed
method is comparative with that of alternate optimization ap-
proaches when all clusters are clearly isolated.

2) Iris Dataset: In the second experiment, Iris dataset com-
posed of 150 samples with four attributes drawn from three
classes (Setosa: 50 samples, Versicolour: 50 samples, and Vir-
ginica: 50 samples) are used. Setosa is well isolated from other
two classes, while the boundary between Versicolour and Vir-
ginica is very ambiguous. Therefore, the dataset is sometimes
partitioned into two clusters by several cluster-validity mea-
sures, although the three classes form three masses. This ex-
periment is performed with the goal being to capture the three
cluster cores corresponding to the three classes, and the cluster
number was fixed as K = 3. The Gaussian kernel with λ = 1.0
was used in PCA-guided methods.

Table II compares the results and implies that the proposed
method estimated pure cluster cores with small noise weights
(β = 1.0 or 1.1). Furthermore, the cluster cores still have 79.6%
pureness without noise rejection (β = 1.5) and is larger than that
of the conventional PCA-guided k-means because the proposed
responsibility weights emphasize the purely core samples in
cluster-center estimation and then derive robust cluster centers.
The robustification mechanism is useful to improve cluster pure-
ness in PCA-guided k-means, i.e., cluster pureness is improved
even when no sample is rejected.

Next, the performance is compared with α-cut FCM. The
table implies that the proposed method achieved 100% pure-
ness with lower rejection ratio, while the intermediate model
of α-cut FCM with around 20% rejection ratio slightly outper-
formed the proposed method with β = 1.3 from the pureness
ratio viewpoint. Here, it should be noted that α-cut FCM with
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TABLE II
COMPARISON OF CLUSTER-CORE PURENESS (PURE.) AND REJECTION RATIO

(REJECT.) WITH IRIS DATA

0.5 CL failed to capture the three cluster cores in about 10%
trials, i.e., bad initialization led to inappropriate solutions, in
which Setosa was shared by two clusters, and the remaining
cluster included both of Versicolour and Virginica, although the
best performance is slightly better than the proposed method.
This way, when cluster boundaries are ambiguous, alternate op-
timization approaches cannot derive appropriate solutions with-
out good initialization, while the proposed method always de-
rives a proper result in a deterministic manner.

3) Document Classification: In the third experiment, a
Japanese novel “Kokoro” written by S. Natsume that can
be downloaded from Aozora Bunko (http://www.aozora.gr.jp),
which is a Web library containing copyright-expired Japanese
books, is used. The English version of “Kokoro” is also avail-
able from Eldritch Press (http://www.ibiblio.org/eldritch/). The
novel is composed of three chapters (Sensei and I, My Par-
ents and I, and Sensei and His Testament), and the chapters
include 36, 18, and 56 sections, respectively. In this experi-
ment, the sections were considered as individual text docu-
ments (number of samples is n = 110), and the cluster num-
ber was set as K = 3. The text documents were preprocessed
using a morphological analysis system software “Chasen”
(http://chasen.naist.jp/hiki/ChaSen/), which segments Japanese
text string into morphemes, and tags those morphemes with
their parts of speech and pronunciations. Then, the 83 most fre-
quently used substantives and verbs (they were used more than
50 times in the novel) were given as attributes to be analyzed
with their tf-idf weights.

Fig. 10 shows the 2-D document map constructed by PCA,
where 2-D coordinates indicate the 2-D principal-component
scores of each document and implies that the three chapters do
not have clear boundaries. The Gaussian kernel with λ = 0.01
was used in PCA-guided methods. As shown in Fig. 11, the
PCA-guided k-means failed to construct a cluster-crossing curve
that has three clear mountains. Then, the proposed method was
applied with several noise-weights values. The performance is
shown in Table III. By emphasizing only the core documents,
the proposed method could capture the three cluster cores, while

Fig. 10. Two-dimensional document map with “Kokoro.”

Fig. 11. Cluster crossing derived by PCA-guided k-means with “Kokoro.”

TABLE III
COMPARISON OF CLUSTER-CORE PURENESS (PURE.) AND REJECTION RATIO

(REJECT.) WITH DOCUMENTS OF “KOKORO”

the clustering model with β larger than 1.03 failed to reveal the
three chapter structures.

Although α-cut FCM with 0.5 CL was also applied, no core
samples were extracted, i.e., there were no samples that have
memberships larger than 0.5, when fuzzifier θ = 1.5. Then, the
algorithm was reapplied with θ = 1.2, which derives almost
crisp (nonfuzzy) partition-rejecting noise samples. In 100 trials
with various initializations, three cluster cores were captured in
only 35 times, and the average pureness and rejection ratio in
35 trials were 85.6% and 41.6%, respectively. Although the best
performance achieved 91.3% pureness and 38.0% rejection, the
result was derived only in one trial during 100 trials. This way,
when cluster boundaries are very unclear, alternate optimiza-
tion approaches are very sensitive to initial cluster assignment
and fail to capture cluster cores in almost every trial. On the
other hand, the proposed method captures cluster cores in a
deterministic manner by emphasizing only the core samples.
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Fig. 12. Cluster crossing derived by PCA-guided k-means with COIL-20.

TABLE IV
COMPARISON OF CLUSTER-CORE PURENESS (PURE.) AND REJECTION RATIO

(REJECT.) WITH COIL-20

C. High-Dimensional Dataset

In this section, the proposed method is applied to a high-
dimensional dataset. The Columbia University Image Library
(COIL-20) [30] is a database of 128 × 128 grayscale images
of 20 objects, in which each object has 72 images taken by
rotating through 360◦ with 5◦ steps. In this experiment, three
objects (obj1, obj3, and obj4) were used with their 72 sam-
ples, each composed of 128 × 128 grayscale elements, i.e., the
dataset includes three clusters with 72 samples each in the
128 × 128 dimensional data space. Additionally, the remain-
ing 17 objects with their two samples each (the front and back
images only) were added as noise, i.e., 17 × 2 noise images
were added. Then, the dataset to be analyzed is composed
of 3 × 72 + 17 × 2 = 250 samples with 128 × 128 = 16 384
attribute values. In the proposed method with Gaussian ker-
nel, the parameters were set as (θ,K, λ) = (1.5, 3, 1.0 × 10−8).
Here, we must note that the computational cost is not influ-
enced much by the dimensionality of data, i.e., the computa-
tional cost is mainly dependent on the sample size because the
time-consuming part of the proposed method is the eigendecom-
position of the inner product dissimilarity matrix whose size is
(number of samples)×(number of samples).

Fig. 12 shows the cluster-crossing curve given by the conven-
tional PCA-guided k-means and indicates that all noise samples
were buried in the three clusters, i.e., we cannot recognize the
noise, while the three data masses were captured. Then, the pro-
posed method was applied in conjunction with noise-rejection
mechanism. Table IV compares the cluster-core pureness ratio.
The table indicates that the proposed method still work well,
even with high-dimensional datasets in the same way as with
the previous benchmark datasets. Therefore, in this experiment,
the pureness ratio of β = 1.0 was inferior to β = 1.1. It may
be because the sparseness of core might bring an ambiguous

Fig. 13. Comparison of cluster-crossing curve derived by proposed method
with COIL-20. (a) α = 1.0. (b) α = 1.1.

Fig. 14. Cluster crossing derived by proposed method without kernel trick
with COIL-20.

boundary, as shown in Fig. 13, where the boundary between
the left and center clusters has a very small mountain (samples
26–28) when α = 1.0, while the small mountain disappeared
when α = 1.1. This way, a clear mountain structure without
small mountains tends to bring pure cluster cores.

Finally, the effectiveness of kernel trick is investigated. Fig. 14
shows the cluster-crossing curve given by the proposed method
without the kernel trick, where (θ,K, β) = (1.5, 3, 1.0). Al-
though the cluster number was set as K = 3, the cluster-crossing
curve indicates as if there are four (or more) clusters. It may be
because a cluster core having nonlinear boundaries was illegally
divided into subcores. We can see that the unkernelized model
may fail to find proper cluster boundaries, even when we have
enough large-dimensional feature space, i.e., cluster boundaries
are often nonlinear, even when they are characterized by high-
dimensional observations, and the kernelized model seems to
be plausible for most real applications.

V. CONCLUSION

This paper proposed a new approach to robust clustering in
which robust k-means partition is derived using noise-rejection
mechanism based on noise-clustering approach. In the proposed
iterative algorithm, the responsibility weight of each sample for
the k-means process is estimated by considering the noise de-
gree of the sample. Then, cluster indicators are calculated in a
fuzzy PCA-guided manner where fuzzy PCA-guided k-means is
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performed by considering responsibility weights of samples.
Therefore, the proposed method achieves cluster-core estima-
tion in a deterministic way. The validity of the derived cluster
cores is visually assessed through the distance-sensitive order-
ing that considers responsibility weights of samples.

Numerical experiments demonstrated that the proposed
method is useful to capture cluster cores by rejecting noise
samples, and we can easily assess cluster validity using cluster-
crossing curves. Comparative experiments using several real-
world datasets revealed that the proposed method can derive
proper results without initialization problems, although alter-
nate optimization approaches with bad initialization often fail
to capture cluster structures. However, the best results in mul-
tiple trials of α-cut FCM sometimes outperformed that of the
proposed method. It may be because PCA-guided k-means de-
rives just a relaxed clustering solution that is not necessarily
the optimal solution for k-means objective function when all
clusters are not clearly isolated and do not form very small sep-
arate masses. On the other hand, when cluster boundaries are
too ambiguous to capture the cluster cores by α-cut FCM, the
relaxed cluster solution contributes to roughly capture the clus-
ter cores, as shown in Section IV-B3. In several experiments,
the proposed method without noise rejection outperformed the
conventional PCA-guided k-means from the view point of pure-
ness in cluster cores. Therefore, the responsibility weights can
contribute to improve the relaxed solution by weakening the
influences of noise samples that are distant from cluster centers
in PCA-guided k-means.

A potential future work is an extension to sequential cluster
extraction [20]–[22]. In numerical experiments, it was shown
that the proposed method extract only a few cluster cores when
the cluster number was set as smaller numbers. Especially when
cluster number was two, only one proper cluster core was ex-
tracted. This may imply that we can extract proper cluster cores
one by one by iteratively applying the proposed method with a
small cluster number. In another direction, it is also possible to
apply other visual-assessing methods, such as the visual assess-
ment of cluster tendency (VAT) algorithm [31], to connectivity
analysis. The VAT algorithm is a practical technique for visual
assessment of cluster tendencies in relational data with lower
computational cost than the distance-sensitivity ordering [24].
However, if we want to apply the VAT algorithm to the robust
k-means problems, some modifications must be done in or-
der to consider responsibility weights for the k-means process.
Another potential future work is comparative study with other
fuzzy PCA-based clustering methods [32]–[34].
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[11] R. N. Davé, “Characterization and detection of noise in clustering,” Pat-
tern Recognit. Lett., vol. 12, no. 11, pp. 657–664, 1991.
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