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a  b  s  t  r  a  c  t

Fuzzy  multicriteria  decision  making  (MCDM)  has  been  widely  used  in ranking  a  finite number  of  deci-
sion alternatives  characterized  by  fuzzy  assessments  with  respect  to multiple  criteria.  In group  decision
settings,  different  fuzzy  group  MCDM  methods  often  produce  inconsistent  ranking  outcomes  for  the
same  problem.  To address  the  ranking  inconsistency  problem  in  fuzzy  group MCDM,  this  paper  develops
a  new  method  selection  approach  for  selecting  a fuzzy  group  MCDM  method  that  produces  the  most
preferred  group  ranking  outcome  for  a  given  problem.  Based  on  two  group  averaging  methods,  three
aggregation  procedures  and  three  defuzzification  methods,  18  fuzzy  group  MCDM  methods  are  devel-
anking inconsistency
ethod selection
roup decision making
reen bus

oped as  an  illustration  to  solve  the  general  fuzzy  MCDM  problem  that  requires  cardinal  ranking  of  the
decision  alternatives.  The  approach  selects  the  group  ranking  outcome  of  a fuzzy  MCDM  method  which
has the  highest  consistency  degree  with its  corresponding  ranking  outcomes  of  individual  decision  mak-
ers. An  empirical  study on the  green  bus  fuel  technology  selection  problem  is  used  to  illustrate  how  the
approach  works.  The  approach  is  applicable  to large-scale  group  multicriteria  decision  problems  where
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inconsistent  ranking  outc

. Introduction

Multicriteria decision making (MCDM) has been widely used in
valuating, selecting or ranking a finite set of decision alternatives
haracterized by multiple and usually conflicting criteria. Bell-
an  and Zadeh [1] first introduce fuzzy set theory as an effective
ethodology to deal with the inherent imprecision, vagueness and

ubjectiveness involved in the human decision making process.
umerous studies have since been conducted on the development
f fuzzy MCDM methods and their applications to various MCDM
roblems involving imprecision and subjectiveness.

Fuzzy MCDM is concerned with evaluating a set of decision
lternatives with respect to multiple criteria in a fuzzy environ-
ent where the criteria weights and alternatives’ performance

atings are represented by fuzzy numbers [2–6]. Multiattribute
alue theory (MAVT) [7] has been widely used to solve fuzzy
CDM problems where a cardinal preference or ranking of decision

lternatives is required. With simplicity in both concept and com-
utation, MAVT-based MCDM methods are intuitively appealing
o the decision makers in practical applications. In addition, these
Please cite this article in press as: Y.-H. Chang, et al., A new method s
Appl. Soft Comput. J. (2013), http://dx.doi.org/10.1016/j.asoc.2012.12.

ethods are the most appropriate quantitative tools for group deci-
ion support systems [8,9]. As such, this paper considers three
idely used MAVT-based MCDM methods which are applicable

∗ Corresponding author. Tel.: +61 3 99055808; fax: +61 3 99055159.
E-mail address: chunghsing.yeh@infotech.monash.edu.au (C.-H. Yeh).
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 often  exist  between  different  fuzzy  MCDM  methods.
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to large-scale decision problems where the evaluation or rank- 

ing outcomes produced by different methods are most likely to be 

significantly different. 

MAVT-based fuzzy MCDM methods usually involve two  steps. 

The first step aggregates the fuzzy weights and the fuzzy perfor- 

mance ratings as an overall fuzzy utility for assessing the overall 

performance of each decision alternative across all criteria. The 

second step compares the aggregated fuzzy utilities of the deci- 

sion alternatives [2,3,10–14].  The aggregation in the first step can 

be made by an MAVT-based MCDM method. However, there is no 

best method for the general MCDM problem and different methods 

often produce inconsistent ranking outcomes for the same prob- 

lem [15,16].  This is mainly due to the multiplicity and complexity 

of multicriteria decisions. To deal with the second step, a fuzzy 

number ranking method is usually applied. 

Numerous fuzzy number ranking methods have been devel- 

oped and there is no best method for the general fuzzy MCDM 

problem [17–20].  Most fuzzy number ranking methods suffer 

from various drawbacks such as (a) lack of sensitivity when com- 

paring similar fuzzy numbers, (b) counterintuitive outcomes in 

certain circumstances, and (c) complex computational processes 

[20,21]. To address the fuzzy number ranking issue in fuzzy MCDM, 

defuzzification is widely used as an effective means for compar- 
election approach for fuzzy group multicriteria decision making,
009

ing fuzzy utilities of the decision alternatives [2,14,22]. Numerous 66

defuzzification methods have been developed, and there is no best 67

method. Often, each defuzzification method is used and exam- 68

ined in a specific decision context [14,20,21].  However, the relative 69

dx.doi.org/10.1016/j.asoc.2012.12.009
dx.doi.org/10.1016/j.asoc.2012.12.009
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:chunghsing.yeh@infotech.monash.edu.au
dx.doi.org/10.1016/j.asoc.2012.12.009


ARTICLE IN PRESSG Model
ASOC 1841 1–9

2 Y.-H. Chang et al. / Applied Soft Computing xxx (2013) xxx–xxx

Table 1
Linguistic terms for fuzzy weighting assessment.
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Linguistic term Not important (NI) Somewhat important (

Membership function (0, 0, 3) (0, 2.5, 5) 

erformance of these defuzzification methods in solving the gen-
ral fuzzy MCDM problem is not clear. This makes the selection of

 specific defuzzification method complex and difficult [22,23].
To effectively support fuzzy MCDM decisions, the selection of

vailable MCDM and defuzzification methods with respect to their
elative performance is thus an important issue. Due to the struc-
ural differences of available fuzzy MCDM methods, the ranking
utcomes produced by these methods may  not be consistent for

 given decision problem. In fact, the empirical study presented
n this paper shows that the ranking outcomes of the decision
lternatives produced by different fuzzy MCDM methods are so
ifferent that the effectiveness of the methods used has to be exam-

ned in order to help select the most preferred ranking outcome.
n a group decision making environment, this method selection
ssue is complicated by the fact that the decision makers often have
ifferent preferences of the decision alternatives.

In this paper, we develop a new method selection approach for
electing the most preferred ranking outcome among those pro-
uced by different fuzzy group MCDM methods. The most preferred
anking outcome is most acceptable to the decision makers as a
hole, as it can best reflect their preferences in a specific decision

etting. To illustrate the effectiveness of the approach, we consider
8 fuzzy group MCDM methods, which are developed from two
roup averaging methods, three MCDM methods and three defuzzi-
cation methods. These methods are intuitively appealing to the
ecision makers in practice due to their simplicity in both con-
ept and computation. In practical applications, the approach can
e applied to any number of group averaging, MCDM and defuzzi-
cation methods, as long as they are acceptable to the group of
ecision makers.

In subsequent sections, we first describe the general MAVT-
ased fuzzy group MCDM problem. Next, we present some
ommonly used methods for group averaging, MCDM,  and defuzzi-
cation that can be combined to solve the fuzzy group MCDM
roblem. We  then develop a new method selection approach for
electing among the different group ranking outcomes produced
y available fuzzy group MCDM methods. Finally, we  conduct an
mpirical study on the green bus fuel technology selection problem
o demonstrate the effectiveness of the method selection approach.

. The fuzzy group MCDM problem

The fuzzy group MCDM problem involves a finite set of m deci-
ion alternatives Ai (i = 1, 2,..., m),  which are to be evaluated by a
roup of p decision makers DMk (k = 1, 2, . . .,  p) with respect to a set
f n evaluation criteria Cj (j = 1, 2,...,n). These evaluation criteria are
easurable quantitatively or assessable qualitatively, and are inde-

endent of each other. Assessments are to be made by each decision
aker DMk to determine (a) the fuzzy weight vector Wk = (wk

1, wk
2,

 . .,  wk
n) and (b) the fuzzy decision matrix Xk = {xk

ij, i = 1, 2, . . .,  m;
Please cite this article in press as: Y.-H. Chang, et al., A new method s
Appl. Soft Comput. J. (2013), http://dx.doi.org/10.1016/j.asoc.2012.12

 = 1, 2, . . .,  n}.
The fuzzy weight vector Wk represents the fuzzy weights (rela-

ive importance) of the criteria Cj, which are given by the decision
aker DMk using a cardinal scale. The fuzzy decision matrix Xk

able 2
inguistic terms for fuzzy performance rating assessment.

Linguistic term Very poor (VP) Poor (P) 

Membership function (0, 0, 3) (0, 2.5, 5) 
Important (I) Very important (VI) Extremely important (EI)

(3, 5, 7) (5, 7.5, 10) (7, 10, 10)

represents the fuzzy performance ratings (xij) of alternative Ai with 

respect to criteria Cj, which are either objectively measured (for 

quantitative criteria) or subjectively assessed by the decision maker 

DMk (for qualitative criteria) using cardinal values. 

In making subjective assessments of the fuzzy weight vector and 

the fuzzy decision matrix, the decision makers can use two types 

of judgment: comparative judgment and absolute judgment [5].  To
facilitate comparative judgments, a pairwise comparison process
is commonly used, as implemented in the analytic hierarchy pro- 

cess (AHP) [3,24].  In this paper, to illustrate how the fuzzy weight 

vector and the fuzzy decision matrix can be obtained by subjective
assessments, we use absolute judgments as an example. 

Subjective assessments are to be made by each decision maker 

DMk to determine the fuzzy weight vector Wk and the fuzzy deci- 

sion matrix Xk, using absolute judgments with the linguistic terms 

given in Tables 1 and 2. In practical applications, triangular fuzzy 

numbers are most widely used to represent the approximate value 

range of the linguistic term [5].  The popular use of triangular fuzzy 

numbers is mainly attributed to their simplicity in both concept 

and computation. Theoretically, the merits of using triangular fuzzy 

numbers in fuzzy modeling have been well justified [25]. With 

the simplest form of the membership function, triangular fuzzy 

numbers constitute an immediate solution to the optimization 

problems in fuzzy modeling. In a triangular fuzzy number denoted 

as (a1, a2, a3) where a1 < a2 < a3, a2 is the most possible assessment 

value, and a1 and a3 are the lower and upper bounds respectively for 

reflecting the fuzziness of the assessment. Table 1 shows a typical 

set of linguistic terms, together with their corresponding member- 

ship functions, for the linguistic variable “importance”, which can 

be used to assess the criteria weight. To assess the performance
rating of alternatives, we  need another set of linguistic terms for 

the linguistic variable “performance”, as given in Table 2. 

The intervals of the membership functions used in Tables 1 and 2 

are suggested in [2] for a linguistic variable with a set of five lin- 

guistic terms and a value range between 0 and 10. To reflect the fact 

that the decision makers may  have different perceptions of these 

linguistic terms in practical applications, each decision maker has 

the option of defining the membership functions for these linguistic 

terms as the assessment result. If the decision maker has no per- 

sonal preference in using these linguistic terms, the membership 

functions defined in Tables 1 and 2 can be used as default values. 

This setting is implemented in the empirical study. 

With the use of the linguistic terms in Tables 1 and 2 for 

assessing the criteria weights and the performance ratings of the 

alternatives, a fuzzy weight vector Wk and a fuzzy decision matrix 

Xk are obtained for each of p decision makers DMk. Given p fuzzy 

weight vectors Wk and p fuzzy decision matrices Xk, the objective of 

the evaluation problem is to rank all the alternatives by giving each 

of them an overall preference value with respect to all the criteria. 
election approach for fuzzy group multicriteria decision making,
.009

3. Development of fuzzy group MCDM methods 171

The solution procedure for the fuzzy group MCDM prob- 172

lem typically involves three key phases: group averaging, MCDM 173

Fair (F) Good (G) Very good (VG)

(3, 5, 7) (5, 7.5, 10) (7, 10, 10)
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ggregation, and defuzzification. The group averaging phase is used
o aggregate or average individual fuzzy weight vectors and indi-
idual fuzzy decision matrices into a group fuzzy weight vector
nd a group fuzzy decision matrix. The MCDM aggregation phase
s used to synthesize the fuzzy group weight vector and the fuzzy
roup decision matrix in order to obtain an overall fuzzy prefer-
nce value for each alternative. The defuzzification phase is used to
btain a crisp preference value for each alternative, on which the
anking of all the alternatives can be based. With the use of triangu-
ar fuzzy numbers, the arithmetic operations on fuzzy numbers are
ased on interval arithmetic [26]. Commonly used methods for the
hree phases of a typical fuzzy group MCDM method are presented
n the following sections.

.1. The group averaging phase

Many operators have been proposed for aggregating informa-
ion such as arithmetic averaging, weighted arithmetic averaging,
eometric averaging, and weighted geometric averaging [27].
rithmetic mean and geometric mean are among the most used
ethods for averaging individual assessments of decision mak-

rs. Once all the fuzzy numbers are obtained, the arithmetic and
eometric means can be performed to obtain the average evalua-
ion rating of each criterion and the average performance of each
lternative.

The cardinal values given in the fuzzy weight vector Wk = (wk
1,

k
2, . . .,  wk

n) and the fuzzy decision matrix Xk = {xk
ij, i = 1, 2, . . .,

; j = 1, 2, . . .,  n} represent the absolute preferences of the decision
aker DMk. These individual fuzzy weight vectors and fuzzy deci-

ion matrices are averaged to represent the group fuzzy weight
ector W and group fuzzy decision matrix X. As such, the group
uzzy weight vector is given by

 = (w1, w2, . . . , wn) (1)

here wj = ∑p
k=1wj

k/p if the arithmetic mean method is used or

j =
∏p

k=1

(
wk

j

)1/p

if the geometric mean method is used; j = 1, 2,

 . .,  n. If the decision makers DMk have different importance values
i.e. carry different weights) �k in the decision making process, wj =

p
k=1wj

k�k/
∑p

q=1�k if the arithmetic mean method is used or wj =
p
k=1

(
wk

j

)�k/
∑p

q=1
�k

if the geometric mean method is used; j = 1,

, . . .,  n.
The group fuzzy decision matrix X is given by

 =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . . . . . . . .

xm1 xm2 . . . xmn

⎤
⎥⎥⎥⎦ (2)

here xij =
∑p

k=1xij
k/p if the arithmetic mean method is used, or

ij =
∏p

k=1(xk
ij
)
1/p

if the geometric mean method is used; i = 1, 2, . . .,
; j = 1, 2, . . .,  n. If the decision makers DMk have different impor-

ance values �k, xij =
∑p

k=1xij
k�k/

∑p
q=1�k if the arithmetic mean∑p
Please cite this article in press as: Y.-H. Chang, et al., A new method s
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ethod is used, or xij =
∏p

k=1

(
xk

ij

)�k/
q=1

�k

if the geometric mean

ethod is used; i = 1, 2, . . .,  m;  j = 1, 2, . . .,  n.
For easy illustration of the new fuzzy group MCDM method

election approach, in this paper we assume that the opinions of
ll p decision makers on the criteria weights and the alternatives’
erformance ratings are weighted equally.

263

264

265
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3.2. The MCDM aggregation phase 

Three widely used MAVT-based MCDM methods described 

below can be used for the aggregation phase [28]. 

3.2.1. The simple additive weighting (SAW) method 

The SAW method, also known as the weighted sum method, is 

probably the best known and most widely used MCDM method 

[29]. The basic logic of the SAW method is to obtain a weighted 

sum of the performance ratings of each alternative over all criteria. 

The SAW method normally requires normalizing the fuzzy decision 

matrix (X) to allow a comparable scale for all ratings in X by 

rij =
{

xij/maxi xij if j is a benefit criterion

mini xij/xij if j is a cost criterion
; i = 1, 2, . . . , m;  j = 1, 2, . . . , n. 

(3) 

where rij (0 ≤ rij ≤ 1) is defined as the normalized fuzzy performance 

rating of alternative Ai on criteria Cj. This normalization process
transforms all the ratings in a linear way, so that the relative order 

of magnitude of the ratings remains equal. The overall fuzzy pref-
erence value (Vi) of each alternative is obtained by: 

Vi =
n∑

j=1

wjrij; i = 1, 2, . . . , m. (4) 

The greater the value (Vi), the more preferred the alternative 

(Ai). 

3.2.2. The weighted product (WP) method 

The WP  method uses multiplication for connecting criteria rat- 

ings, each of which is raised to the power of the corresponding 

criteria weight [30,31]. This multiplication process has the same 

effect as the normalization process for handling different measure- 

ment units. The fuzzy preference value of each alternative is given 

by 

Si =
n∏

j=1

xijwj; i = 1, 2, . . . , m. (5) 

where
∑n

j=1wj = 1. wj is a positive power for benefit criteria and 

a negative power for cost criteria. Due to the exponentiation prop- 

erty, if a criterion has fractional ratings, all ratings with respect 

to that criterion are multiplied by 10q (q ≥ 1) to make all ratings 

greater than one. In this study, for easy comparison with the prefer- 

ence values generated by the other two methods, the overall fuzzy 

preference value (Vi) of each alternative is given by: 

Vi =

n∏
j=1

xijwj

n∏
j=1

(x ∗ j)wj

, i = 1, 2, . . . , m. (6) 

where x ∗ j = max
i

xij and 0 ≤ Vi ≤ 1. The greater the value (Vi), the 

more preferred the alternative (Ai). 

3.2.3. The technique for order preference by similarity to ideal 

solution (TOPSIS) 

TOPSIS is based on the concept that the most preferred alterna- 
election approach for fuzzy group multicriteria decision making,
009

tive should not only have the shortest distance from the positive 266

ideal solution, but also have the longest distance from the negative 267

ideal solution [29,32]. This concept has been widely used in various 268

MCDM models for solving practical decision problems [33–38].  This 269
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Table 3
Eighteen group ranking methods and their corresponding reference code.

Group averaging MCDM method Defuzzification Code

Arithmetic mean SAW COA A-S-C
Arithmetic mean SAW GMI A-S-G
Arithmetic mean SAW MD A-S-M
Arithmetic mean WP COA A-W-C
Arithmetic mean WP  GMI  A-W-G
Arithmetic mean WP MD A-W-M
Arithmetic mean TOPSIS COA A-T-C
Arithmetic mean TOPSIS GMI  A-T-G
Arithmetic mean TOPSIS MD A-T-M
Geometric mean SAW COA G-S-C
Geometric mean SAW GMI  G-S-G
Geometric mean SAW MD G-S-M
Geometric mean WP COA G-W-C
Geometric mean WP GMI  G-W-G
Geometric mean WP  MD G-W-M
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s due to (a) its simplicity and comprehensibility in concept, (b) its
omputational efficiency, and (c) its ability to measure the relative
erformance of the decision alternatives in a simple mathematical
orm.

TOPSIS normally requires normalizing the fuzzy performance
atings of alternative Ai on criteria Cj by:

ij = xij/

√√√√ m∑
i=1

x2
ij
; i = 1, 2, . . . , m;  j = 1, 2, . . . , n. (7)

The positive ideal solution A+ and the negative ideal solution A−

re determined based on the weighted normalized fuzzy ratings
yij) by

ij = wjrij; i = 1, 2, . . . , m; j = 1, 2, . . . , n. (8)

+ = (y+
1 , y+

2 , . . . , y+
n ); A− =

(
y−

1 , y−
2 , . . . , y−

n

)
(9)

here yj+ =
{

maxi yij, if j is a benefit criterion
mini yij, if j is a cost criterion

;  yj− =

mini yij, if j is a benefit criterion
maxi yij, if j is a cost criterion

;

 = 1, 2, . . . , n. (10)

The distance between Ai and A+, and the distance between Ai
nd A− are calculated respectively by:

+
i

=

√√√√ n∑
j=1

(
y+ − yij

)2
;

−
i

=

√√√√ n∑
j=1

(yij − y−
i

)2; i = 1, 2, . . . , m.  (11)

The overall fuzzy preference value (Vi) of each alternative is
iven by:

i = Di−

Di+ + Di−
; i = 1, 2, . . . , m.  (12)

The greater the value (Vi), the more preferred the alternative
Ai).

.3. The defuzzification phase

Defuzzification is the process to convert a fuzzy number into a
on-fuzzy (crisp) value. As an illustration of the method selection
pproach, three simple and commonly used defuzzification meth-
ds for triangular fuzzy numbers are used in this paper, including
enter-of-area (COA), graded mean integration (GMI), and metric
istance (MD). These methods differ in their way of weighting the
ost possible assessment value.
The COA method is the most popular and commonly used

ethod to defuzzify a triangular fuzzy number [39–44].  Given an
verall fuzzy preference value Vi = (ai, bi, ci), the defuzzification
alue by the COA method is obtained by

(Vi) = (ci − ai) + (bi − ai)
3

+ ai or R(Vi) = ai + bi + ci

3
(13)

The GMI  method defuzzifies a triangular fuzzy number as
Please cite this article in press as: Y.-H. Chang, et al., A new method s
Appl. Soft Comput. J. (2013), http://dx.doi.org/10.1016/j.asoc.2012.12

37,45,46]:

(Vi) = ai + 4bi + ci

6
(14)
Geometric mean TOPSIS COA G-T-C
Geometric mean TOPSIS GMI  G-T-G
Geometric mean TOPSIS MD G-T-M

The defuzzification value by the MD method [47–51] is given 

by: 

R(Vi) = ai + 2bi + ci

4
(15) 

3.4. Development of fuzzy group MCDM methods 

Combining the two methods for averaging individual judgments 

of the decision makers (arithmetic mean and geometric mean) with
three aggregation procedures (SAW, WP,  and TOPSIS) and three 

defuzzification methods (COA, GMI, and MD)  will result in 18 differ- 

ent fuzzy group MCDM methods. Table 3 shows these 18 methods, 

each is associated with a code for easy reference. These methods 

can be used to solve the general fuzzy group MCDM problem that 

requires cardinal ranking of all the alternatives. 

4. A new approach to selecting the most preferred group 

decision outcome 

A number of methods are often available for solving a fuzzy 

MCDM problem. Due to their structural differences, different fuzzy 

MCDM methods often produce inconsistent ranking outcomes for 

the same problem. Despite significant developments in MCDM 

method selection research, the validation of ranking outcomes 

remains an open issue [52,53]. This is mainly due to the fact that 

the “true” cardinal ranking of alternatives is unknown [16]. In addi- 

tion, there is no such thing as the “right answer” as the concept of 

an optimum does not exist in a multicriteria framework [54]. This 

implies that the “true” ranking of alternatives is not known or can- 

not be obtained in a universally accepted way. To address this issue 

for the 18 available fuzzy MCDM methods illustrated in this paper, 

we develop a new approach for selecting the most preferred rank- 

ing outcome among all feasible outcomes produced by available 

fuzzy MCDM methods in the context of group decision making. 

In group decision making, the stakeholders or decision makers 

often have different views of the criteria weights (i.e. the weight 

vector) and the alternatives’ performance ratings (i.e. the decision 

matrix). To reach a compromised solution, the assessment values 

given by individual decision makers for the weight vector and the 

decision matrix are often averaged as the group values. As such, 

the individual ranking outcomes based on the values given by indi- 

vidual decision makers may  not be consistent with the final group
election approach for fuzzy group multicriteria decision making,
.009

ranking outcome derived from the averaged group values. In addi- 348

tion, different fuzzy MCDM methods often produce different final 349

group ranking outcomes for the same group fuzzy weight vector W 350

and group fuzzy decision matrix X, as suggested by existing studies 351

dx.doi.org/10.1016/j.asoc.2012.12.009
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Fig. 1. The fuzzy group MC

16,55] and evidenced in the empirical study of this paper. Among
ll the feasible group ranking outcomes, individual decision makers
ould prefer the group ranking outcome which is most consistent
ith their own ranking outcome. That is, the most preferred group

anking outcome is the one that is most consistent with individ-
al rankings made by respective decision makers using a particular
CDM method. This is the notion on which the new method selec-

ion approach is based.
With m decision alternatives Ai (i = 1, 2,..., m)  and p decision mak-

rs DMk (k = 1, 2,..., p) using a fuzzy group MCDM method, one group
anking outcome Vi and p individual ranking outcomes Vk

i will be
roduced. The consistency degree or the correlation between Vi
nd each Vk

i using the corresponding methods can be measured
y Spearman’s rank correlation coefficient, resulting in p correla-
ion coefficients. For example, the individual ranking outcome Vl

i

Please cite this article in press as: Y.-H. Chang, et al., A new method s
Appl. Soft Comput. J. (2013), http://dx.doi.org/10.1016/j.asoc.2012.12.

y DM1 using SAW and COA is to be compared with the group rank-
ng outcome Vi using the A-S-C method. With one decision maker
M1, this produces one correlation coefficient for one fuzzy group
CDM method (i.e. the A-S-C method). With p decision makers,
ethod selection approach.

p correlation coefficients will be produced for the A-S-C method. 

When applying this process to other fuzzy group MCDM methods 

individually, p correlation coefficients will be produced for each 

method. 

The overall consistency degree of each fuzzy group MCDM 

method can be obtained by averaging the p correlation coefficients. 

The method selection approach will select the group ranking out- 

come of a fuzzy MCDM method which has the highest consistency 

degree, as compared to that of other methods. This implies that the 

method selected is the most preferred one, as the ranking outcome 

produced is most acceptable by the decision makers as a whole. 

Based on the fuzzy group MCDM problem setting described 

above, the new method selection approach is illustrated in Fig. 1 

and summarized below.Obtain the fuzzy weight vectors and the 

fuzzy decision matrices assessed by p individual decision mak- 
election approach for fuzzy group multicriteria decision making,
009

ers (DMk, k = 1, 2, . . .,  p) using the linguistic terms defined in 386

Tables 1 and 2.Average individual fuzzy weight vectors and indi- 387

vidual fuzzy decision matrices into two  group fuzzy weight vectors 388

and two  group fuzzy decision matrices by arithmetic mean and 389
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Table 4
Individual fuzzy weight vectors of 12 decision makers.

C1 C2 C3 C4 C5 C6

DM1 (5, 7.5, 10) (3, 5, 7) (5, 7.5, 10) (3, 5, 7) (7, 10, 10) (3, 5, 7)
DM2 (5, 7.5, 10) (5, 7.5, 10) (5, 7.5, 10) (5, 7.5, 10) (5, 7.5, 10) (5, 7.5, 10)
DM3 (6, 7.5, 9) (1, 2.5, 4) (3.5, 5, 6.5) (3.5, 5, 6.5) (3.5, 5, 6.5) (3.5, 5, 6.5)
DM4 (5, 7.5, 10) (7, 10, 10) (7, 10, 10) (5, 7.5, 10) (3, 5, 7) (3, 5, 7)
DM5 (5, 7.5, 10) (5, 7.5, 10) (7, 10, 10) (7, 10, 10) (5, 7.5, 10) (3, 5, 7)
DM6 (5, 7.5, 10) (5, 7.5, 10) (7, 10, 10) (5, 7.5, 10) (5, 7.5, 10) (3, 5, 7)
DM7 (5, 7.5, 10) (3, 5, 7) (3, 5, 7) (5, 7.5, 10) (5, 7.5, 10) (3, 5, 7)
DM8 (5, 7.5, 10) (5, 7.5, 10) (7, 10, 10) (5, 7.5, 10) (7, 10, 10) (7, 10, 10)
DM9 (7, 10, 10) (5, 7.5, 10) (7, 10, 10) (5, 7.5, 10) (5, 7.5, 10) (3, 5, 7)
DM10 (3, 5, 7) (5, 7.5, 10) (3, 5, 7) 

DM11 (5, 7.5, 10) (5, 7.5, 10) (5, 7.5, 10) 

DM12 (5, 7.5, 10) (7, 10, 10) (5, 7.5, 10) 

Table 5
Individual fuzzy decision matrix of DM1.

A1 A2 A3 A4 A5 A6

C1 (5, 7.5, 10) (5, 7.5, 10) (3, 5, 7) (0, 2.5, 5) (5, 7.5, 10) (5, 7.5, 10)
C2 (3, 5, 7) (3, 5, 7) (3, 5, 7) (3, 5, 7) (5, 7.5, 10) (5, 7.5, 10)
C3 (5, 7.5, 10) (5, 7.5, 10) (0, 2.5, 5) (0, 2.5, 5) (5, 7.5,10) (7, 10, 10)
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C4 (3, 5, 7) (3, 5, 7) (5, 7.5, 10) (0, 2.5, 5) (0, 2.5, 5) (0, 2.5, 5)
C5 (5, 7.5,10) (5, 7.5, 10) (0, 2.5, 5) (0, 2.5, 5) (5, 7.5, 10) (5, 7.5, 10)
C6 (5, 7.5, 10) (3, 5, 7) (5, 7.5, 10) (3, 5, 7) (3, 5, 7) (3, 5, 7)

eometric mean respectively, as expressed in Eqs. (1) and
2).Aggregate each group fuzzy weight vector and group fuzzy
ecision matrix by three MCDM methods (SAW, WP,  and TOPSIS)
espectively to obtain six sets of group fuzzy preference values.Use
hree defuzzification methods (COA, GMI, and MD)  on the six sets
f group fuzzy preference values to obtain 18 group ranking out-
omes by the 18 methods.For each of p decision makers, apply three
CDM methods and three defuzzification methods respectively

o each set of individual fuzzy weight vectors and fuzzy decision
atrices obtained at Step 1 to obtain nine individual ranking out-

omes.For each of p decision makers, determine the consistency
egree between 18 group ranking outcomes and nine individ-
al ranking outcomes produced by the corresponding MCDM and
efuzzification methods, using Spearman’s rank correlation coef-
cient.For each of 18 group ranking outcomes by the 18 methods,
verage the p correlation coefficients obtained at Step 6.Select the
uzzy group MCDM method that produces the highest averaged
orrelation coefficient at Step 7.
Please cite this article in press as: Y.-H. Chang, et al., A new method s
Appl. Soft Comput. J. (2013), http://dx.doi.org/10.1016/j.asoc.2012.12

. Empirical study on green bus fuel technology selection

To illustrate the inconsistent ranking outcomes produced by
ifferent fuzzy MCDM methods, we present a green bus fuel

able 6
roup fuzzy weight vectors and group fuzzy decision matrices.

Criteria weight A1

Arithmetic Geometric Arithmetic Geome

C1 (0.51, 0.75, 0.97) (0.50, 0.74, 0.96) (0.42, 0.65, 0.85) (0, 0.6
C2 (0.47, 0.71, 0.9) (0.42, 0.67, 0.87) (0.39, 0.635, 0.89) (0, 0.5
C3 (0.54, 0.8, 0.92) (0.51, 0.77, 0.91) (0.45, 0.69, 0.88) (0.41, 

C4 (0.49, 0.71, 0.93) (0.48, 0.68, 0.91) (0.43, 0.65, 0.87) (0.41, 

C5 (0.5, 0.75, 0.92) (0.48, 0.73, 0.91) (0.3, 0.52, 0.74) (0, 0.4
C6 (0.35, 0.53, 0.71) (0.34, 0.49, 0.7) (0.34, 0.56, 0.76) (0, 0.5

A3 A4 A5

Geometric Arithmetic Geometric Arithmet

C1 (0, 0.47, 0.72) (0.2, 0.48, 0.71) (0, 0.43, 0.68) (0.37, 0.6
C2 (0, 0.53, 0.77) (0.38, 0.61, 0.8) (0.4, 0.58, 0.78) (0.43, 0.7
C3 (0, 0.52, 0.74) (0.41, 0.69, 0.85) (0, 0.64, 0.83) (0.38, 0.6
C4 (0, 0.5, 0.74) (0.35, 0.63, 0.86) (0, 0.59, 0.83) (0.37, 0.6
C5 (0, 0.45, 0.68) (0.24, 0.48, 0.69) (0, 0.41, 0.66) (0.18, 0.4
C6 (0, 0.47, 0.7) (0.25, 0.5, 0.7) (0, 0.46, 0.68) (0.33, 0.5
(5, 7.5, 10) (5, 7.5, 10) (3, 5, 7)
(5, 7.5, 10) (7, 10, 10) (3, 5, 7)
(5, 7.5, 10) (3, 5, 7) (3, 5, 7)

technology selection problem in Taiwan. To show how the new 

method selection approach can be used to select the most preferred
group ranking outcome for the problem, we  apply the 18 fuzzy
group MCDM methods presented in Table 3. 

The objective of the green bus fuel technology selection problem 

is to select a new green fuel technology for buses in Taiwan. The six 

alternatives considered are natural gas (A1), liquefied petroleum 

gas (A2), methanol and ethanol (A3), biodiesel (A4), hybrid electric 

(A5), and fuel cell (A6). Based on comprehensive discussions with 

the experts in relevant public and private sectors in Taiwan, a set of 

six selection criteria is determined. We  briefly discuss these criteria 

below. 

a) Supply (C1): the degree of the long term availability of the fuel. 

b) Emission (C2): the average emission of a given pollutant occur-
ring as a result of using the fuel. 

c) Technology (C3): the capability to convert existing buses into 

using the fuel. 

d) Safety (C4): the state of being safe for consumers and the society 

after using the fuel. 

e) Cost (C5): the overall cost to convert buses into using the alter- 

native fuels. 

(f) Consumer preference (C6): the consumer’s willingness and pref- 

erence of using the fuel. 

A survey with structured questionnaires was conducted to ask 

the experts in Taiwan to (a) weight the six selection criteria, and
election approach for fuzzy group multicriteria decision making,
.009

(b) assess the performance rating of six green bus fuel technology 436

alternatives with respect to each selection criterion using the lin- 437

guistic terms defined in Tables 1 and 2 independently. For their 438

fuzzy assessment results, the experts had the option of using the 439

A2 A3

tric Arithmetic Geometric Arithmetic

1, 0.83) (0.49, 0.73, 0.92) (0.47, 0.71, 0.91) (0.29, 0.52, 0.75)
8, 0.82) (0.33, 0.57, 0.76) (0, 0.53, 0.74) (0.34, 0.5, 0.79)
0.65, 0.85) (0.43, 0.67, 0.88) (0, 0.64, 0.86) (0.35, 0.58, 0.77)
0.63, 0.85) (0.32, 0.54, 0.77) (0, 0.5, 0.74) (0.31, 0.55, 0.77)
8, 0.72) (0.43, 0.65, 0.83) (0, 0.59, 0.81) (0.28, 0.53, 0.71)
2, 0.74) (0.32, 0.52, 0.73) (0, 0.5, 0.72) (0.29, 0.53, 0.73)

A6

ic Geometric Arithmetic Geometric

1, 0.81) (0, 0.56, 0.79) (0.37, 0.61, 0.84) (0, 0.57, 0.81)
1, 0.9) (0.45, 0.69, 0.88) (0.49, 0.77, 0.95) (0.51, 0.75, 0.94)
5, 0.85) (0.37, 0.61, 0.82) (0.32, 0.54, 0.74) (0, 0.49, 0.71)
5, 0.88) (0, 0.62, 0.86) (0.39, 0.67, 0.9) (0, 0.64, 0.88)
, 0.62) (0, 0, 0.6) (0.28, 0.5, 0.7) (0, 0.45, 0.67)
9, 0.8) (0.35, 0.58, 0.78) (0.39, 0.67, 0.85) (0, 0.63, 0.83)
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Table  7
Group ranking outcome of 18 methods.

A1 A2 A3 A4 A5 A6

Method Value (ranking) Value (ranking) Value (ranking) Value (ranking) Value (ranking) Value (ranking)

A-S-C 2.722 (1) 2.709 (3) 2.412 (6) 2.475 (5) 2.616 (4) 2.710 (2)
A-S-G 2.672 (2) 2.669 (3) 2.365 (6) 2.445 (5) 2.580 (4) 2.674 (1)
A-S-M 2.697 (1) 2.689 (3) 2.388 (6) 2.460 (5) 2.598 (4) 2.692 (2)
A-W-C 0.188 (1) 0.181 (3) 0.114 (6) 0.124 (5) 0.155 (4) 0.183 (2)
A-W-G 0.157 (1) 0.154 (3) 0.095 (5) 0.106 (6) 0.130 (4) 0.155 (2)
A-W-M 0.172 (1) 0.167 (3) 0.105 (6) 0.115 (5) 0.142 (4) 0.169 (2)
A-T-C 0.992 (2) 1 (1) 0.446 (6) 0.534 (5) 0.743 (4) 0.918 (3)
A-T-G 0.966 (2) 1 (1) 0.458 (6) 0.567 (5) 0.752 (4) 0.919 (3)
A-T-M 0.978 (2) 1 (1) 0.452 (6) 0.551 (5) 0.748 (4) 0.919 (3)
G-S-C  2.208 (2) 2.201 (3) 1.943 (6) 2.022 (5) 2.070 (4) 2.210 (1)
G-S-G  2.299 (2) 2.298 (3) 1.979 (6) 2.080 (4) 2.067 (5) 2.299 (1)
G-S-M 2.254 (2) 2.250 (3) 1.961 (6) 2.051 (5) 2.069 (4) 2.254 (1)
G-W-C 0.141 (1) 0.137 (3) 0.079 (6) 0.092 (4) 0.091 (5) 0.138 (2)
G-W-G 0.125 (1) 0.122 (2) 0.067 (5) 0.079 (4) 0.046 (6) 0.121 (3)
G-W-M 0.133 (1) 0.129 (2) 0.073 (5) 0.085 (4) 0.068 (6) 0.129 (3)
G-T-C  1 (1) 0.995 (2) 0.513 (6) 0.648 (5) 0.805 (4) 0.932 (3)
G-T-G 0.987 (2) 1 (1) 0.657 (5) 0.713 (4) 0.576 (6) 0.930 (3)
G-T-M 0.993 (2) 1 (1) 0.598 (6) 0.686(4) 0.681 (5) 0.931 (3)

Table 8
Ranking outcome of DM1.

A1 A2 A3 A4 A5 A6

Method Value (ranking) Value (ranking) Value (ranking) Value (ranking) Value (ranking) Value (ranking)

DM1-S-C 2.653 (2) 2.562 (4) 1.723 (5) 1.278 (6) 2.609 (3) 2.705 (1)
DM1-S-G 2.545 (2) 2.468 (4) 1.580 (5) 1.170 (6) 2.523 (3) 2.665 (1)
DM1-S-M 2.598 (2) 2.515 (5) 1.651 (4) 1.223 (6) 2.566 (3) 2.685 (1)
DM1-T-C 0.776 (1) 0.758 (2) 0.280 (5) 0.000 (6) 0.746 (4) 0.796 (3)
DM1-T-G 0.767 (1) 0.754 (3) 0.254 (5) 0.000 (6) 0.752 (4) 0.827 (2)
DM1-T-M 0.771 (1) 0.756 (3) 0.267 (5) 0.000 (6) 0.749 (4) 0.811 (2)
DM1-W-C 0.313 (2) 0.257 (3) 0.061 (5) 0.020 (6) 0.227 (4) 0.247 (1)
DM1-W-G 0.291 (2) 0.250 (4) 0.046 (5) 0.016 (6) 0.239 (3) 0.279 (1)
DM1-W-M 0.301 (2) 0.253 (4) 0.054 (5) 0.018 (6) 0.233 (3) 0.263 (1)

Table 9
Consistency degree between 18 group ranking outcomes and individual ranking outcomes.

A-S-C A-S-G A-S-M A-W-C A-W-G A-W-M A-T-C A-T-G A-T-M

DM1 0.829 0.886 0.657 0.886 0.943 0.943 0.714 0.543 0.543
DM2 0.812 0.899 0.812 0.600 0.600 0.600 0.899 0.899 0.899
DM3 0.200 0.029 0.200 −0.314 −0.314 −0.314 0.486 0.086 0.086
DM4 0.794 0.618 0.794 0.754 0.580 0.754 0.870 0.870 0.870
DM5 0.600 0.771 0.600 0.600 0.600 0.600 0.657 0.657 0.657
DM6 0.319 0.058 0.319 0.319 0.319 0.319 0.580 0.580 0.580
DM7 0.371 0.314 0.257 −0.029 −0.029 −0.029 −0.257 −0.257 −0.486
DM8 0.371 0.257 0.371 0.543 0.543 0.543 −0.029 0.143 0.143
DM9 −0.600 −0.486 −0.600 −0.600 −0.600 −0.600 −0.143 −0.143 −0.086
DM10 0.600 0.657 0.600 0.600 0.600 0.600 0.086 0.086 0.029
DM11 −0.543 −0.314 −0.543 −0.543 −0.543 −0.543 −0.657 −0.657 −0.657
DM12 0.486 −0.543 −0.486 −0.486 −0.486 −0.486 −0.257 −0.257 −0.257
Average 0.353 0.262 0.248 0.194 0.184 0.199 0.246 0.213 0.193
Ranking 1 3 5 11 14 10 7 9 12

G-S-C G-S-G G-S-M G-W-C G-W-G G-W-M G-T-C G-T-G G-T-M

DM1 0.886 0.886 0.714 0.771 0.714 0.714 0.771 0.257 0.371
DM2 0.899 0.899 0.899 0.486 0.371 0.371 0.812 0.725 0.841
DM3 0.029 0.029 0.029 −0.143 0.314 0.314 0.429 0.486 0.257
DM4 0.618 0.618 0.618 0.551 0.116 0.406 0.928 0.580 0.725
DM5 0.771 0.771 0.771 0.429 0.257 0.257 0.543 0.371 0.486
DM6 0.058 0.058 0.058 0.203 0.406 0.406 0.580 0.406 0.464
DM7 0.429 0.314 0.314 −0.257 −0.600 −0.600 −0.143 −0.600 −0.600
DM8 0.257 0.257 0.257 0.486 0.200 0.200 0.086 −0.257 0.029
DM9 −0.486 −0.486 −0.486 −0.371 −0.143 −0.143 −0.314 0.314 0.200
DM10 0.657 0.657 0.657 0.543 0.143 0.143 0.314 −0.086 0.086
DM11 −0.314 −0.314 −0.314 −0.371 −0.486 −0.486 −0.714 −0.429 −0.486
DM12 −0.543 −0.543 −0.543 −0.314 0.143 0.143 −0.371 0.086 −0.143
Average 0.272 0.262 0.248 0.168 0.120 0.144 0.243 0.154 0.186
Ranking 2 3 6 15 18 17 8 16 13

dx.doi.org/10.1016/j.asoc.2012.12.009
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embership functions defined in Tables 1 and 2 as default values
r specifying the membership function for each linguistic term.

A group of 12 experts were selected to act as 12 decision makers
DMi, i = 1, 2, . . .,  12) for the evaluation problem, including 4 prac-
itioners from the bus operating companies, 4 government officials
rom the public transport sector, and 4 academic researchers. 11
xperts used the default membership functions defined for the lin-
uistic terms in Tables 1 and 2, and one expert (DM3) specified the
embership functions as {(0, 0, 1), (1, 2.5, 4), (3.5, 5, 6.5), (6, 7.5, 9),

9, 10, 10)}. This survey resulted in 12 individual fuzzy weight vec-
ors and 12 individual fuzzy decision matrices. Table 4 shows the
ndividual fuzzy weight vectors assessed by the 12 decision mak-
rs. As an illustration, Table 5 shows the individual fuzzy decision
atrix of DM1.
Two group fuzzy weight vectors and two fuzzy decision matrices

re obtained by applying the arithmetic mean and geometric mean
ethods respectively, as shown in Table 6. By applying three MCDM
ethods and three defuzzification methods to the two  group fuzzy
eight vectors and the two fuzzy decision matrices in Table 6, 18

roup ranking outcomes are obtained. As shown in Table 7, these
8 group ranking outcomes are not consistent. Depending on the
ethod selected, natural gas (A1), liquefied petroleum gas (A2) or

uel cell (A6) can be the solution for the problem.
To select a green bus fuel technology that is most preferred by

he decision makers as a whole, we apply the method selection
pproach developed in this paper. For easy comparison with the
orresponding group ranking outcome, the method used by indi-
idual decision makers (DMi, i = 1, 2, . . .,  12) with three different
CDM methods j ∈ {S(SAW), T(TOPSIS), W(WP)} and three dif-

erent defuzzification methods k ∈ {C(COA), G(GMI), M(MD)} are
enoted as DMi-j-k.  As an illustration, Table 8 shows the individual
anking outcome of DM1.

To measure the consistency degree between the 18 fuzzy group
anking outcomes and the corresponding individual ranking out-
omes of the 12 decision makers, Spearman’s rank correlation
oefficient is used. Table 9 shows the result, where the highest over-
ll consistency degree is 0.353. This result suggests that the group
anking outcome produced by the A-S-C method should be used, as
t is most consistent with the views of individual decision makers
s a whole, thus most acceptable by them. Accordingly, the most
referred green bus fuel technology for buses in Taiwan is natural
as (A1).

It is noteworthy that the selection of the group ranking outcome
roduced by the A-S-C method is justifiable only for the problem
ata set used in the empirical study. Different problem data sets
ay  result in a different method being selected. This suggests that

o single best method can be assumed for the general fuzzy group
CDM problem that requires cardinal ranking. In solving a given

uzzy group MCDM problem with many methods available and
cceptable to the decision makers (not necessarily limited to the
ethods presented in the paper), the method selection approach

eveloped in this paper can be applied to all available methods for
dentifying the most preferred ranking outcome from the perspec-
ive of all decision makers as a whole.

. Conclusion

There are normally a number of methods available for solving
uzzy group MCDM problems, defined by a given set of fuzzy weight
ectors and fuzzy decision matrices. For a given problem, inconsis-
ent ranking outcomes are often produced by different fuzzy MCDM
Please cite this article in press as: Y.-H. Chang, et al., A new method s
Appl. Soft Comput. J. (2013), http://dx.doi.org/10.1016/j.asoc.2012.12

ethods. Despite the importance of validating the ranking out-
omes produced by different methods, very few studies have been
onducted to help a group of decision makers deal with the rank-
ng inconsistency problem produced by different methods. In this

[

[

 PRESS
puting xxx (2013) xxx–xxx

paper, we have developed a new empirical approach for selecting 

a fuzzy group MCDM method that produces the most preferred 

group ranking outcome for a given problem data set. We  have 

presented a green bus technology selection problem to illustrate 

how the approach can be used to help select the most preferred 

group ranking outcome. With its simplicity in both concept and 

computation, the approach can be applied in general fuzzy group 

decision problems solvable by many fuzzy group MCDM methods. 

It is particularly suited to large-scale fuzzy group MCDM problems 

where the ranking outcomes produced by different methods differ 

significantly. 
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