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An Individual Welfare Maximization Algorithm
for Electricity Markets
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Abstract—An algorithm that allows a market participant
to maximize its individual welfare in electricity spot markets
is presented. The use of the algorithm in determining market
equilibrium points, called Nash equilibria, is demonstrated. The
start of the algorithm is a spot market model that uses the optimal
power flow (OPF), with a full representation of the transmission
system and inclusion of consumer bidding. The algorithm utilizes
price and dispatch sensitivities, available from the Hessian matrix
and gradient of the OPF, to help determine an optimal change in
an individual’s bid. The algorithm is shown to be successful in
determining local welfare maxima, and the prospects for scaling
the algorithm up to realistically sized systems are very good. Nash
equilibria are investigated assuming all participants attempt to
maximize their individual welfare. This is done by iteratively
solving the individual welfare maximization algorithm until all
individuals stop modifying their bids.

Index Terms—Economics, markets, Nash equilibrium, optimal
power flow (OPF), power systems, welfare maximization.

I. INTRODUCTION

E LECTRICITY markets throughout the world are devel-
oping that have the structure of a power pool. These

pools take bids from market participants and use spot pricing
theory to determine the market prices. Examples include
Australia [1], Argentina [1], the PJM Interconnection [2], and
the New England Power Pool [3]. In PJM, spot prices are
calledlocational marginal prices (LMPs).Participants in these
markets need tools that allow them to determine their optimal
bidding behavior. This paper develops a new algorithm based
on Newton’s method for use in maximizing an individual’s
welfare. This algorithm is shown to be successful on several
sample systems, and the prospects of scaling the algorithm up
to systems of realistic size appear very good.

Applications of a welfare maximization tool would be varied.
For market participants the presence of transmission congestion
presents opportunities to sell generation into subdivided markets
in which local demand is high and the number of sellers low.
Tools are needed to help market participants devise optimal bid-
ding strategies. Conversely, regulators such as U.S. Federal En-
ergy Regulatory Commission (FERC), the U.S. Department of
Justice (DOJ), and the state regulatory commissions need to be
vigilant against anticompetitive acts by market participants. For
example, if a particular entity owns sufficient generation it may
be possible to manipulate the market in such a way as to deliber-
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Fig. 1. Consumer and supplier bid curves.

ately induce congestion in order to raise prices [4], [5]. The re-
cent wave of mergers and proposed mergers in the U.S. requires
that regulators have access to tools to assess the potential for this
type of manipulation. FERCs need for such a tool is described
in its Order 592 “Policy Statement on Utility Mergers” in De-
cember of 1996 [6], and its formal adoption of the Department
of Justice/Federal Trade Commission (DOJ/FTC) Horizontal
Merger Guidelines [7]. Both the DOJ and the FERC, in a recent
proposed rule-making, explicitly stated a desire for computer
models [8].

It is also shown that the algorithm can be used to model
the behavior of welfare maximizing market individuals. With
this ability, game theoretic concepts such as market equilibrium
points can be investigated as was done in [9]. Market equilib-
rium points were found in [9] by iteratively solving the indi-
vidual welfare maximization problem for each market partici-
pant until bids became constant. A similar technique is used in
conjunction with the new individual welfare maximization and
results are encouraging.

II. ELECTRICITY MARKET SETUP USING

OPTIMAL POWER FLOW (OPF)

The setup of the electricity market simulation from [4], [10],
[11] is used, and is briefly summarized here for convenience.
Market suppliers submit bids that consist of MW outputs, along
with associated prices. These supplier bids are increasing func-
tions. Market consumers submit bids that consist of MW de-
mands, along with associated prices. These consumer bids are
decreasing functions. Example bid functions for suppliers and
consumers are shown in Fig. 1.

For the market simulation, these bids are treated as the mar-
ginal cost or benefit of the bidder. The bids are then taken as
inputs to an optimal power flow (OPF) that maximizes social
welfare to determine supplies, demands, and prices. For this
paper, the bids are limited to linear bids as shown in Fig. 1.
The Lagrange multipliers of the OPF solution determine the spot
prices . The suppliers in the market are paid the spot price at
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Fig. 2. Bidding variation for supply and demand.

their node, and the consumers are charged the spot price. A thor-
ough treatment of the mathematics involved in integrating bids
into the OPF formulation is provided in [10].

III. I NDIVIDUAL PLAYER OPTIMIZATION PROBLEM

Market participants should not be restricted to either a single
generator or a single load. Any combination of several genera-
tors and loads could constitute an economic entity. Therefore,
the wordindividual is defined as a set of supplies and demands
whose bidding is controlled by a single entity. This section de-
velops an algorithm for determining a bid that maximizes indi-
vidual welfare.

For this paper, bids are restricted to linear functions, and the
variation of this function is limited to varying a single parameter

for each consumer or supplier as shown in Fig. 2. Parameter
varies the bid from the true marginal curve. The supply bid

reflecting true marginal cost is , while
for the consumer, is the true marginal
benefit bid.

While this limits market behavior, [11] shows that the shape
of this curve is not important to the individual for a single market
solution. Note that modifying a bid this way is the same as
multiplying the cost or benefit function used in the OPF by:

and [10].
An individual wants to maximize the total welfare of all con-

sumers and suppliers it controls. A consumer’s welfare is the
amount of benefit received from using the power, minus the ex-
penses incurred in purchasing it. Similarly, a supplier’s welfare
is defined as the amount of revenue received from selling the
power, minus the cost of supplying it

(1)

where
and diagonal matrices of quadratic coefficients for

cost functions and benefit functions;
and vectors of linear coefficients for supply cost

functions and demand benefit functions,
respectively.

Note is not an explicit function of its bid variable
. However, is an implicit function of since , and are

all determined by an OPF solution which is a function of.
Assuming the individual has some estimate of what other

market individuals are going to bid, the individual’s goal is to
maximize its welfare by choosing a bid which is the best re-
sponse to the other individuals’ bids. As a result, the maxi-
mization of an individual’s welfare forms a nested optimization
problem where the individual maximizes its welfare subject to
an OPF solution which maximizes social welfare based on all
bids in the market

s.t. are determined by

s.t.

(2)

where and are the benefit and cost func-
tions of the consumers and suppliers that the individual controls;

and are the estimates of the benefit and
cost functions that the individual’s competitors will submit as
bids; is the state vector including system voltages and angles;

are equality constraints such as the power flow equa-
tions; and are inequality constraints such as line flow
limits. Thus, the total societal benefit used by the OPF market
model is , and the total soci-
etal cost used is .

IV. SOLUTION METHOD BY ITERATIVE MEANS

An iterative approach is proposed for solving (2) to determine
[11]. The following is a brief summary of this.

Algorithm: Preliminary Individual Welfare
Maximization
1. Choose an initial guess for vector .
2. Solve the OPF maximization of social

welfare given the individual’s assump-
tion of other individual’s bids and the
individual’s guess at its own vector .

3. Use (3) to determine a step direction
for vector .

4. If is below some tolerance,
then stop; else go back to step 2.

Thus, the algorithm begins with an initial guess of. Next,
the OPF problem is solved assuming the specified. Then, from
the information available at this OPF solution, the individual’s
profit sensitivity to variations in its bid can be used to deter-
mine a Newton-step that improves profits. This Newton-step is
defined the customary way as

(3)

The evaluation of (3) requires determining and
. These can be shown to be functions of the Hessian and
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Fig. 3. Binding inequality change in one dimension.

Lagrange function at the solution of the OPF. This derivation is
fully covered in [11] and the computational requirements for
calculating and are shown to be very small.

ThePreliminary Individual Welfare Maximization Algorithm
is effective as long as the binding inequalities of the OPF
algorithm do not change. Changes in binding inequalities result
in discontinuities of , which means that the function

becomes nondifferentiable. A change in binding inequality,
however, can be detected from other available information.
From one side of the nondifferentiable point, the value limited
by the inequality approaches its limit. From the other side, the
Lagrange multiplier approaches zero. This is shown in Fig. 3.

If only one bid parameter and one inequality constraint are
being considered, thePreliminary Individual Welfare Maxi-
mization Algorithmcould be simply modified so a multiplier
reduces the step direction determined by (3) if this step direc-
tion will move across a nondifferentiable point. The multiplier
would then bring the answer directly to this nondifferentiable
point [11].

In order to extend this idea to the more general case of mul-
tiple bid parameters and binding inequality constraints, con-
sider the origins of the Newton step described in (3). Newton’s
method solves for a function’s zero crossing by approximating
it as a linear function using its present value and derivative. In a
maximization problem, the zero crossing of thederivativeof the
objective function is desired; therefore, the objective function is
inherently modeled as a second-order Taylor series

(4)

Equation (3) is then derived by solving
.

In order to follow the analogy of Fig. 3, the that maxi-
mizes (4) without crossing any constraint boundaries is desired.
This is determined by solving (5)

s.t.

(5)

Note that is negative definite. Furthermore, the only
derivative in (5) that is not discussed in [11] is . This
derivative can be readily calculated using the chain rule

(6)

While adding another maximization problem as an outer loop
to the problem may seem difficult, it is not because (5) is a very
simple constrained maximization problem. It is a quadratic ob-
jective function with linear inequality constraints: a quadratic
programming problem. Many very efficient methods for the so-
lution of this problem exist [12] and can be used to quickly solve
the problem described by (5) in a time much faster than the so-
lution of the OPF inner loop. Thus, solution time will be largely
dependent on the number of OPF iterations needed. With this
further development, the new algorithm is proposed.

Algorithm: Individual Welfare Maximization
1. Choose an initial guess for vector .
2. Solve the OPF maximization of social

welfare given the individual’s assump-
tion of other individuals’ bids and the
individual’s guess at its own vector .

3. Use (5) to determine a step direction
for vector .

4. If is below some toler-
ance, then stop; else go back to step 2.

Examples demonstrating the use of theIndividual Welfare
Maximization Algorithmare presented throughout the following
sections in conjunction with the use of this algorithm in finding
economic equilibrium points.

V. FINDING A NASH EQUILIBRIUM

While the Individual Welfare Maximization Algorithmis of
use to market participants, using the algorithm as a model of in-
dividual behavior enables the study of other interesting market
behavior. For example, the determination of economic equilib-
rium points such as Nash equilibria [13] is of interest.

Definition: Nash Equilibrium:

1) An individual looks at its opponents’ behaviors.
2) The individual determines that its best response to its op-

ponents’ behaviors is to continue its present behavior.
3) This is true FOR ALL individuals in the market.
To determine a Nash equilibrium theIndividual Welfare Max-

imization Algorithmcan be iteratively solved by all individuals
until a point is reached where each individual’s best response
is to continue with the same vector of bids. A similar iterative
technique for finding Nash equilibria was used in [9], although a
very different individual maximization algorithm was used. The
following algorithm describes this process.

Algorithm: Find Nash Equilibrium
1) Start all individuals with a bid vector

.
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Fig. 4. Two-bus system: Two suppliers and a consumer.

2) Run the Individual Welfare Maximization
Algorithm for each individual. Update
all bids.

3) Continue running this until all indi-
viduals stop changing their bids.

A. Two-Supplier Competition With and Without Constraints

To demonstrate theFind Nash Equilibrium Algorithm, in [11]
the 2-bus example with two suppliers and one consumer shown
in Fig. 4 was considered.

Only supplier bidding behavior for this example was consid-
ered, therefore it assumed the consumer always bids according
to its true benefit function, i.e., . Maintaining the
price-dependent demand is important. Otherwise when a limit
is added to the system, supplier 2 could have part of the constant
load to serve with no competition. The solution for supplier 2
would be to bid equal to infinity, an unreasonable result.

The results in [11] showed that with no transmission con-
straint, a Nash equilibrium with both suppliers bidding

existed. It was also shown that this was the only
Nash equilibrium.

When adding in an 80–MVA transmission line constraint
however, it was shown that no pure strategy Nash equilibrium
existed. This was caused by supplier 2 having a nonconvex
welfare function that had two local maxima. These results will
be compared to supplier versus consumer competition next.

B. Supplier Versus Consumer Competition With No
Constraints

Now consider the 2-bus example shown in Fig. 4 again, but
assume supplier 2 is removed, and only supplier 1 and the con-
sumer compete by varying their bids. The Nash equilibrium re-
sults in bids of and . As with two
suppliers competing, without the transmission line constraint in-
cluded the Nash equilibrium is found to be a pure strategy. The
algorithm progresses smoothly to its equilibrium. Fig. 5 shows
a complete solution to the problem with the optimal response
of each participant to any possible bid by the other. The point
where the two curves in Fig. 5 meet is the Nash equilibrium
point.

C. Generator and Demand Competition With Constraints

Again, it is instructive to look at the same example, but with
the addition of a transmission constraint. Analysis is done with
the consumer and supplier 1 competing against one another
while an 80–MVA transmission line limit is enforced. As with

Fig. 5. Supplier’s and consumer’s optimal responses with no limits.

Fig. 6. Supplier’s and consumer’s optimal responses with 80–MVA limit.

TABLE I
VARIATION OF THE SOLUTION ALONG THE NASH EQUILIBRIUM CONTINUUM

two supplier competition with a constraint, no equilibrium is
reached using theFind Nash Equilibrium Algorithm. To better
show why no equilibrium point is reached, the optimal response
curves over all possible bids by each individual are determined.
These are shown in Fig. 6.

No equilibrium is reached by theFind Nash Equilibrium Al-
gorithmbecause the algorithm is bouncing back and forth across
a continuum of Nash equilibria. As shown in Fig. 6, a line of
equilibrium points exists between and

. Table I shows the variation of the
market solution along the Nash equilibrium continuum.

To understand what is occurring, consider the case when
both supplier and consumer submit bids according to their true
benefit and cost functions, i.e., and .
The market solution for these bids is a supplier node 1 price of
11.56 $/MWh and a consumer node 2 price of 23.33 $/MWh,
while 77.79 MW are exchanged between them. The difference
in nodal prices results in a transmission rent collected by the
pool operator of (77.79 MW)(23.33 11.56 $/MWh)
907.1 $/h. Thus, a huge amount of money is being wasted
as transmission rent due to the transmission line constraint.
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Fig. 7. Nine-bus electricity market.

An intelligent supplier and consumer would find a way to
mitigate this expense and come up with a manner in which
this transmission rent could be split between the two parties
instead of sending it to the pool operator. The profit, surplus,
and transmission rent are summarized as follows:

1) consumer surplus: 285.6 $/h;
2) supplier profit: 60.5 $/h;
3) transmission rent: 907.1 $/h;
4) total: 1253.2$/h.

Note that the total of consumer surplus, supplier profit, and
transmission rent is the same as the sum of supplier profit and
consumer surplus along the Nash equilibrium continuum (see
Table I). Thus, the continuum of Nash equilibrium shown in
Fig. 6 represents all the different ways the consumer and sup-
plier can submit bids in a manner which results in a dispatch
exactly at the transmission line limit, thus avoiding any trans-
mission rent penalty due to a difference in nodal prices. The
continuum of Nash equilibria represents all the different ways
to split the transmission rent between the consumer and sup-
plier. The continuum of Nash equilibria represents the ability of
a competitive market to determine the best way to utilize scarce
transmission resources.

D. Example 9-Bus System Illustrating Market Power

As mentioned in the introduction, the use of computer models
for helping illustrate market power is of exceptional interest
to the U.S. Department of Justice as well as state regulatory
commissions throughout the U.S. An example of theFind Nash
Equilibrium Algorithmused in the role is provided here.

Consider the 9-bus electricity system shown in Fig. 7 with
a supplier and a consumer at each bus. All transmission lines
have the same characteristics ( ; and ),
and the actual cost curves and benefit curves for the suppliers
and consumers are of the form consumer benefit

and supplier cost with the
coefficients and , as shown in Table II.

As a reference point, the bids corresponding to true marginal
benefit and welfare from all consumers and suppliers are
assumed, and the OPF that maximizes social welfare is solved.
The results are those shown in Fig. 7 with a market price
of $46.64/MWh throughout the system. Suppliers at buses 7

TABLE II
COST AND BENEFIT EQUATION COEFFICIENT FORILLUSTRATIVE EXAMPLE

and 8 have a combined profit of $4394.00/h$5439.29/h
$9833.29/h. Also note that the flow on the transmission line
from bus 7 to bus 8 is 189.5 VA.

Now, assume that all the consumers in this market are fringe
participants and exercise no strategic bidding behavior, i.e., they
always submit offers representative of their true marginal ben-
efit curve. Assume that all the suppliers, however, do exhibit
strategic bidding behavior and will modify their bids in hopes
of increasing their individual welfare.

Now suppose suppliers 7 and 8 collude with the hopes of in-
creasing their combined profits. Both could raise their prices
slightly hoping to increase profit. Looking at Fig. 7, however,
one notices that the line between buses 7 and 8 is loaded at 95%
of its limit. As a result, suppliers 7 and 8 might also consider col-
luding to overload this line, thus increasing the price which sup-
plier 8 will receive for its power. To do this, supplier 7 will have
to lower its price and reduce its profit with the understanding
that supplier 8 can increase its price and profit because of the
overload. In order to force theIndividual Welfare Maximization
Algorithminto the region of parameter space which contains the
other anticipated local maximum, the bid of supplier 8 is set to

. Then, the algorithm is run again resulting in conver-
gence to another local maximum.

Both of these scenarios are considered, and theIndividual
Welfare Maximization Algorithmis solved for each supplier
(with suppliers 7 and 8 acting together) until Nash equilibria are
reached. Different Nash equilibria are found for each scenario.
Each supplier is unable to raise its profit by either lowering or
raising its bid at the equilibrium points.

The results at the Nash equilibrium reached when suppliers
7 and 8 both try to raise prices while suppliers 1–6 and 9 indi-
vidually try to maximize welfare are shown in Table III.

Note that suppliers at buses 7 and 8 have a combined profit
of $4824.89/h $5813.56/h $10 638.45/h. Also note that the
flow on the transmission line from bus 7 to bus 8 is 190.0 MVA.
In this scenario the prices increase to $48.51/MWh. This is in
increase of 4.0% above the $46.64/MWh seen when all supplier
bid their marginal cost.

Results for the Nash equilibrium when suppliers 7 and 8 col-
lude to try and overload the transmission line between buses
7 and 8 are shown in Table IV.

Note that suppliers at buses 7 and 8 have a combined profit
of $4397.38/h $6979.01/h $11 376.39/h. The flow on the
transmission line from bus 7 to bus 8 is at its limit of 200 MVA.
Comparing Tables III and IV, suppliers 7 and 8 are able to
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TABLE III
NASH EQUILIBRIUM RESULTSWHEN SUPPLIERS7 AND 8 BOTH RAISE PRICES

TABLE IV
NASH EQUILIBRIUM WHEN SUPPLIERS7 AND 8 TRY TO OVERLOAD A LINE

increase their combined equilibrium profit from $10 638/h to
$11 376/h, an increase of 6.9%, when they choose a strategy
of overloading the transmission line. In doing so they increase
the equilibrium prices at buses 8 and 9 to $57.55/MWh and
$52.66/MWh, which are 23.4% and 12.9% above the social
welfare solution price. Thus, there is some concern regarding
localized market power if suppliers 7 and 8 are to merge. If one
ignores the transmission system, however, and only considers
the problem of suppliers 7 and 8 acting to raise prices together,
these market power concerns would not be as readily apparent.

In order to get a better grasp of what theIndividual Welfare
Maximization Algorithmis facing, a complete solution to the
problem is performed when all other suppliers bid .
The bid for supplier 7 is then varied between 0.8 and 1.5 while
varying the bid for supplier 8 between 1.0 and 1.8. Fig. 8 shows
a contour plot of the combined welfare in this region.

As can be seen by Fig. 8, there are indeed two local maxima
for the problem separated by a constraint boundary. This con-
straint boundary describes the region of the parameter space
which results in the line between node 7 and 8 being exactly
at its limit of 200 MVA. This example shows that the indi-
vidual welfare function even for very simple systems results
in problems with many local optima. This continued reminder
motivates the investigation of other more globally oriented op-
timization algorithms. While the calculus-based algorithm will
be useful in finding a local maxima, it will invariably have dif-
ficulties when trying to find a general global maximum.

It is of some use, however, because the local maxima which
result are due to the physical constraints of the system. The con-
straints in the system that the individual has the ability to ma-
nipulate will likely be known due to the individual’s experience.

Fig. 8. Contour plots of combined profit of supplier 7 and 8.

Because of this, the algorithm user could push the bids found for
one local optimum into a region of the bidding space that would
converge to another anticipated local optimum. Indeed, this is
exactly what was done in the previous 9-bus example to find
the second local maximum. Because of this, the calculus-based
method will be of some use even without using a more globally
oriented optimization routine. A global optimization technique,
such as a genetic algorithm (GA), would be useful in finding
bidding strategies that an individual’s experience does not point
them toward.

VI. CONCLUSIONS

The Individual Welfare Maximization Algorithmpresented
will be of great use to individual market participants for market
analysis. However, others, such as industry regulators, are
interested in studying market equilibrium behavior. Using
the Individual Welfare Maximization Algorithmas a model of
individual bidding behavior, the entire market can be simulated
with individuals modifying their bids with the objective of
maximizing welfare. This was done iteratively until equilibrium
points, called Nash equilibria, were reached. This technique
was shown to be very useful for finding Nash equilibria, as long
as they existed. It also highlighted the fact that Nash equilibria
do not always exist, and that when they do exist they may not
be unique.

The newIndividual Welfare Maximization Algorithmtech-
nique developed is a calculus-based optimization routine. How-
ever, it was shown that the individual welfare, even for simple
systems, can be a highly nonconcave function resulting in many
local optima. The local optima correspond to the ability of the
individual to manipulate its bidding strategy to take advantage
of a system constraint, such as a transmission line constraint.
Because these local optima will correspond to physically under-
standable phenomena, it is hoped that the user of theIndividual
Welfare Maximization Algorithmwill be able to nudge the ini-
tial guesses of the algorithm into regions that will correspond to
these local optima. This will make the algorithm of use on its
own; however, a more global optimization routine such as a GA
is also being investigated.
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