
Neural Networks 20 (2007) 78–93
www.elsevier.com/locate/neunet
Neural network explanation using inversion

Emad W. Saada,∗, Donald C. Wunsch IIb

a Phantom Works, The Boeing Company, Seattle, WA 98124, United States
b Department of Electrical and Computer Engineering, University of Missouri-Rolla, Rolla, MO 65409, United States

Received 9 February 2005; received in revised form 7 July 2006; accepted 7 July 2006

Abstract

An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle,
A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8,
373–389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV,1 a new explanation
algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm,
that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity–complexity tradeoff.
To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute
neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An
information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem,
and compared with similar algorithms using benchmark problems.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Rule extraction; Neural network explanation; Explanation capability of neural networks; Inversion; Hyperplanes; Evolutionary algorithm; Pedagogical
1. Introduction

Artificial neural networks (ANN) have been used during the
last few decades in a wide variety of applications. It is often
useful to have a symbolic representation of the rule base or
the function calculated by the network. When the application is
decision support, like in classification or clustering problems,
it is often desirable to understand how the ANN determines its
decision. Such understanding is often desired in areas such as
data mining and financial engineering. For instance, a financial
institution rejecting a loan application based on neural network
screening might be required by law to provide the grounds for
refusal. The explanation capability of ANNs not only serves
for justification, but also can be useful in different ways,
including debugging and data theory induction. For example, it
improves generalization (Andrews, Diederich, & Tickle, 1996)
by analyzing rules representations of the input space, and
∗ Corresponding address: The Boeing Company, PO Box 3707, MC 45-85,
Seattle, WA 98124-2207, United States. Tel.: +1 206 655 7128.

E-mail address: Emad.w.saad@boeing.com (E.W. Saad).
1 HYPINV stands for an algorithm which extracts HYPerplanes using

INVersion.

0893-6080/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2006.07.005
adding data to cover weakly represented areas by using active
learning techniques, such as Query-Based Learning (Saad,
Choi, Vian, & Wunsch, 2003).

The function learned by the neural network, and used
to generate the output, is often referred to as a hypothesis.
Many approaches have been suggested in order to generate an
explanation of the neural network hypothesis. Most of them try
to create a symbolic representation of the information stored in
the weights. Rich surveys exist (Andrews et al., 1996; Tickle,
Andrews, Golea, & Diederich, 1998; Tickle, Maire, Bologna,
Andrews, & Diederich, 2000) which treat rule extraction from
ANNs used in decision problems, where the output is discrete.

This paper starts with a survey of algorithms related to the
new rule extraction method HYPINV in Section 2, and then
proceeds to presenting the HYPINV algorithm in Section 3.
Section 4 provides analysis and evaluation criteria of rule
extraction methods and shows the experimental results of
testing HYPINV. It has been tested on two synthetic problems:
XOR and circular distribution; then on a real-world aerospace
problem pertaining to ejection seat safety in military airplanes;
and experimentally compared against similar algorithms using
benchmark problems. Finally, Section 5 has the conclusion and
suggestions for future work.

http://www.elsevier.com/locate/neunet
mailto:Emad.w.saad@boeing.com
http://dx.doi.org/10.1016/j.neunet.2006.07.005

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 79
List of Symbols

A Rule antecedent
b Scaling factor
Bi Bottom value for input variable xi
C− Negative class
C+ Positive class
C I ′

k j Normalized causality index for output neuron k
and input neuron i

C Ik j Causality index for output neuron k and input
neuron i

Ci Class i
D Actual class to which the vector X belongs
E Squared error
f Rule fidelity
f (.) Activation function
g Gradient vector
H(X) Entropy of X
I (X, Y) Mutual information of X and Y
M Number of classes
Mw Number of points deleted in the evolutionary

algorithm
N Dimension of input space
N Neural network output for vector X
n Vector normal to the decision boundary at x0
n̂ Unit gradient vector
N0 Number of neurons in the input layer
NL Number of neurons in the output layer
Nl−1 Number of neurons in the previous layer
Np Number of points generated by the evolutionary

algorithm
Nr Rule counter
Nt Number of points in a test set
p(n j) Probability that the neural network output is class

j
p(ri) Probability that the rule base output is class i
p(ri , n j) Joint probability that the rule base and neural

network outputs are classes i and j respectively
R Rule base output for vector X
R+ Area where the rule base classifies the input

patterns as belonging to C+

R− Area where the rule base classifies the input
patterns as belonging to C−

Ri Area where the rule base classifies the input
patterns as belonging to class i

S Input space
t Iteration number
Ti Top value for input variable xi
tr Target output
u Vector tangent to the decision boundary
ul

j Activation potential of neuron j in layer l
v Vector between x0 and x1
wl

j i Weight between neuron i in layer l and neuron j
in layer l − 1

wl
i0 Threshold

x Output of a neuron
X Random vector
x0 Network input vector
x1 Point in the input space
xint Point on the decision boundary not necessarily

closest to x1
x l

j Output of neuron j in layer l
y Actual neural network output
zi Number of points classified by the rule base as

belonging to class i
z j Number of points classified by the neural network

as belonging to class j
zi j Number of points classified by the rule base as

belonging to class i , and by the neural network as
belonging to class j

α Step size in the iterative sliding along the
boundary

η Learning rate
δl

j Derivative of the squared error with respect to the
output of neuron j in layer l

µ Weighting factor

2. Related work

Andrews et al. (1996) classifies rule extraction algorithms
into three approaches based on the nature of the resulting
rules, and the approach followed by the algorithm: Boolean
using decompositional approaches, Boolean using pedagogical
approaches, and Fuzzy rules. In contrast with decompositional
approaches, which analyze the activations and weights of the
hidden layers of a neural network, the pedagogical approaches
treat the ANN as a black box (Andrews et al., 1996; Tickle,
Andrews, Golea, & Diederich, 1997) and extract rules by
only looking at the input and output activations. Pedagogical
approaches aim at extracting symbolic rules which map the
input–output relationship as closely as possible to the way the
ANN understands the relationship. The number of these rules
and their form do not directly correspond to the number of
weights or the architecture of the ANN. However, they help
explain the ANN behavior by expressing the mapping function
performed by the ANN in symbolic rules which are easier to
understand.

2.1. Boolean rules extracted by decompositional approaches

Boolean rules can be extracted from networks with binary
outputs. Multiclass problems can be coded as multiple binary
outputs. Two algorithms which generate rules in the form of
conjunction and disjunction of hyperplanes are NeuroLinear of
Setiono and Liu (1997a, 1997b) and the algorithm of Kim and
Lee (2000). Since HYPINV extracts rules of this form, we will
put some focus on both of these algorithms. A more detailed
analysis will be presented in Section 4.6. Hyperplane rules have
the advantage of showing the trend and correlation between the
attributes as opposed to most of the other algorithms above,
which generate rules in the form of hypercubes whose axes are
parallel to components of the input vector. Using hyperplanes

80 E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93
in problems where the inputs are correlated also leads to the
reduction of the number of rules as compared with hypercubes.

2.1.1. NeuroLinear
This algorithm extracts rules from multiplayer–perceptron

(MLP) networks used in classification having a single hidden
layer. The basic idea is to discretize the hidden unit activation
values and to generate rules describing the network output
in terms of the discretized values. The relation between the
discretized values and the inputs found in the first layer’s
weights is then represented as a hyperplane rule. The above
two sets of rules are finally merged. The algorithm also uses
pruning during training, to reduce the number of weights, and
hence simplify the rules.

2.1.2. Kim and Lee
This algorithm applies to classification MLP networks with

two hidden layers. The algorithm is based on a two-phase
process: feature extraction and feature combination. In the
first phase, the first layer’s weights are collected in form
of hyperplanes. In the second phase, these hyperplanes are
combined using an induction tree.

Both of the above algorithms can be applied to problems
with either discrete or continuous attributes, like HYPINV.
They can be applied to multi-class classification problems.
A detailed comparison of both algorithms with HYPINV is
presented in Section 4.6.

2.2. Boolean rules extracted by pedagogical approaches

These algorithms look only at the input and output of the
ANN regardless of the architecture in order to extract the
rules, therefore their application is generally more flexible in
comparison with the decompositional approaches. The ANN
output is binary. HYPINV falls in this category. Andrews et al.
(1996) and Tickle et al. (1998) summarize several of these
algorithms. The rules extracted by these algorithms can have
a variety of formats. For example the Validity Interval Analysis
(VIA) by Thrun (1994) extracts rules of either of the following
two forms:

IF(input ∈ hypercube I = [ai , bi]
m) THEN class is C j

IF(l of X1, AND m of X2, . . . AND n of Xn) THEN class is
C j

where X i is a subset of input units.
The Interval Analysis (IA) of Filer, Sethi, and Austin (1996)

extracts rules of the form:

IF ∀1 ≤ i ≤ n : xi ∈ [amin
i , amax

i]

THEN concept represented by the unit is true.

Thus, VIA and IA extract rules of the form of hypercubes
or M-of-N. TREPAN of Craven and Shavlik (1994) extracts
rules in the form of a decision tree. RULENEG of Pop,
Hayward, and Diederich (1994) extract rules in the form
of disjunction of conjunctions. It works with binary inputs.
This algorithm iterates through the patterns of the training
set and in the worst case the number of rules is equal to
the number of training patterns. The BRAINNE system of
Sestito and Dillon (1991, 1992) also extracts propositional
if. . . then. . . else. . . rules. This algorithm deals with continuous
input data by first segmenting it into discrete ranges. The
usefulness of the explanation provided by the extracted rules
depends on their complexity, comprehensibility, and expressive
form. In this paper, we define rule complexity as the number
of rules in a rule base, and rule comprehensibility as the
number of attributes in each rule. The expressive form is rule
format (e.g. fuzzy, Boolean, hyperplanes) (see Section 4). The
complexity and comprehensibility of the different rule formats
depend on their application. The above propositional rules are
more useful with binary inputs. They deal with continuous
inputs by segmenting them into hypercubes. Such segmentation
results in an enormous number of rules. For example, IA
extracted 68 rules for 55% accuracy and 947 rules for 88%
accuracy with the USER dataset. M-of-N rules are good for
binary inputs and they are more compact than propositional
rules. For continuous input problems, Hyperplane rules have
the lowest complexity as will be seen in Section 4. Thus, the
complexity depends mainly on the type of inputs (continuous,
discrete, or binary).

3. HYPINV

3.1. HYPINV overview

Here we present the new explanation algorithm HYPINV
for neural networks used in classification problems. This paper
focuses on two-class problems, but HYPINV can be extended
to multiple-class problems as outlined in Section 3.3. HYPINV
generates rules in the form of conjunction and disjunction of
hyperplanes. The fidelity/complexity tradeoff can be controlled
for the rules. HYPINV can be applied to any neural classifier
or even any general classifier with graded output function.
Though HYPINV is more suitable for differentiable networks,
it can be applied to non-differentiable networks by using an
evolutionary search algorithm (Reed & Marks, 1995) instead
of the gradient descent method in order to invert the network.
The neural network inputs can be either binary or continuous.
The neural network output should be binary. (A future research
topic may be to relax this restriction, in, for example, regression
problems, as we briefly discuss in the conclusion.) HYPINV
does not depend on the method used to train the neural network.
According to the classification scheme of Andrews et al.
(1996), HYPINV is of the pedagogical type, since it does not
analyze the neural network structure. It actually treats the neural
network as a black box, and the extracted rules are not directly
related to the neural network architecture or the weight values.
HYPINV finds the network decision boundary in the form of a
conjunction and disjunction of hyperplanes, i.e. it approximates
the ANN decision boundary in a piecewise form. The piecewise
form is not generated directly from the data because our aim is
to explain the ANN behavior. Rules directly generated from the
data may be correct but will not reflect the ANN mapping of the
problem. To our knowledge, HYPINV is the only pedagogical
rule extraction method, which extracts hyperplane rules from
continuous or binary attribute ANN classifiers.

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 81
3.2. Algorithm description

A neural network can be expressed as a nonlinear function
y = N (x), where the input pattern x ∈ S, S being the input
space of dimension N . In a two-class decision problem, the
neural network decision boundary (not the real class boundary)
divides the input space into the two half-spaces S+ and S−. The
input patterns lying in S+ satisfy the neural network hypothesis
h. If y > θ , (θ being a threshold), the neural network says
that x belongs to the positive class C+, otherwise it says that x
belongs to the negative class C−.

HYPINV approximates the neural network decision bound-
ary in a piecewise linear form. It proceeds by finding hyper-
planes tangent to the neural network decision hypersurface.
Each hyperplane divides the input space into a positive and a
negative half-space where the data points are classified by this
hyperplane as belonging to the positive and negative class, re-
spectively. The network decision boundary is then expressed in
the form of a rule base, made of conjunctions and disjunctions
of different rule antecedents2 Ai . The rule antecedents are lin-
ear inequalities defining the positive half-spaces delimited on
one side by the hyperplanes. Let us denote by R+ the volume,
formed by conjunction and disjunction of those half spaces,
within which the rule base classifies the input patterns as be-
longing to C+. We then define R−

= ¬R+, and R−
∨ R+

= S.
R+ is an approximation of S+. Example:
If A1 ∧ A2 ∧ A3 ∨ A4 ∧ A5 ∨ A6 then x ∈ C+

where

A1 : 2x1 − 0.5x2 + · · · + 5xN − 6 > 0

A2 : 4x1 + x2 + · · · + 3.6xN − 3 < 0

. . .

A6 : 20x1 − 4.5x2 + · · · + 3xN + 7 > 0.

The algorithm can be summarized as follows:

1. Initialize the rule counter Nr = 0, and initialize the vector
x1 as either the centroid of S or as a random point in S.
The centroid is found by calculating the mean value of the
input range (e.g. [0.0, 0.0, 0.0] in the case of a 3 inputs
network with bipolar sigmoid activation function). Note that
the training data is normalized to fit in this input range.

2. Find the closest hyperplane to x1 which is tangent to the
neural network decision boundary as follows:
a. Use the neural network inversion technique of Section 3.5

to find the projection of x1 on the network decision
boundary (closest point on the boundary to x1), and call it
x0.

b. Calculate the vector n = x1 − x0, normal to the decision
boundary at x0.

c. Calculate the equation of the hyperplane tangent to the
decision boundary at x0 : n · (x − x0) = 0.

2 The terms “rule”, “rule antecedent” and “antecedent” are used
interchangeably throughout this paper.
3. If x1 ∈ S+, form an antecedent “If n · (x − x0) > 0 then x ∈

C+”.
If x1 ∈ S−, form an antecedent “If n · (x − x0) < 0 then x ∈

C+”.
Increment the rule counter: Nr = Nr + 1.

4. Starting from the second antecedent (Nr > 1), add the
antecedent as a new rule to the rule base as follows:
If x1 ∈ S+, then R+ needs to be enlarged to include x1. Add
the antecedent as a new rule with a disjunction to the rule
base.
If x1 ∈ S−, then R+ needs to be reduced to exclude x1. Form
a conjunction between the antecedent and those pre-existing
antecedents which were satisfied by x1.

5. Using a testing data set, test the rule base and calculate the
fidelity of the rule base f .

f =
#instances where NN and rule base agree

size of test set
. (1)

6. If f ≥ Fr , (Fr is the desired rules fidelity), stop. Otherwise,
select a new point x1, and proceed back to step 2. The point
x1 can be selected using either of these strategies:
(a) Among the points where the ANN and the rule base

disagree, choose the farthest point from the boundary. A
good choice is the point with largest absolute value of the
ANN output (in the case of bipolar sigmoid activation
function) or the largest absolute value of [ANN output –
0.5] (in the case of binary sigmoid).

(b) Choose a random point. If the ANN and the rule base
disagree in classifying it, select it as x1, otherwise
discard it and repeat the random selection.

While method (b) is computationally less expensive, method
(a) is more intelligent and generally minimizes the number
of rules for the same fidelity level. The idea behind choosing
x1 from among the points where the ANN and the rule base
disagree is to generate a new rule which would maximize
the gain in the fidelity. Choosing the farthest point from the
boundary has two benefits. First, it indicates that there is a large
region surrounding the point, where the rule base still disagrees
with the neural network; the new rule will thus produce a large
increase in the fidelity. Second, it increases the precision in
calculating the direction of the vector n. In all our experiments
we used method (a). This method results in the extraction of the
most important rules first as showed in Fig. 6. It should be noted
that occasionally the new rule may not increase the fidelity due
to the complexity of the decision boundary. Therefore if the new
rule decreases the fidelity, it should not be used and another
point should be selected instead. If method (a) is used, the next
farthest point from the boundary is selected. Fig. 1 shows an
example of the application of the above algorithm.

3.3. Multiple-class problems

Instead of positive and negative classes, we will have class
1, 2, . . . , M , where M is the number of classes. The rule base
will have the form:

82 E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93
Fig. 1. Example of the approximation of the neural network decision boundary
using hyperplanes, in the case of 2D input space. The rule base A1 ∧ A2 ∧ A4 ∨

A3. For every rule, the figure shows the generating point, its projection, and
the hyperplane normal to the vector n connecting them. The index of the rule
indicates the order in which HYPINV would generate it. Notice that, except for
the first rule, the length of n decreases with the rule index, due to choosing x1
with method (a).

If R1 then x ∈ C1,
else if R2 then x ∈ C2,
. . .

else if RM−1 then x ∈ C M−1,
else x ∈ C M ,

where R j is made of conjunctions and disjunctions of rule
antecedents Ai .

In steps 3 and 4 of the algorithm, if before adding the new
rule, x1 ∈ Ri according to the rule base but x1 ∈ S j according
to the neural network, a new rule antecedent n · (x − x0) > 0 is
added with conjunction to R j and with disjunction to Ri .

3.4. Rule simplification

3.4.1. Reducing rule application range
In order to make the rules more comprehensible, it is

possible to simplify the rules in the following way. For each
input variable xi , we try to find a top value Ti and a bottom
value Bi , such that if xi<Ti the rule base outcome is always
either x ∈ C+ or x ∈ C−, and if xi> Bi the rule base outcome
is always either x ∈ C+ or x ∈ C−. Thus, we obtain areas in
the input space where we don’t need to calculate the individual
rules. First ranges corresponding to the positive class are found
then those corresponding to the negative class. This can be
done by rewriting the rules such that all parameters except
one are on the RHS of the inequality, and then substituting
their extreme values in order to find the top and/or bottom
values corresponding to the parameter on the LHS. Ranges
corresponding to individual rules are then combined using
the logical operators relating the rules. Obviously, during this
operation some top or bottom values will be invalid since they
may lie outside the input domain. This method was tested in
Sections 4.4 and 4.5.
3.4.2. Reducing number of rules
The selection method of x1 described in step 6-(a) of

Section 3.2 results in extracting the most important rules first.
Thus, the gain in fidelity with each new rule is large at the
beginning then tapers off as is seen in Fig. 6. The number
of rules can be reduced while only slightly affecting the
subspace R+ and the rule fidelity by removing the most recently
generated rules first.

3.4.3. Reducing number of attributes
A simple heuristic for reducing the number of attributes in

each rule is to remove attributes with coefficients smaller than
a preset threshold. These attributes have minimal contribution
to the rule outcome and their removal will only slightly affect
the rule accuracy and fidelity. This method was tested in
Section 4.6.6.

3.5. Neural network inversion to project a point on the
boundary

3.5.1. Inversion of MLP
The inversion of MLP neural networks has been previously

shown to be useful in finding a set of input patterns which
produce a target output pattern (Linden & Kindermann, 1989).
The technique seeks to minimize a least-square cost function by
using a gradient descent algorithm.

In the forward path through the network, the output of a
neuron unit j in layer l is given as

x l
j = f (ul

j), (2)

and

ul
i =

Nl−1∑
j=0

wl
i j x l−1

j , (3)

where Nl−1 is the number of neurons in the previous layer, wl
i0

is the threshold, f (.) is an activation function, and x represents
the output of a neural unit. The most commonly used activation
functions are the sigmoid

f (x) =
1

1 + e−bx (4)

and the hyperbolic tangent.

f (x) = tanh(bx) =
ebx

− e−bx

ebx + e−bx =
1 − e−2bx

1 + e−2bx , (5)

where b is a scaling factor, which can often be set to one. The
latter is antisymmetric, and has the advantage of accelerating
the learning process (Haykin, 1998).

In a single output network, the forward mapping from
input to output is achieved by finding a set of weights which
iteratively minimizes the squared error

E = 1/2(tr − y)2, (6)

where tr is the target output and y is the actual neural network
output corresponding to the sample input presented at the

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 83
current iteration. This training scheme is know as “pattern
update”. Pattern update is known to statistically minimize the
sum of the squared errors of all training samples. Another
training method known as “batch update” averages the weight
adjustments needed over all training samples before it updates
the weights.

The reverse activity of producing an input vector
corresponding to a pre-determined output value in a feed
forward network is referred to as network inversion (Linden &
Kindermann, 1989). The idea is similar to the backpropagation
(BP) algorithm, where the error signals are propagated back
to tell the weights the manner in which to change in
order to decrease the output error. The inversion algorithm
backpropagates the error signals to the input layer to update
the activation values of input units so that the output error is
minimized. Of course, in the network inversion process, the
network weights are frozen.

The iterative update rule for the activation potential u0
j in the

input layer at the t th iteration becomes

u0
j (t + 1) = u0

j (t) − η
∂ E

∂u0
j (t)

= u0
j (t) − η

∂ E

∂x0
j (t)

∂x0
j (t)

∂u0
j (t)

= u0
j (t) − ηδ0

j (t)
∂x0

j (t)

∂u0
j (t)

. (7)

The derivative δl
j (t) for the neurons in layer l is obtained in

an iterative way using the backpropagation algorithm (Werbos,
1990) as follows:

δl
j =

∂ E

∂x l
j

=

Nl+1∑
i=1

∂ E

∂x l+1
i

∂x l+1
i

∂x l
j

=

Nl+1∑
i=1

δl+1
i wl+1

i j
∂x l+1

i

∂ul+1
i

. (8)

For one neuron in the output layer, using the cost function in
(6),

δL
1 = −(tr − x L

1)

= −(tr − y). (9)

The final input activation is obtained by x0
j = f (u0

j), which
guarantees that the network input will be in the range of the
activation function.

Inversion of other network architectures such as Time-Delay
Neural Network (TDNN) or Probabilistic Neural Network
(PNN) is similarly possible, since these networks have
differentiable activation functions. In the case of TDNN, the
delays in the network have to be unfolded.
3.5.2. Finding the closest point on the boundary to x1
The boundary point resulting from the above inversion

technique may not always be the closest point to x1. This
depends on its basin of attraction. In order to find the closest
point on the neural network decision boundary to a given point
x1, we suggest the following three techniques:

3.5.2.1. Sliding along boundary. At every cycle of the rule
extraction process, starting with the point x1, use the gradient
descent to find a point xint on the decision boundary, but not
necessarily closest to x1, in this intermediate step. Slide xint
along the boundary until it reaches the closest position to x1.
The idea is based on calculating the vector tangent to the
boundary (Reed & Marks, 1995).
1. Calculate the vector

v = x1 − x0, (10)

where x0 is the network input vector, or the current position
on the boundary.

2. Calculate the gradient vector

g =
∂y
∂x0 , (11)

and the unit gradient vector

n̂ =
g

‖g‖
. (12)

3. Calculate u, the projection of v onto the subspace orthogonal
to g, which will be tangent to the boundary:

u = v − vT n̂. (13)

4. Move x0 with a small step α in the direction of u, such that

x0(t + 1) = x0(t) + αu(t). (14)

5. Repeat the above steps until the length of u is below a small
tolerance value.

Remarks:
• The value of α depends on the boundary curvature and can

be equal to 1 in the case of a hyperplane boundary. In most
cases α = 0.01 was appropriate.

• At the end of the sliding process, it is desirable to measure
the network output at the reached point, and if found
deviating from the boundary, inversion starting with the
reached point can be used to pull it back to the boundary.

3.5.2.2. Using an evolutionary algorithm. The gradient
descent-based technique described above has the disadvantage
that the boundary points obtained may not be evenly distributed
because some attractors may have larger basins. An evolution-
ary algorithm suggested by Reed and Marks (1995) can gen-
erate evenly distributed points on the decision boundary. The
algorithm can be summarized as follows:
1. Generate Np points randomly covering the input space.
2. Sort the points by their corresponding network output error.
3. Delete Mw points with worst errors.
4. Generate a replacement for each deleted point as follows.

Sort the remaining points in order of their average distance to
their nearest m neighbors. Select a parent point from the least
crowded points (e.g. by random selection from the top Np/5

84 E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93
points). Generate the new point by adding a small normal
random perturbation to the parent.

5. Optionally, repel the most crowded Np/5 points by moving
them along the direction tangent to the decision boundary,
away from their nearest neighbors. This step needs gradient
information to calculate the tangent direction.

6. Repeat steps 2–5 until the maximum error falls under the
desired tolerance.

Using the above algorithm, a large number of points
can be generated only once at the beginning of the rule
extraction procedure. At every step, the closest point to x1
is chosen to form the new hyperplane. The need to invert
the network only once makes this method very efficient for
low dimensionality problems, but it is not practical in high
dimensionality problems, where a large number of points need
to be generated on the decision boundary.

3.5.2.3. Modifying the cost function. The cost function is
modified to include the distance between the initial point x1
and the input pattern. A weighting factor µ multiplies this
distance term and serves to control its importance compared to
the original network output term

E = 1/2(tr − y)2
+ µ

N0∑
j=1

(x0
j − x1 j)

2. (15)

For neurons in the input layer, the derivative of the cost function
with respect to their activation becomes:

δ0
j =

N1∑
i=1

δ1
i w1

i j
∂x1

i

∂u1
i

+ µ(x0
j − x1 j). (16)

Though this technique may work in some simple cases when the
point x1 is very close to the boundary (relative to the sigmoid
scaling factor), in general it is not guaranteed to lead to the
closest point on the boundary to x1.

Among the three methods above, the evolutionary
algorithm—doing the inversion only once—is less computa-
tionally expensive for low dimensionality problems than the
sliding along the boundary method. Compared to gradient de-
scent methods, evolutionary algorithms are more likely to find
a global optimum; however they are not as good in zooming ex-
actly into the optimum. This inversion method has been tested
on the XOR problem in Section 4.3.1. The sliding along the
boundary method, being gradient descent-based, has the poten-
tial of falling into a local minimum. Therefore it is appropriate
for relatively smooth boundary surfaces or when xint is rela-
tively close to x0. In all our experiments we did not encounter
any local minimum problem. This method is capable of solving
high dimensionality problems at the expense of more computa-
tions per iteration. Its scaling with input dimension is O(N),
while the evolutionary algorithm scaling is O(e2N) (assum-
ing eN points generated in order to maintain a given resolution
in the evolutionary algorithm). We used this method with data
with up to 60 dimensions without any problem (see Sonar data
in Section 4.6). This method has been used in all our tests. The
modified cost function method is the simplest in implementa-
tion and the least computationally expensive but is practically
limited by the condition of closeness of x1 to the boundary. This
method was tested on the XOR problem, and was found to be
impractical due to the above limitation.

4. Analysis and experimental results

4.1. Evaluation criteria of rule extraction algorithms

The quality of the rule extraction approach depends on
several features. The accuracy of the rules measures how
close the outputs of the rule base and the neural network are
for the same input. Their comprehensibility depends on their
expressive form. Different forms include Boolean, fuzzy if-
then-else rules, and deterministic finite-state automata extracted
from recurrent neural networks. The portability of the algorithm
is the possibility of the application of the algorithm to different
kinds of neural networks, or neural networks trained with
different methods. The translucency (Andrews et al., 1996)
of the rules is how much they give insight about the ANN
architecture. Decompositional approaches are translucent, in
contrast with the pedagogical approaches. Two other criteria
are the complexity of the algorithm which is measured by
the number of steps needed to extract the rule base, and the
complexity of the extracted rules which depends on the number
of rules extracted.

4.2. Information theory analysis of rule extraction

Neural networks have been analyzed from an information
theory point of view. (e.g. Haykin (1998), Jones, Barnes, Lee,
and Mead (1991), Linsker (1988, 1989, 1990a, 1990b) and
Yu and Krile (1994)). The principle of maximum information
preservation (Linsker, 1988) states that the transformation
performed by a neural network between an input vector and
an output vector should be chosen such that it maximizes
the mutual information between the input and output vectors.
In Quinlan (1983, 1986) and Mingers (1989) an information
measure is used to build decision trees. The same idea was
used by Pratt (1993) and Ramachandran and Pratt (1991) to
evaluate the utility of a hyperplane corresponding to a neuron
when transferring knowledge between neural networks. Here
we suggest a similar approach to evaluate the rules extracted
from a neural network. The following analysis can be applied to
any rule extraction method and to classification problems with
any number of classes.

Let’s assume that a random vector X is presented at the input
of the neural network, as well as to the rule base extracted
from the network. We will designate the actual class to which
the vector belongs as D, the neural network output as N, and
the rule base output as R. Note that D, N, and R are random
vectors too. When we extract rules from a network there is an
information transfer between the network and the rules, which
we seek to maximize. Consider the three mutual information
quantities I (R, N), I (R, D), and I (N, D). Ideally, at maximum
information transfer, these three quantities are equal to the

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 85
entropy of the data, i.e.:

I (R, N) = I (R, D) = I (N, D) = H(D) = H(N) = H(R).

(17)

Practically,

I (R, N) ≤ min[H(R), H(N)],

I (N, D) ≤ min[H(N), H(D)], and

I (R, D) ≤ min[H(R), H(D)]. (18)

Let’s consider the mutual information between the rules and
the network,

I (R, N) = H(R) − H(R | N)

= H(R) + H(N) − H(R, N)

= −

M∑
i=1

p(ri) log(p(ri)) −

M∑
j=1

p(n j) log(p(n j))

+

M∑
j=1

M∑
i=1

p(ri , n j) log(p(ri , n j)). (19)

M is the number of classes, p(ri) and p(n j) are the
probabilities that the rule base and neural network outputs are
classes i and j respectively, and p(ri , n j) is the corresponding
joint probability. Using an appropriate test set, the above mutual
information can be approximated by replacing the different
probabilities by the corresponding number of data points z in
the different classes:

I (R, N) = −

M∑
i=1

zi

Nt
log

(
zi

Nt

)
−

M∑
j=1

z j

Nt
log

(
z j

Nt

)

+

M∑
j=1

M∑
i=1

zi j

Nt
log

(
zi j

Nt

)

= 1/Nt

[
M∑

j=1

M∑
i=1

zi j log(zi j) −

M∑
i=1

zi log(zi)

−

M∑
j=1

z j log(z j)

−

M∑
j=1

M∑
i=1

zi j log(Nt) +

M∑
i=1

zi log(Nt)

+

M∑
j=1

z j log(Nt)

]

I (R, N) = 1/Nt

[
M∑

j=1

M∑
i=1

zi j log(zi j) −

M∑
i=1

zi log(zi)

−

M∑
j=1

z j log(z j) + Nt log(Nt)

]
, (20)

where Nt is the total number of points in the test set, zi is the
number of points classified by the rule base as belonging to
class i , and z j is the number of points classified by the neural
network as belonging to class j . Similarly we can calculate the
Table 1
Rules extracted for the XOR problem and the corresponding points x1 and x0

x1 x0 Rule antecedent

(0.983, 0758) (1.16, 0.56) A1 : −0.174x1 + 0.198x2 + 0.09 < 0
(0.0118, 0.997) (0.197, 0.819) A2 : −0.185x1 + 0.178x2 − 0.11 > 0
Rule Base: If A1 ∨ A2 then x ∈ C+

other two information transfer quantities:

I (R, D) = 1/Nt

[
M∑

k=1

M∑
i=1

zik log(zik) −

M∑
i=1

zi log(zi)

−

M∑
k=1

zk log(zk) + Nt log(Nt)

]
, (21)

and

I (N, D) = 1/Nt

[
M∑

k=1

M∑
j=1

z jk log(z jk) −

M∑
j=1

z j log(z j)

−

M∑
k=1

zk log(zk) + Nt log(Nt)

]
. (22)

Thus, using a test set and Eqs. (20)–(22), we can measure the
information transfer from the data to the neural network and to
the rules, as well as between the neural network and the rules.
One advantage of rule extraction is that the rules may be able
to generalize better than the underlying neural network. In this
case, the rules accuracy would exceed the network accuracy.

Results of calculating the above information measures are
shown in Section 4.5.2. The mutual information calculation
is compared with the fidelity and accuracy of the rules and
neural network. The results indicate that the mutual information
between the rule base and the network could not be used
as a measure of fidelity. However, the mutual information if
calculated for individual rules (hyperplanes) in a fashion similar
to that of Pratt (1993) could serve in evaluating rules while
pruning the rule base by eliminating those rules of little value.

4.3. Experimental testing of HYPINV on XOR problem

A one hidden layer MLP with 2 hidden neurons has been
trained on an XOR problem, resulting in the set of weights:
(−3.179332, −4.820779, 4.715858), (−1.665238, 3.051616,
−3.410621), and (−2.145716, 4.830636, 4.300482) for the
hidden and output neurons respectively, where the first weight
of every neuron is the threshold. HYPINV has been used to
extract rules. The gradient descent inversion method followed
by sliding along the boundary was used to find the point x0
for every hyperplane. The algorithm resulted in hyperplanes
almost coinciding with the actual network decision boundary
with fidelity 98.9%. The tiny difference is due to the error
tolerance used as stopping criteria during inversion and sliding.
Table 1 shows the extracted rules. Fig. 2 shows the extracted
hyperplanes and the actual ones. It also shows the path taken
during inversion in the case of the second hyperplane A1. In the
case of the first one, the point x0 lies outside the input space,
but still the algorithm produced a valid hyperplane.

86 E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93
Fig. 2. Hyperplanes extracted for XOR problem (solid line), actual network
decision boundary shown by a group of points resulting from network inversion,
points x1 and x0 for every hyperplane, and path followed during inversion from
point x1 to the boundary in the case of A1.

4.3.1. Comparing gradient descent against evolutionary
algorithm inversion

Another MLP with the same architecture as above, except
for a hypertangent activation function replacing the sigmoid,
was trained again on an XOR problem. In this case the
‘0’ input or output was replaced by the value ‘−1’ for
symmetry. Although the gradient descent inversion produced
evenly distributed points in the previous case of binary XOR,
in the case of the bipolar XOR, the points did not cover the
entire decision boundary. The evolutionary algorithm produced
evenly distributed points at the expense of more computation
time. The results of generating 1000 points by both methods
are compared in Figs. 3 and 4.

4.4. Experimental testing of HYPINV on a circular distribution

This is another synthetic problem where we can test
HYPINV in the case where the decision boundary is a curve. A
one hidden layer MLP with 8 hidden neurons has been trained
on the classification problem shown in Fig. 5. Points inside the
circle belong to the positive class, those outside belong to the
negative class. The training and test sets were of equal size and
had 1000 points each. HYPINV was able to approximate the
network decision boundary by the conjunction of 7 rules, with
97.7% fidelity, as shown below:

Rule Base:
If A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5 ∧ A6 ∧ A7 then x ∈ C+

where

A1 : −0.233x1 − 0.095x2 − 0.178 < 0
A2 : −0.336x1 + 0.276x2 − 0.305 < 0
A3 : +0.255x1 + 0.183x2 − 0.221 < 0
Fig. 3. Gradient descent inversion. Distribution of points depend on basin of
attraction.

Fig. 4. Evolutionary algorithm inversion. Points are evenly distributed on the
decision boundary.

A4 : +0.038x1 − 0.121x2 − 0.091 < 0

A5 : −0.057x1 − 0.173x2 − 0.128 < 0

A6 : 0.268x1 − 0.108x2 − 0.199 < 0

A7 : 0.031x1 + 0.266x2 − 0.191 < 0.

Fig. 5 shows the decision boundary and the hyperplanes.
The ANN decision boundary is shown by 500 inversion points.
Fig. 6 shows that HYPINV extracts the more important rules
at the beginning, therefore the fidelity improvement starts at a
large value and decreases as more rules are extracted.

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 87
Fig. 5. Approximating network decision boundary using HYPINV. Network
decision boundary generated by inversion (shown by ‘+’ signs) coincides with
true decision boundary (solid line). Seven linear rules approximate the network
decision boundary with fidelity 97.7%.

Fig. 6. Relation between the fidelity and number of rules extracted by
HYPINV. HYPINV extracts the most important rules first.

Attempting to simplify the extracted rules, would lead to:

If x2 > 0.83206 then negative class.
Otherwise calculate rules.

Assuming a uniform distribution of the parameters, this
would eliminate 8.4% of the cases where the complete rule
base needs to be calculated. While this is only a small saving,
the next aerospace problem will show a much larger saving
achieved from rule simplification, which shows that the saving
is problem dependent.

4.5. Application of network explanation to an aerospace
application

4.5.1. Problem statement
We are trying to determine the safety envelope for ejection

seats in military airplanes, as illustrated in Fig. 7. It is a
two-class decision problem. The safe escape envelope is to
be determined as a function of airplane velocity, attitude
Fig. 7. Safe escape scenario.

Fig. 8. Hinton diagram for the weights between the input and hidden layers in
the network used in the safe escape problem. The leftmost represents the bias.

and other parameters. The system should inform the pilot
whether the ejection would be safe beforehand. Ejection
safety can be determined via high fidelity ejection seat
simulation, using EASY5 R© software (EASY5 User’s Guide,
1997). However, such simulations are too slow for in-flight
real-time use. Alternately, data can be generated using the
EASY5 R© simulation, and a network can be trained to predict
the ejection safety based on the flight parameters. The network
has the advantage of much higher speed than the simulator.

The safe escape criteria is that during the escape trajectory,
when the total recovery velocity is 50 ft/s, the recovery altitude
should be greater than or equal to 50 ft. There are 8 flight
parameters, which affect the ejection safety. These parameters
are the airplane attitude: pitch and roll angle, the flight path
angle (FPA), the angular rates p, q , and r , the ejection altitude,
and airplane speed.

Due to the high dimensionality of the input space, sampling
with a reasonable resolution as shown in Table 2 would give
302 330 880 points. Generating this amount of data would take
35 years. Query-Based Learning (Hwang, Choi, Oh, & Marks,
1991; Saad, Choi, Vian, & Wunsch, 1999; Saad et al., 2003) has
been used in order to efficiently generate and use training data.

4.5.2. Training and explanation results
A multilayer perceptron with 5 hidden neurons was trained

using the node decoupled extended Kalman filter (NDEKF)
method and query-based learning. The resulting network had

88 E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93
Table 2
Flight parameters determining the escape safety

Parameter Lower limit Upper limit Measurement resolution Number of measurements

Pitch angle −90◦
+90◦ 30◦ 6

Roll angle −180◦ 180◦ 30◦ 12
Flight path angle −90◦ 90◦ 20◦ 9
p −180◦/s 180◦/s 30◦/s 12
q −180◦/s 180◦/s 30◦/s 12
r −180◦/s 180◦/s 30◦/s 12
Altitude 0 1500 ft 50 ft 30
Velocity 0 450 keas 50 keas 9
97.46% correct classifications when tested on 2048 uniformly
spaced data points. HYPINV has been run several times with
different random seeds. The extracted rules in all cases had
a fidelity of 80%–85%. Though theoretically the algorithm is
able to attain arbitrarily high fidelity, continuing beyond this
level usually had problems in convergence during inversion.
One remedy under investigation is to use a line-search and
adaptive step size during inversion. The input parameters are
x1 = pitch angle, x2 = roll angle, x3 = FPA, x4 = p, x5 = q,
x6 = r , and x7 = altitude, x8 = velocity. HYPINV was able to
approximate the network decision boundary by 3 rules, with a
83.35% fidelity, as shown below:

Rule Base:
If A1 ∨ A2 ∧ A3 then x ∈ C+

where

A1 : 6.493pitch − 2.1422roll + 94.551FPA − 2.0456p
+ 1.1002q − 1.8886r + 318.29alt + 20.431vel
− 1.133 × 105 > 0

A2 : −3.2914pitch + 11.603roll + 58.099FPA + 9.9544p
− 8.5739q + 5.1669r + 293.43alt − 40.824vel
+ 4572.2 > 0

A3 : −0.90337pitch − 10.133roll − 48.159FPA − 5.5235p
− 1.2003q − 5.4438r − 135.53alt − 4.6534vel
+ 27927 < 0

Simplifying the rule base would lead to:

If alt > 162.3995 then safe.
If alt < 94.84994 then safe.
Otherwise calculate rules.

Assuming a uniform distribution of the parameters, this
would eliminate 95.5% of the cases where the complete rule
base needs to be calculated. This is a much larger saving than
that achieved in the circular distribution problem.

Table 3 shows the mutual information between the rules and
each of the neural network and the data set, as well as the rules
entropy, fidelity and accuracy after the addition of each rule.
The fidelity is defined as the ratio of number of points in the
test set where both rules and neural network agree to the total
number of points. The rules accuracy is defined as the ratio of
number of points where the rules give correct classification to
the total number of points. The neural network accuracy was
97.42%, its entropy was 0.66779, the data entropy was 0.67223,
and the mutual information between the network and the data
was 0.50757. We can see that though the rules fidelity and
Table 3
Fidelity, rule accuracy and information measures for the rule extracted in the
aerospace problem

Number
of rules

Fidelity (%) Rule accuracy (%) I (R, N) I (R, D) H(R)

1 80.57 81.66 0.0968 0.115 0.765
2 82.6 82.41 0.0044 0.0043 0.0771
3 83.35 84.74 0.0759 0.1005 0.5635

accuracy consistently increase, the mutual information I (R, N)

and I (R, D) decrease after the addition of the second rule, then
increase again after the addition of the third one. This is because
these mutual information measures depend on the rules entropy.
We also notice that with only the first rule, the rule base fidelity
is higher than its accuracy. After the addition of the second rule,
its accuracy approaches the fidelity, and after adding the third
rule, the accuracy exceeds the fidelity.

The angle between each pair of hyperplanes was calculated
and found to be 13.24◦, 166.9◦, and 173.3◦ between the
pair of hyperplanes (1,2), (2,3) and (3,1) respectively. This
angle relatively close to 0◦ or 180◦ indicates that the decision
boundary is close to linear.

4.5.3. The Causality Index
The Causality Index (CI) (Baba, Enbutu, & Yoda, 1992;

Boger, 1997; Mak & Blanning, 1998) measures the dependence
of a neural network output on each of its inputs. It measures the
average sensitivity of the network output to each of its inputs.
The CI value for a feed forward network with a single hidden
layer having N1 hidden units is computed by

C Iki =

N1∑
j=1

w2
k j · w1

j i , (23)

where w2
k j is the weight value between the kth output unit and

the j th unit in the hidden layer, and w1
j i is the weight value

between the j th hidden unit and the i th input unit.
In order to compare CI values of different ANN

architectures, a normalized causality index is defined as,

C I ′

ki =

N1∑
j=1

w2
k j · w1

j i√√√√ 1
N2 N0

N2∑
m=1

N0∑
l=1

(
N1∑
j=1

w2
mj · w1

jl

)2
, (24)

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 89
Table 4
Normalized causality index of several networks trained on the safe escape date

Case
no.

No. hidden
nodes

No. training
epochs

No. training
patterns

Sampling
methods

Causality index of each of the 8 inputs

Pitch Roll FPA p q r Altitude Velocity

1 5 61 2869 Uniform −0.091 0.1497 2.1202 0.1717 −0.1 0.0529 1.6256 −0.888
2 5 415 461 QBL 0.0986 0.2389 2.501 −0.074 −0.058 −0.143 1.1481 −0.575
3 5 40 100 Random −0.087 0.033 2.3734 0.1089 −0.044 0.2883 1.3854 −0.585
4 5 415 1000 Random 0.016 0.2192 2.1199 −0.008 −0.021 0.0307 1.7302 −0.68

The index is consistent for the flight path angle, altitude and velocity inputs.
where N2 and N0 are the number of output and input neurons
respectively.

The causality index has been calculated for different neural
networks trained on the safe escape data. The sample results
shown in Table 4 are for different neural network architectures
and different training sets. The main remark we can make is
that the FPA and the altitude have a large positive causality on
the output, and the velocity has a large negative causality on the
output. The rest of the inputs have smaller causality indices with
inconsistent signs. This can be due to either their small effect
on the output and/or their non-monotonic relationship with the
output.

The first case in the above table corresponds to the network
from which the previous rules were extracted. We notice that
the rules coefficients are correlated with the causality index. In
the rules, the largest three coefficients are those of the altitude,
velocity and FPA, which confirms the importance of these three
parameters.

4.5.4. Visualization by Hinton diagram
In attempting to explain a neural network, visualization

would be of great aid in increasing human comprehensibility.
A Hinton diagram displays the magnitude of weight matrix
between neurons in two layers of a neural network. The weight
matrix is displayed as a square grid. The area of a square is
proportional to the weight magnitude, and its color indicates
its sign (light = positive, dark = negative), as shown in
Fig. 8. When plotting the weights for the network used above,
we could notice that the weights corresponding to the FPA,
altitude and velocity inputs are much larger than the rest, again
confirming the results of the causality index.

4.6. Experimental comparison with other methods

We have experimentally compared the performance of
HYPINV against two similar algorithms: NeuroLinear of
Setiono and Liu (1997a) and the algorithm of Kim and Lee
(2000) which were briefly described in Section 2.1. In this
comparison we used data sets publicly available at the machine
learning data repository at the University of California, Irvine
(UCI) (Blake & Merz, 1998), for which test results has been
previously reported by Kim and Lee (2000) and Setiono and
Liu (1997a). We used these reported results without simulating
the two algorithms. From among the data sets used in these two
papers, we tested our algorithms on all the two-class sets. These
data sets are presented in Table 5.
Table 5
UCI datasets used in the experiments

Dataset Size Attributes
Total Discrete Continuous

1 Wisconsin breast cancer 683 9 0 9
2 Australian credit approval 653 14 8 6
3 Sonar target 208 60 0 60
4 Ionosphere 351 34 0 34
5 Pima Indians diabetes 768 8 0 8
6 BUPA liver-disorders 345 6 0 6

Table 6
Neural network accuracy

Dataset Saad et al. Setiono et al. Kim et al.

Wisconsin breast cancer 94.74% 94.57% 95.1%
Australian credit approval 83.44% 83.84% –
Sonar target 87.5% 88.63% –
Ionosphere 92.05% – 91.4%
Pima Indians diabetes 75.52% – 75.3%
BUPA liver-disorders 67.44% – 67.4%

The goal is to have a fair comparison of the rule extraction
algorithms independently of the goodness of the underlying
neural networks. Therefore, in training our neural networks, we
aimed at achieving error rates as close as possible to the ones
reported for the above two algorithms. We used cross validation
for minimizing the generalization error. We then fine tuned the
error by either early stopping or changing the random seed of
the weight initialization. The resulting neural network accuracy
on the test set was within 1% of the other two algorithms on all
data sets except for Sonar where the difference was 1.13%.

For all data sets we used an MLP with one hidden layer
of 4 neurons guided in our choice by the architecture used by
Setiono et al. All neurons had a sigmoid activation function and
all weights were randomly initialized in the range [−1, 1]. Each
data set was split in the proportion of about 50% training, 25%
validation and 25% test data, except for the sonar set which had
176 training data and the rest equally split between validation
and test data. Table 6 compares the neural network accuracy
of the different algorithms. The accuracy was measured as the
ratio of the number of correctly classified patterns in the test set
to the size of the test set.

After training the neural networks for all data sets, we used
HYPINV to generate rules for them. HYPINV was run 10 times
for each data set using a different random seed every time. The
average and standard deviation of the results of the 10 runs was

90 E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93
Table 7
Rules accuracy (%)—average and standard deviation

Dataset Saad et al. Setiono et al. Kim et al.

Wisconsin breast cancer 95.26 (0.8) 95.73 (3.75) 95.6 (0.3)
Australian credit approval 82.52 (1.01) 83.64 (5.74) –
Sonar target 76.25 (4.93) 85.39 (12.77) –
Ionosphere 90.11 (2.28) – 91.2 (0.9)
Pima Indians diabetes 78.59 (0.46) – 73.4 (3.9)
BUPA liver-disorders 65.93 (3.72) – 67.6 (2.9)

Table 8
Number of rules—average and standard deviation

Dataset Saad et al. Setiono et al. Kim et al.

Wisconsin breast cancer 1.1 (0.32) 2.89 (2.52) 7.8 (0.8)
Australian credit approval 2.0 (0.67) 6.6 (4.40) –
Sonar target 1.0 (0.00) 7.03 (3.73) –
Ionosphere 1.3 (0.48) – 6.3 (0.5)
Pima Indians diabetes 1.0 (0.00) – 23.6 (2.9)
BUPA liver-disorders 2.9 (1.29) – 15.3 (1.5)

Table 9
Rules fidelity (%)—average and standard deviation

Dataset Saad et al.

Wisconsin breast cancer 99.12 (0.31)
Australian credit approval 97.48 (1.67)
Sonar target 88.75 (4.93)
Ionosphere 96.02 (3.09)
Pima Indians diabetes 98.70 (0.86)
BUPA liver-disorders 91.05 (4.52)

calculated for each set. The three algorithms are compared in
Table 7 in terms of the accuracy of the extracted rules and in
Table 8, in terms of the number of extracted rules. In the case
of Kim et al., they reported results by two variations of their
algorithm. Here we compared against their best result for each
data set. We can see that the accuracy of HYPINV is in the same
range as the other two algorithms. However, HYPINV gives
fewer rules. The fidelity of our rules is shown in Table 9 for the
test sets of all cases. Fidelity was not reported for the compared
algorithms. Let’s discuss the comparison:

Both of the compared algorithms can be applied to problems
with either discrete or continuous attributes, like HYPINV.
They can be applied to multi-class classification problems.
HYPINV is extendable to multi-class problems. By comparison
with the above two algorithms, HYPINV is more flexible and
has wider applicability. The above two algorithms can only
be applied to MLPs with a specific architecture. HYPINV
is pedagogical, and hence it is applicable to a variety of
architectures. It can generally be applied to any neural classifier.

4.6.1. Accuracy
The accuracy of HYPINV is comparable with the compared

ones for all cases. In some cases the difference is larger than
others. In two cases (Breast cancer and Pima), the rule accuracy
is higher than the ANN accuracy. In fact, if the ANN is overfit,
the rules may generalize better by simplifying the decision
surface.
4.6.2. Fidelity versus complexity of the extracted rules
One main advantage of HYPINV is the ability of

generating rules with arbitrary fidelity while maintaining a
fidelity–complexity tradeoff. This is due to its ability of
extracting the most important rules first. The more we add rules,
we increase the fidelity, but we also increase the complexity of
the rules. The other compared algorithms extract a set of rules
with fixed fidelity. Their complexity depends on the number
of weights in the network. The testing of HYPINV showed
a great reduction in the complexity of the rules compared
with the other two algorithms. The reduction in the number
of rules ranges from 62% for the breast cancer data to 96%
for the Pima data. Although we could not compare the fidelity,
our accuracy was comparable to the other algorithms. Other
algorithms which addressed a tradeoff between interpretability
and accuracy include that of Plate (1999).

4.6.3. Complexity of the algorithm
HYPINV consists of these main operations for each rule:

network inversion, one forward propagation to calculate the
class of x1, and multiple forward propagations with the test
set to calculate the fidelity. Network inversion can use either
backpropagation or an evolutionary algorithm, which involves
forward propagation to calculate the network output error.
Thus, the algorithm complexity and execution time depend on
the network size. The other two algorithms analyze the network
weights and their complexity depends on the network size as
well.

4.6.4. Portability
HYPINV is pedagogical, and therefore is less dependent on

the network structure. It can be applied to any neural classifier
without limit to certain architecture. The other two algorithms
are decompositional and analyze the weight structure of the
network. NeuroLinear is restricted to MLPs with one hidden
layer, while Kim’s algorithm is restricted to MLPs with two
hidden layers using steep sigmoid activation function.

HYPINV is also independent of the training method.
Kim’s algorithm requires a special training method involving
increasing the sigmoid slope gradually during training. When
using NeuroLinear, the network can be trained by any method,
but the weights need to be pruned before the rules are extracted.

4.6.5. Translucency
HYPINV is pedagogical, it does not give insight about

the ANN architecture. We cannot tell for example how many
layers are in the network just from the rules. The other
compared algorithms are decompositional and therefore more
translucent. It is our assertion that generating explanations is
more important than translucency. That is, one is usually not
interested in inferring facts about the network architecture,
since it is often available for direct examination anyway.

4.6.6. Comprehensibility
The three algorithms extract rules of the same form (hyper-

planes). Their relative comprehensibility will be measured by
the number of attributes in each rule. HYPINV produces rules
with all the original attributes in each of them. The rules of

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 91
Table 10
Comparison of algorithms extracting rules in the form of hyperplanes

Property Saad et al. Setiono et al. Kim et al.

Input Continuous/Discrete Continuous/Discrete Continuous/Discrete
Output 2-class, extendable to multi class Multi class Multi class
Algorithm class Pedagogical Decompositional Decompositional
Network type Any network MLP MLP with steep sigmoid
Number of hidden layers Any number One Two
Kim et al. use additional attributes derived from the original
ones, the number of which is of the same order of magnitude
as the original ones. Setiono et al. do not report the number
of attributes in their rules for all data sets. However, in their
detailed analysis of two of the sets (Setiono & Liu, 1997b),
their rules generally have fewer attributes due to neural network
pruning. We can see that our rules have comprehensibility sim-
ilar to that of Kim et al. but lower than that of Setiono et al.
We can improve the comprehensibility of our rules by pruning
the extracted rules. One simple way to do this is by removing
those attributes with coefficients smaller than a preset thresh-
old. This method was tested on the sonar rules which had the
largest number of attributes among the tested sets. By using a
threshold of 0.018, the number of attributes was reduced from
60 in each rule to 39 in the first rule and 33 in the second rule
without sacrificing any accuracy.

Table 10 compares the main characteristics of the three
algorithms.

5. Conclusion

We presented HYPINV, a new explanation algorithm based
on network inversion. It can approximate the network decision
surface in terms of hyperplanes for continuous or binary
attribute neural networks. The majority of the algorithms
extracting rules from neural networks with continuous
attributes transform them to a binary form (Bologna, 2000),
which corresponds to approximating the decision region using
hypercubes. Only a few algorithms—of the decompositional
type—generate hyperplane rules from neural networks with
continuous attributes. The general principle of HYPINV is
to extract hyperplane rules in a pedagogical manner. To our
knowledge, HYPINV is the only one of the pedagogical type,
which extracts hyperplane rules from continuous or binary
attribute neural networks. Being pedagogical, HYPINV is
portable to any neural classifier without restriction on the
architecture or the training method, unlike decompositional
approaches. Extraction of rules in the form of hyperplanes
results in fewer rules (less complex) compared with rules
in the form of hypercubes extracted by decision trees or
other algorithms designed for binary attributes which discretize
continuous attributes. Hyperplanes also show the relation
between the attributes. In addition, HYPINV allows flexibility
in choosing the rules fidelity and complexity while maintaining
a fidelity–complexity tradeoff. This is allowed by the fact
that the algorithm extracts the most important rules first. The
increased value of HYPINV is obtained while keeping it cost-
effective. Experiments showed that its run time is typically a
few seconds.
In HYPINV, inversion, followed by sliding along the
boundary, has been used to project a point in the input space
on the network decision boundary. An information theoretic
analysis of rule extraction has been given and measures of
the rules fidelity and accuracy have been derived. HYPINV
has been applied to synthetic problems for validation as well
to a real aerospace problem. It has also been compared
against similar algorithms using benchmark problems. The
extracted rules were further simplified for better human
understandability. Visualization has also been added to aid the
explanation.

Future work can investigate the extension of HYPINV to
multiple class problems as well, such as to regression problems.
One approach which can be taken regarding regression
problems is to discretize the output. This approach may be more
suitable for single-output networks, but may face the curse of
dimensionality in multiple-output networks. Note that there is a
large class of single-output, nonlinear, multivariate regression
problems which would benefit greatly from an explanation
capability.

Acknowledgment

The authors would like to thank Dr. John Vian with Phantom
Works, The Boeing Co., for consultation and guidance relating
to the aerospace application.

References

Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique
of techniques for extracting rules from trained artificial neural networks.
Knowledge-Based Systems, 8, 373–389.

Baba, K., Enbutu, I., & Yoda, M. (1992). Explicit representation of knowledge
acquired from plant historical data using neural network. In Proceedings of
the international joint conference on neural networks (pp. 579–583).

Blake, C. L., & Merz, C. J. (1998). UCI repository of ma-
chine learning databases. Irvine, CA: University of Cali-
fornia, Department of Information and Computer Science
[http://www.ics.uci.edu/˜mlearn/MLRepository.html].

Boger, Z. (1997). Knowledge extraction from artificial neural networks models.
In Proceedings of the IEEE international conference on systems, Man &
Cybernetics (pp. 3030–3035).

Bologna, G. (2000). A study on rule extraction from neural network applied
to medical databases. In Proceedings of the 4th european conference on
principles and practice of knowledge discovery (PKDD2000).

Craven, M. W., & Shavlik, J. W. (1994). Using sampling and queries to
extract rules from trained neural networks. In Proceedings of the eleventh
international conference on machine learning.

EASY5 User’s Guide. (1997). Seattle, WA: The Boeing Company.
Filer, R., Sethi, I., & Austin, J. (1996). A comparison between two rule

extraction methods for continuous input data. In Proceedings of the neural
information processing systems (NIPS’97), rule extraction from trained

http://www.ics.uci.edu/~mlearn/MLRepository.html

92 E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93
artificial neural networks workshop (pp. 38–45). Queensland University of
Technology.

Haykin, S. (1998). Neural networks: A comprehensive foundation. Englewood
Cliffs, NJ: Prentice-Hall.

Hwang, J., Choi, J., Oh, S., & Marks, R., II (1991). Query-based learning
applied to partially trained multilayer perceptrons. IEEE Transactions on
Neural Networks, 2, 131–136.

Jones, R., Barnes, C., Lee, Y., & Mead, W. (1991). Information theoretic
derivation of network architecture and learning algorithms. In Proceedings
of the international joint conference on neural networks (pp. 473–478).

Kim, D., & Lee, J. (2000). Handling continuous-valued attributes in decision
tree with neural network modeling. In R. López de Mántaras, & E. Plaza
(Eds.), Lecture notes in computer science: Vol. 1810. Proceedings of the
11th european conference on machine learning (pp. 211–219). Berlin,
Heidelberg: Springer-Verlag.

Linden, A., & Kindermann, J. (1989). Inversion of multilayer nets. In
Proceedings of the international joint conference on neural networks (pp.
425–430).

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21,
105–117.

Linsker, R. (1989). How to generate ordered maps by maximizing the mutual
information between input and output signals. Neural Computation, 1,
402–411.

Linsker, R. (1990a). Perceptual neural organization: Some approaches based on
network models and information theory. Annual Review of Neuroscience,
13, 257–281.

Linsker, R. (1990b). Self-organization in a perceptual system: How network
models and information theory shed light on neural organization. In S. J.
Hanson, & C. R. Olson (Eds.), Connectionist modeling and brain function:
The developing interface (pp. 351–392). Cambridge, MA: MIT Press.

Mak, B., & Blanning, R. (1998). An empirical measure of element contribution
in neural networks. IEEE Transactions on Systems, Man and Cybernetics,
28, 561–564.

Mingers, J. (1989). An empirical comparison of selection measures for
decision-tree induction. Machine Learning, 3, 319–342.

Plate, T. A. (1999). Accuracy versus interpretability in flexible modeling:
Implementing a tradeoff using gaussian process models. Behaviormetrika,
26, 29–50.

Pop, E., Hayward, R., & Diederich, J. (1994). RULENEG: Extracting rules
from a trained ANN by stepwise negation. QUT NRC.

Pratt, L. Y. (1993). Discriminability-based transfer between neural networks.
Advances in Neural Information Processing Systems, 5, 204–211.

Quinlan, J. R. (1983). Learning efficient classification procedures and their
application to chess end games. In R. S. Michalski, J. G. Carbonell, & T.
M. Mitchell (Eds.), Machine learning: An artificial intelligence approach
(pp. 463–482). Palo Alto, CA: Tioga Pub.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1,
81–106.

Ramachandran, S., & Pratt, L. Y. (1991). Information measure based
skeletonisation. Advances in Neural Information Processing, 4, 1080–1087.

Reed, R. D., & Marks, R. (1995). An evolutionary algorithm for function
inversion and boundary marking. In Proceedings of the IEEE international
conference on evolutionary computation (pp. 794–797).

Saad, E. W., Choi, J. J., Vian, J. L., & Wunsch, D. C. II. (1999). Efficient
training techniques for classification with vast input space. In Proceedings
of the international joint conference on neural networks, no. 288.

Saad, E. W., Choi, J. J., Vian, J. L., & Wunsch, D. C., II (2003). Query-
based learning for aerospace applications. IEEE Transactions on Neural
Networks, 14, 1437–1448.

Sestito, S., & Dillon, T. (1991). The use of sub-symbolic methods for the
automation of knowledge acquisition for expert systems. In Proceedings of
the 11th international conference on expert systems and their applications
(pp. 317–328).

Sestito, S., & Dillon, T. (1992). Automated knowledge acquisition of rules with
continuously valued attributes. In Proceedings of the 12th international
conference on expert systems and their applications (pp. 645–656).
Setiono, R., & Liu, H. (1997a). NeuroLinear: A system for extracting oblique
decision rules from neural networks. In M. van Someren, & G. Widmer
(Eds.), Lecture notes in artificial intelligence: Vol. 1224. Proceedings of
the 9th european conference on machine learning (pp. 221–233). Prague,
Czech Republic: Springer.

Setiono, R., & Liu, H. (1997b). NeuroLinear: From neural networks to oblique
decision rules. Neurocomputing, 17, 1–24.

Thrun, S. (1994). Extracting provably correct rules from artificial neural
networks. Technical report IAI-TR-93-5. Institut für Informatik III
Universität Bonn.

Tickle, A. B., Andrews, R., Golea, M., & Diederich, J. (1997). Rule extraction
from trained artificial neural networks. In A. Browne (Ed.), Neural networks
analysis, architectures and applications (pp. 61–99). UK: Institute of
Physics Pub.

Tickle, A. B., Andrews, R., Golea, M., & Diederich, J. (1998). The truth
will come to light: Directions and challenges in extracting the knowledge
embedded within trained artificial neural networks. IEEE Transactions on
Neural Networks, 9, 1057–1068.

Tickle, A. B., Maire, F., Bologna, G., Andrews, R., & Diederich, J.
(2000). Lessons from past, current issues and future research directions
in extracting the knowledge embedded in artificial neural networks.
In S. Wermter, & R. Sun (Eds.), Hybrid neural systems (pp. 227–240).
Heidelberg: Springer.

Werbos, P. (1990). Backpropagation through time: What it does and how to do
it. Proceedings of the IEEE, 7, 1550–1560.

Yu, Q., & Krile, T. F. (1994). Information theory analysis of hebbian-type
associative memories (HAMs). In Proceedings of the world congress on
neural networks (pp. 64–69).

Further reading

Andrews, R., & Geva, S. (1995). RULEX & CEBP networks as the basis
for a rule refinement system. In J. Hallam (Ed.), Hybrid problem, hybrid
solutions (pp. 1–12). Amsterdam: IOS Press.

Benitez, J. M., Castro, J. L., & Requena, I. (1997). Are artificial neural networks
black boxes. IEEE Transactions on Neural Networks, 8, 1156–1164.

Berenji, H. R. (1991). Refinement of approximate reasoning-based controllers
by reinforcement learning. In Proceedings of the eighth international
machine learning workshop (pp. 475–479).

Browne, A., Hudson, B., Whitley, D., & Picton, P. (2003). Knowledge
extraction from neural networks. In Proceedings of the 29th annual
conference of the IEEE industrial electronics society (pp. 1909–1913).

Callan, R. E., & Palmer-Brown, D. (1997). (S)RAAM: An analytical
technique for fast and reliable derivation of connectionist symbol structure
representations. Connection Science, 9, 139–160.

Craven, M. W. (1996). Extracting comprehensible models from trained neural
networks. Ph.D. Thesis. Department of Computer Sciences, University of
Wisconsin-Madison.

d’Avila Garcez, A. S., Broda, K., & Gabbay, D. M. (2001). Symbolic
knowledge extraction from trained neural networks: A sound approach.
Artificial Intelligence, 125, 155–207.

Dietterich, T. G., & Flann, N. S. (1997). Explanation-based learning and
reinforcement learning: A unified view. Machine Learning, 28, 169–214.

Fu, L. (1994). Rule generation from neural networks. IEEE Transactions on
Neural Networks, 24, 1114–1124.

Géczy, P., & Usui, S. (1999). Rule extraction from trained artificial neural
networks. Behaviormetrika, 26, 89–106.

Giles, C. L., Lawrence, S., & Tsoi, A. C. (1997). Rule inference for
financial prediction using recurrent neural networks. In Proceedings of
the IEEE/IAFE conference on computational intelligence for financial
engineering (CIFEr) (pp. 253–259).

Halgamuge, S. K., & Glesner, M. (1994). Neural networks in designing fuzzy
systems for real world applications. Fuzzy Sets and Systems, 65, 1–12.

Hayashi, Y. (1990). A neural expert system with automated extraction of fuzzy
if-then rules and its application to medical diagnosis. Advances in Neural
Information Processing Systems, 3, 578–584.

E.W. Saad. D.C. Wunsch II / Neural Networks 20 (2007) 78–93 93
Hayashi, Y., Setiono, R., & Yoshida, K. (2000). A comparison between two
neural network rule extraction techniques for the diagnosis of hepatobiliary
disorders. Artificial Intelligence in Medicine, 20, 205–216.

Healy, M. J., & Caudell, T. P. (1997). Acquiring rule sets as a product of
learning in a logical neural architecture. IEEE Transactions on Neural
Networks, 8, 461–474.

Horikawa, S., Furuhashi, T., & Uchikawa, Y. (1992). On fuzzy modeling
using fuzzy neural networks with the back-propagation algorithm. IEEE
Transactions on Neural Networks, 3, 801–806.

Ishikawa, M. (2000). Rule extraction by successive regularization. Neural
Networks, 13, 1171–1183.

Kindermann, J., & Linden, A. (1989). Detection of minimal microfeatures by
internal feedback. In Proceedings of the fifth Austrian artificial intelligence
meeting (pp. 230–239).

Masuoka, R., Watanabe, N., Kawamura, A., Owada, Y., & Asakawa, K. (1990).
Neurofuzzy systems: Fuzzy inference using a structured neural network.
In Proceedings of the international conference on fuzzy logic and neural
networks (pp. 173–177).

McGarry, K., Wermter, S., & MacIntyre, J. (2001). The extraction and
comparison of knowledge from local function networks. International
Journal of Computational Intelligence and Applications, 1, 369–382.

Mitra, S. (1994). Fuzzy MLP based expert system for medical diagnosis. Fuzzy
Sets and Systems, 65, 285–296.

Okada, H., Masuoka, R., & Kawamura, A. (1993). Knowledge based neural
network using fuzzy logic to initialize a multilayered neural network and
interpret postlearning results. Fujitsu Scientific and Technical Journal FAL,
29, 217–226.

Omlin, C. W., & Giles, C. L. (1996). Extraction of rules from discrete-time
recurrent neural networks. Neural Networks, 9, 41.

Rabuñal, J. R., Dorado, J., Pazos, A., Pereira, J., & Rivero, D. (2004). A new
approach to the extraction of ANN rules and to their generalization capacity
through GP. Neural Computation, 16, 1483–1523.

Saito, K., & Nakano, R. (1988). MEDICAL diagnostic expert system based on
PDP model. Proceedings of the IEEE international conference on neural
networks, 1, 255–262.

Setiono, R. (2000). Extracting M-of-N rules from trained neural networks.
IEEE Transactions on Neural Networks, 11, 512–519.

Setiono, R., Leow, W. K., & Zurada, J. M. (2002). Extraction of rules from
artificial neural networks for nonlinear regression. IEEE Transactions on
Neural Networks, 13, 564–577.

Sun, R. (2000). Beyond simple rule extraction: The extraction of planning
knowledge from reinforcement learners. In Proceedings of the international
joint conference on neural networks. Piscataway, NJ: IEEE Press.

Takane, Y., Oshima-Takane, Y., & Shultz, T. R. (1999). Analysis of knowledge
representations in cascade correlation networks. Behaviormetrika, 26,
5–28.

Thrun, S. (1996). Explanation-based neural network learning: A Lifelong
learning approach. Boston: Kluwer.

Tickle, A. B., Orlowski, M., & Diederich, J. (1994). DEDEC: Decision
detection by rule extraction from neural networks. QUT NRC.

Towell, G. G. (1992). Symbolic knowledge and neural networks: Insertion,
refinement, and extraction. Doctoral dissertation. Madison, WI: University
of Wisconsin, Computer Sciences Department.

Towell, G. G., & Shavlik, J. W. (1993). The extraction of refined rules from
knowledge based neural networks. Machine Learning, 131, 71–101.

Tsukimoto, H. (1997). Extracting propositions from trained neural networks.
In Proceedings of the international conference on artificial intelligence
(pp. 1098–1105).

Tsukimoto, H. (2000). Extracting rules from trained neural networks. IEEE
Transactions on Neural Networks, 11, 377–389.

Weijters, A. J. M. M., & van den Bosch, A. P. J. (1999). Interpreting knowledge
representations in BP-SOM. Behaviormetrika, 26, 107–129.

Wermter, S., & Sun, R. (Eds.) (2000). Hybrid neural systems. Heidelberg:
Springer.

Zhou, Z. H., Jiang, Y., & Chen, S. F. (2003). Extracting symbolic rules from
trained neural network ensembles. AI Communications, 16, 3–15.

	Neural network explanation using inversion
	Introduction
	Related work
	Boolean rules extracted by decompositional approaches
	NeuroLinear
	Kim and Lee

	Boolean rules extracted by pedagogical approaches

	HYPINV
	HYPINV overview
	Algorithm description
	Multiple-class problems
	Rule simplification
	Reducing rule application range
	Reducing number of rules
	Reducing number of attributes

	Neural network inversion to project a point on the boundary
	Inversion of MLP
	Finding the closest point on the boundary to x1

	Analysis and experimental results
	Evaluation criteria of rule extraction algorithms
	Information theory analysis of rule extraction
	Experimental testing of HYPINV on XOR problem
	Comparing gradient descent against evolutionary algorithm inversion

	Experimental testing of HYPINV on a circular distribution
	Application of network explanation to an aerospace application
	Problem statement
	Training and explanation results
	The Causality Index
	Visualization by Hinton diagram

	Experimental comparison with other methods
	Accuracy
	Fidelity versus complexity of the extracted rules
	Complexity of the algorithm
	Portability
	Translucency
	Comprehensibility

	Conclusion
	Acknowledgment
	References
	Further reading

