
TILE

PROCESSOR

ARCHITECTURE

OVERVIEW FOR THE

TILE-GX SERIES

RELEASE 0.20
DOC. NO. UG130

FEBRUARY 2012
TILERA CORPORATION

Copyright © 2012 Tilera Corporation. All rights reserved. Printed in the United States of America.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, except as may be expressly permitted by the applicable copyright statutes or in writing by the
Publisher.

The following are registered trademarks of Tilera Corporation: Tilera and the Tilera logo.

The following are trademarks of Tilera Corporation: Embedding Multicore, The Multicore Company, Tile Processor, TILE Architecture,
TILE64, TILEPro, TILEPro36, TILEPro64, TILExpress, TILExpress-64, TILExpressPro-64, TILExpress-20G, TILExpressPro-20G,
TILExpressPro-22G, iMesh, TileDirect, TILEmpower, TILEmpower-Gx, TILEncore, TILEncorePro, TILEncore-Gx, TILE-Gx, TILE-Gx9,
TILE-Gx16, TILE-Gx36, TILE-Gx64, TILE-Gx100, TILE-Gx3000, TILE-Gx5000, TILE-Gx8000, DDC (Dynamic Distributed Cache), Multicore
Development Environment, Gentle Slope Programming, iLib, TMC (Tilera Multicore Components), hardwall, Zero Overhead Linux
(ZOL), MiCA (Multicore iMesh Coprocessing Accelerator), and mPIPE (multicore Programmable Intelligent Packet Engine). All other
trademarks and/or registered trademarks are the property of their respective owners.

Third-party software: The Tilera IDE makes use of the BeanShell scripting library. Source code for the BeanShell library can be found at the
BeanShell website (http://www.beanshell.org/developer.html).

This document contains advance information on Tilera products that are in development, sampling or initial production phases. This
information and specifications contained herein are subject to change without notice at the discretion of Tilera Corporation.

No license, express or implied by estoppels or otherwise, to any intellectual property is granted by this document. Tilera disclaims any
express or implied warranty relating to the sale and/or use of Tilera products, including liability or warranties relating to fitness for a
particular purpose, merchantability or infringement of any patent, copyright or other intellectual property right.

Products described in this document are NOT intended for use in medical, life support, or other hazardous uses where malfunction could
result in death or bodily injury.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. Tilera assumes no liability for damages
arising directly or indirectly from any use of the information contained in this document.

Publishing Information:

Contact Information:

Document number: UG130

Release 0.20

Date 2/10/12

Tilera Corporation

Information info@tilera.com
Web Site http://www.tilera.com

Tile Processor Architecture Overview for the TILE-Gx Series iii

Contents

CHAPTER 1 TILE-GX PROCESSOR OVERVIEW

1.1 TILE-Gx Processor .. 1

CHAPTER 2 TILE ARCHITECTURE

2.1 Processor Core ... 3
2.1.1 Instruction Set Architecture Overview .. 3
2.1.2 Processing Pipeline ... 4
2.1.3 Front End .. 7

2.1.3.1 Instruction Cache ... 7
2.1.3.2 Instruction TLB .. 7
2.1.3.3 Instruction Prefetch ... 8
2.1.3.4 Branch Prediction .. 8

2.1.4 Execution Units/Pipelines ... 8
2.1.5 Cache and Memory Architecture .. 8

2.1.5.1 Tile Caches .. 10
2.1.5.2 L1 DCache ... 10
2.1.5.3 L2 Cache Subsystem .. 12

2.1.6 Special Purpose Registers (SPRs) .. 13
2.1.7 Interrupts and Exceptions .. 13
2.1.8 Protection Architecture .. 14

2.1.8.1 Levels of Protection ... 14
2.1.8.2 Protected Resources .. 14

2.2 Switch Interface and Mesh ... 16
2.2.1 The iMesh ... 16
2.2.2 Switch Interface ... 18
2.2.3 Switch Micro Architecture ... 19

2.2.3.1 Arbitration .. 19
2.2.3.2 Round Robin Arbitration .. 20
2.2.3.3 Network Priority Arbitration ... 20

2.2.4 TILE-Gx Processor — Partitioning ... 21

CHAPTER 3 I/O DEVICE INTRODUCTION

3.1 Overview .. 23
3.1.1 Tile-to-Device Communication ... 23
3.1.2 Coherent Shared Memory .. 24
3.1.3 Device Protection .. 24
3.1.4 Interrupts .. 24

CONTENTS

iv Tile Processor Architecture Overview for the TILE-Gx Series

3.1.5 Device Discovery ... 25
3.1.6 Common Registers .. 25

CHAPTER 4 DDR3 MEMORY CONTROLLERS

4.1 Memory Striping ...29
4.2 Rank/Bank Hashing ...29
4.3 Memory Request Scheduling ...29
4.4 Page Management Policy ..29
4.5 Priority Control ...30
4.6 Starvation Control ..30
4.7 Performance Counters ...30

CHAPTER 5 HARDWARE ACCELERATORS

5.1 Overview ..31
5.1.1 Mesh Interface .. 32
5.1.2 TLB (Translation Lookaside Buffer) ... 32
5.1.3 Engine Scheduler ... 33
5.1.4 Function-Specific Engines .. 33
5.1.5 DMA Channels .. 33
5.1.6 PA-to-Header Generation .. 33
5.1.7 Operation .. 33
5.1.8 Crypto Accelerators .. 34
5.1.9 Compression Accelerators ... 35
5.1.10 MemCopy DMA Engine ... 35

CHAPTER 6 PCIE/TRIO

6.1 PCIe Interfaces ..37

CHAPTER 7 XAUI/MPIPE

7.1 mPIPE Subsystem ...39

CHAPTER 8 OTHER I/OS (USB, ETC.)

8.1 USB Subsystem ...41
8.2 Flexible I/O System ..41
8.3 UART System ..41
8.4 I2C Systems ..42
8.5 SPI System ...42

CHAPTER 9 DEBUG

CHAPTER 10 BOOT

GLOSSARY .. 47

Tile Processor Architecture Overview for the TILE-Gx Series v

CONTENTS

INDEX ..49

CONTENTS

vi Tile Processor Architecture Overview for the TILE-Gx Series

Tile Processor Architecture Overview for the TILE-Gx Series 1

Tilera Confidential — Subject to Change Without Notice

CHAPTER 1 TILE-GX PROCESSOR
OVERVIEW

1.1 TILE-Gx Processor
This document provides an architectural overview of the TILE-Gx™ family of system-on-chip
multicore processors, with an emphasis on the 36-core TILE-Gx8036. This document is not
intended to provide an exhaustive description of the TILE-Gx family. For more information,
please consult the Instruction Set Architecture for TILE-Gx (UG401), and I/O Device Guide for the
TILE-Gx Family of Processors (UG404). TILE-Gx documentation can be found in the MDE document
index.

The TILE-Gx family is fabricated in 40nm process technology, offering high clock speeds at very
low power. With the standard part at 1.2GHz clock rate and with a typical networking application
running, the device is expected to draw approximately 25-30W of power. Considering the high
level of system integration (onboard memory controllers, PCI Express, and I/O controllers), the
total system power is 2x to 4x lower than other competitive high performance processor systems.

The TILE-Gx8036 chip is packaged in a 37.5mm x 37.5mm flip-chip Ball Grid Array (BGA). It is
RoHS-6 compliant and is compatible with standard multilayer PCB designs.

Each of the 36 processor cores is a full-fledged 64-bit processor with local cache and supports a
flexible virtual memory system. Any of the cores can independently run its own operating system
(that is, standard Linux 2.6), and many or all of the tiles can as a group run Symmetric Multi-Pro-
cessing (SMP) operating systems, such as SMP Linux. Existing applications written in C or C++
for standard processors will port very quickly to the TILE-Gx™.

The development tools enable rapid migration to multiple tiles using various standard multicore
programming techniques such as threads, decomposed pipelining, or multiple “run-to-comple-
tion” process instances.

Several unique architectural innovations enable the low-power and scalable performance of the
Tile Processor™. The mesh-based interconnect between processor cores provides high communi-
cation bandwidth and low latency to other tiles cache, external memory and I/O. Further, the
distributed and shared coherent cache architecture removes bottlenecks and contention and mini-
mizes power dissipation.

Chapter 1 Tile-Gx Processor Overview

2 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Figure 1-1. TILE-Gx36 SoC Block Diagram

M
em

or
y

C
on

tro
lle

r
D

D
R

3

MiCA
Crypto

MiCA
Compression

MiCA
Compression

GPIO

TRIO

USB
x2

mPIPE

UART x2
I2C
SPI

JTAG

Rshim

10 GbE
XAUI

4x GbE
SGMII

SERDES

10 GbE
XAUI

4x GbE
SGMII

SERDES

10 GbE
XAUI

SERDES

4x GbE
SGMII

10 GbE
XAUI

SERDES

4x GbE
SGMII

PCIe 2.0
4-Lane

SERDES

PCIe 2.0
4/8-Lane

SERDESSERDES

PCIe 2.0
4-Lane

44 4

M
em

or
y

C
on

tro
lle

r
D

D
R

3

MiCA
Crypto

Tile Processor Architecture Overview for the TILE-Gx Series 3

Tilera Confidential — Subject to Change Without Notice

CHAPTER 2 TILE ARCHITECTURE

Each tile consists of a 64b in-order processor core (with its constituent pipelines, execution units,
and L1 caches), an L2 cache subsystem, and a switch interface to the on-chip mesh interconnects.

Figure 2-1. Detail of a Tile within the Tile Processor

2.1 Processor Core
The processor core is an in-order 3-wide 64-bit integer processing engine that uses a 64-bit VLIW
(Very Long Instruction Word) architecture. Up to three instructions can be packed into a single
instruction word. There are 64 architected registers, each 64b wide.

2.1.1 Instruction Set Architecture Overview
The Tile Processor instruction set architecture (ISA) includes a full complement of general-pur-
pose RISC instructions and has been enhanced with a rich set of DSP and SIMD instructions for
multimedia and signal processing applications. These include:

• SIMD instructions for sub-word parallelism

• Eight 8-bit parallel, four 16-bit parallel, two 32-bit parallel

• Dot product

• Complex multiply

• Laned multiply (with accumulate)

• Laned compare

• Saturating arithmetic

• Min/Max/Average, Absolute Difference

Cache
ITLB
DTLB

L1 ICache
L1 DCache

L2 Cache

Terabit
Switch

64-Bit Processor
Register File

3 Execution Pipelines

Chapter 2 Tile Architecture

4 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

• Conditional result support. In addition, some special instructions are included to accelerate
various applications:

• Byte shuffle

• Bit field insert/extract (Signed, Unsigned)

• Population count

• Sum of absolute differences (SAD)

• CRC for hashing and checksums

• Table lookup instructions

• Atomics

• Non temporal loads and stores

C intrinsics are provided in a Tilera-provided architecture-specific library for the enhanced
instructions.

The instruction set includes a nap instruction that allows the programmer to idle tiles when they
are not needed for computation. Using this feature conserves power.

At the Hypervisor and operating system levels, a large set of Special Purpose Registers (SPRs)
provide access to architectural control and real-time processing states, an interrupt controller that
can handle one interrupt per processing cycle on a priority basis (including those from I/O and
external system components), and a timer that can generate time-based periodic interrupts.

The Tile Processor consists of four major sub-sections: the front end, execution units, L1 DCache,
and L2 Cache. These sub-sections are described in the sections that follow.

2.1.2 Processing Pipeline
The TILE-Gx™ processor uses a short, in-order pipeline aimed at low branch and load-to-use
latencies. The pipeline consists of six main stages: Fetch, Branch Predict, Decode, Execute0,
Execute1, and WriteBack, as shown in Figure 2-2.

Figure 2-2. TILE-Gx Processor Pipeline

Fetch

During the Fetch pipeline stage the Program Counter (PC) is used to provide an index into the
ICache and ITLB. The PC value can come from several sources including the next sequential
instruction, branch target (including predicted taken branch), jump target, interrupt address, or
boot address.

F B D

EX0 EX1 W

EX0 EX1 W

WL1 L1

L2 L2L2L2L2L2L2L2L2

L2 Cache Pipeline

Tile Processor Architecture Overview for the TILE-Gx Series 5

Tilera Confidential — Subject to Change Without Notice

Processor Core

Branch Predict

During the Branch Predict pipeline stage predicted branch and jump instructions are decoded.
For predicted taken branch instructions the pipeline is restarted at the branch target address. For
jrp and jalrp instructions and the pipeline is restarted at the value on top of Return Address
Stack.

Decode

During the Decode pipeline stage the Icache and ITLB lookups during Fetch stage are checked for
hits.

Also, the execution resources required for the instruction are checked, including the source and
destination operands. A three-instruction bundle can require up to seven source register oper-
ands and three destination register operands. Source operands can come from the general
purpose register file or can be bypassed from earlier instructions for the case when the destina-
tion register has not yet been written into the register file.

An instruction can stall in Decode pipeline stage for reasons listed in Table 1.

Table 1. Pipeline Stalls

Stall Reason Description

Source
Operand
RAW

ALU Destination Source operand is a destination operand of a 2-cycle ALU instruction in pre-
vious instruction (1-cycle ALU instruction destination operands are
bypassed so will not cause a stall). Note that this only covers GPRs in the
register file (not network mapped GPRs).

Load Destination Source operand is destination of a load that is not complete. Note that this
only covers GPRs in the register file (not network mapped GPRs).

Network mapped GPR Source operand is a network mapped GPR and no source data is available
on that network. The latency is unbounded, however async interrupts can
be taken during the stall.

ALU after Load WAW An ALU instruction destination register is also the destination of an earlier
load which missed L1 Dcache and is still pending. This includes network
mapped GPRs.

Load after Load WAW A load instruction destination register is also the destination of an earlier
load which missed L1 Dcache and is still pending. This includes network
mapped GPRs.

Network Mapped GPR destination The destination of an instruction is a network mapped GPR, and the net-
work buffer is full. This would normally only happen due to network conges-
tion or a destination tile not consuming network data.

Accesses to Slow SPRs. mfspr or mtspr to slow SPR

Memory Fence mf instruction issued and previous loads or stores are not complete.

L2 Cache queue full Memory instruction and L2 Cache input queue is full.

L1 DCache fill Memory instruction when L1 Dcache is being filled.

DTLB Hazard Memory instruction following mtspr to DTLB_INDEX SPR.

ICOH icoh instruction. Stalls until any instruction prefetches in flight complete.

Nap Nap instruction. Stalls until an async interrupt occurs.

Chapter 2 Tile Architecture

6 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Execute0

Execute0 pipeline stage is used for the execution of most ALU operations, for example, add, sub
(subtract), xor, etc. The destination value of these operations will be bypassed if any instruction
in Decode stage uses it as a source operand.

Conditional branches are resolved in this stage; if a branch was incorrectly predicted in Branch
Predict stage, the pipeline will be restarted with the correct PC.

Execute1

Execute1 pipeline stage is used to complete two-cycle ALU operations, for example multiply. The
destination value of these operations will be bypassed if any instruction in Decode stage uses it as
a source operand.

Pending interrupts are evaluated in this stage; if an interrupt is to be taken the pipeline will be
restarted with the appropriate PC for the highest priority interrupt.

Write Back

Destination operands are all written to the register file during Write Back pipeline stage. As men-
tioned earlier, source operands that are destinations that have not yet reached Write Back stage
can be bypassed to following instructions as needed.

The destination operands of loads that miss the L1 Dcache are not written in Write Back stage;
instead they are written to the register file when they return from memory (either L2 Cache, L3
Cache, or DRAM memory).

Pipeline Latencies

Table 2 shows the latencies for some important cases.

Table 2. Pipeline Latencies

Operation Latency (Cycles)

Branch predict (correct) 0

Branch mispredict 2

Jump - use Return Address Stack (correct) 0

Jump - did not use Return Address Stack or used incorrect value 2

Access to slow SPR 3

Load to use - L1 Dcache hit 2

Load to use - L1 Dcache miss, L2 Cache hit 11

Load to use - L2 Cache miss, neighbor L3 Cache hit, Dword 0 32

Load to use - L2 Cache miss, neighbor L3 Cache hit, Dword 1 to 7 41

L1 Icache miss, prefetch hit 2

L1 Icache way mispredict 2

L1 Icache miss, L2 Cache hit 10

L1 Icache miss, L2 miss, neighbor L3 hit 40

Tile Processor Architecture Overview for the TILE-Gx Series 7

Tilera Confidential — Subject to Change Without Notice

Processor Core

2.1.3 Front End
The function of the processor front end is to control instruction processing. In order for an
instruction to execute, several actions need to be completed. First, the instruction needs to be
fetched from memory. The front end maintains the Icache, which stores local copies of recently
used instructions to reduce memory latency. Next, the instruction needs to be decoded in order to
determine what resources it uses, whether or not it alters the control flow, etc. After the instruc-
tion has been decoded, the processor needs to determine if the instruction is capable of executing.
In order to do this, a dependency calculation is done to make sure that all of the appropriate oper-
ands and other resources are available. If not, the pipeline is stalled. Next, the input operands’
data must be fetched from the appropriate location and supplied to the appropriate execution
unit(s). Along the way, many conditions can arise such as interrupts, cache misses, and TLB
misses. It is the responsibility of the front end to deal with these exceptional cases and appropri-
ately steer the instruction stream.

2.1.3.1 Instruction Cache
The Level 1 Instruction Cache (abbreviated as L1 Icache or just Icache) provides instructions to
the pipeline. The Icache is 32kB, 2-way associative. Table 3 lists some attributes of the Icache.

2.1.3.2 Instruction TLB
The Icache is physically tagged and the program addresses are virtual, so in order to determine if
the Icache lookup hits the virtual address must be translated to a corresponding physical address.
The ITLB stores copies of virtual to physical translations. Table 4 lists the attributes of the ITLB.

Table 3. ICache Attributes

Attribute L1 ICache

Capacity 32 kB

Line Size 64 bytes

Lines 512

Associativity 2-way

Sets 256

Allocate Policy Instruction fetch miss

Write Policy N/A

Data Integrity
1 bit parity on Instruction
1 bit parity on Tag

Table 4. ITLB Attributes

Parameter Value Comment

Entries 16

Associativity 16-way Fully associative

Tag Compare 41 bits 30 VPN, 8 ASID, 2 CPL, 1 Valid

Tag Compare Control 5 bits 1 Global, 4 Page Size Mask

Data 43 bits 28 PFN, 8 LOTAR, 7 Status

Chapter 2 Tile Architecture

8 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

2.1.3.3 Instruction Prefetch
Instruction prefetching is a trade off that reduces Icache miss latency (and thus stalls) by specula-
tively reading instructions that are likely (but not guaranteed) to be used, at the expense of higher
memory bandwidth utilization.

I-Stream Prefetch Operation

Instruction stream prefetching is enabled by two settings in the SBOX_CONFIG SPR, which is a
privileged SPR. When these settings are set they prevent prefetching from being used, unless priv-
ileged software permits it. One setting determines how many cache lines ahead (between 0 and 3)
to deliver to the four-entry prefetch buffer. The second setting determines how many lines
(between 0 and 3) to bring to the L2 Cache. Prefetching is triggered when an instruction fetch
misses in the L1 Icache.

First, the number of cache lines specified for the prefetch buffer are requested, followed by the
number of cache lines specified for the L2 Cache. After a miss, cache lines sequential to the line
that missed are prefetched, based on the principle that those instructions are likely to be executed
but are not in L1 Icache.

If there is a taken branch, jump, or interrupt prior to the requested cache lines coming back from
memory, a new set of cache lines will be requested, with the newest lines being put into the
prefetch buffer.

2.1.3.4 Branch Prediction
Branch prediction is responsible for early, speculative re-steering of the front end for conditional
branches, offset jumps, and predicted indirect jumps. In all cases the correctness of the prediction
is checked and, if not correct, the front end is re-steered again to the correct flow.

For a correctly predicted branch, no instruction slots are lost; for an incorrectly predicted branch,
two instructions slots are lost.

Return Address Stack

jrp and jalrp instructions have a hint to use a Return Address Stack (RAS) as the target. The
hint to put the return value onto the RAS is given in instructions jal, jalr, and jalrp. The
address at the top of RAS is used similar to predicted conditional branches; for a correct return
address found on RAS no instruction slots are lost; if not, two instructions slots are lost.

The depth of RAS is four entries.

2.1.4 Execution Units/Pipelines
The TILE-Gx Processor Engine has three execution pipelines (P0, P1, P2). P0 is capable of execut-
ing all arithmetic and logical operations, bit and byte manipulation, selects, and all multiply and
fused multiply instructions. P1 can execute all of the arithmetic and logical operations, SPR reads
and writes, conditional branches, and jumps. P2 can service memory operations only, including
loads, stores, and atomic memory access instructions.

2.1.5 Cache and Memory Architecture
The Tile Processor architecture defines a flat, globally shared 64-bit physical address space and a
64-bit virtual address space (note that Tile-Gx processors implement a 40-bit subset physical
address and 42-bit subset virtual address). Memory is byte-addressable and can be addressed in 1,
2, 4 or 8 byte units, depending on alignment. Memory transactions to and from a tile occur via the
iMesh.

Tile Processor Architecture Overview for the TILE-Gx Series 9

Tilera Confidential — Subject to Change Without Notice

Processor Core

The globally shared physical address space provides the mechanism by which software running
on different tiles, and I/O devices, share instructions and data. Memory is stored in off-chip
DDR3 DRAM.

Page tables are used to translate virtual addresses to physical addresses (page size range is 4 kB to
64 GB). The translation process includes a verification of protected regions of memory, and also a
designation of each page of physical addresses as either coherent, non-coherent, uncacheable, or
memory mapped I/O (MMIO). For coherent and non-coherent pages, values from
recently-accessed memory addresses are stored in caches located in each tile. Uncacheable and
MMIO addresses are never put into a tile cache.

The Address Space Identifier (ASID) is used for managing multiple active address spaces.
Recently-used page table entries are cached in TLBs (Translation Lookaside Buffers) in both tiles
and I/O devices.

Hardware provides a cache-coherent view of memory to applications. That is, a read by a tile or
I/O device to a given physical address will return the value of the most recent write to that
address, even if it is in a tile’s cache. Instruction memory that is written by software (self-modify-
ing code) is not kept coherent by hardware. Rather, special software sequences using the icoh
instruction must be used to enforce coherence between data and instruction memory.

Cache management instructions include cache flush and invalidate instructions. Atomic opera-
tions include FetchAdd, CmpXchg, FetchAddGez, Xchg, FetchOr, and FetchAnd. Memory
ordering is relaxed, and a memory fence instruction provides ordering between cores when
needed.

Illegal Virtual Address

The virtual address is architecturally 64 bits, but is implemented as 42 bits in the Tile-Gx proces-
sor. Virtual addresses that are not sign-extended values (i.e. bits[63:41] of the VA are all 0’s or all
1’s) are illegal — the implication of this is that there are two legal VA regions, lower and upper,
and an illegal region in the middle, as shown in Table 5.
.

It is illegal to do a memory operation (for example load or store), or to execute instructions
from an illegal VA, or to take a branch from the lower to upper VA region (or vice-versa). An
attempt to do so will result in an exception.

Table 5. Virtual Address Space

Address Region

264-1 Upper VA Region

...

264-241

264-241-1 Illegal VA Region

...

241

241-1 Lower VA Region

...

0

Chapter 2 Tile Architecture

10 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

2.1.5.1 Tile Caches
Figure 2-3 shows a high-level block diagram showing how the caches relate to the processor and
switch.

Figure 2-3. Tile Block Diagram Showing L2 Cache

The cache subsystem is non-blocking and supports multiple concurrent outstanding memory
operations; it supports hit under miss and miss under miss, allowing loads and stores to different
addresses to be re-ordered to achieve high bandwidth and overlap miss latencies, while still
ensuring that true memory dependencies are enforced. A memory fence instruction (mf) can be
used to enforce memory ordering when required.

The Tile Processor does not stall on load or store cache misses. Rather, execution of subsequent
instructions continues until the data requested by the cache miss is actually needed by the con-
suming instruction. The cache system maintains coherence with I/O accesses to memory, and
allows I/O devices to read and write the caches directly.

In addition to normal loads and stores, the tile architecture provides atomic memory operations
(exch, cmpexch, fetchadd, fetchaddgez, fetchand, fetchor instructions).

2.1.5.2 L1 DCache
The L1 Data Cache (abbreviated as L1 DCache) stores copies of data from recently accessed
addresses. Table 6 shows some attributes of the L1 DCache.

Table 6. L1 DCache Attributes

Attribute L1 Data Cache

Capacity 32 kB

Line Size 64 bytes

Lines 512

Associativity 2-way

Sets 256

Switch

Processor

Tile

L1 Dcache

L1 Icache

L2 Cache

Tile Processor Architecture Overview for the TILE-Gx Series 11

Tilera Confidential — Subject to Change Without Notice

Processor Core

The L1 DCache is physically tagged. A Data TLB (DTLB) is used to translate virtual addresses to
the corresponding physical addresses. The DTLB stores copies of virtual to physical translations
for data stream accesses. Table 7 lists the attributes of the DTLB.

The Dcache is non-blocking. For DSP applications, non-temporal streaming loads and stores are
supported for optimized cache usage.

D-Stream Prefetch

A configurable data-stream prefetch engine provides a significant performance boost without
requiring software prefetching. Once enabled, it autonomously prefetches data from memory.
This provides an alternative approach to placing prefetch instructions in the instruction stream.
However, both approaches can be used concurrently, for example explicit prefetch instructions
could be used to prefetch data from addresses that the prefetch engine would otherwise miss.

The D-Stream Prefetch operation is enabled by setting a bit in SBOX_CONFIG SPR. This is a privi-
leged SPR; this protects against prefetching being used unless privileged software complies. Once
prefetching is enabled, user software can control the other parameters in DSTREAM_PF SPR,
which is a non-privileged SPR. The parameter are listed in Table 8.

Allocate Policy Load miss

Write Policy Write through

Data Integrity Byte parity on Data, 1 bit parity on Tag

Table 7. Data TLB Attributes

Parameter Value Comment

Entries 32

Associativity 32 Fully associative

Tag Compare 41 bits 30 VPN, 8 ASID, 2 CPL, 1 Valid

Tag Compare Control 5 bits 1 Global, 4 Page Size

Data 43 bits 28 PFN, 8 LOTAR, 7 Status

Table 8. D-Stream Prefetch Parameters in DSTREAM_PF SPR

Name Description

Stride This value is added to the load address to determine the address to
prefetch. A value of 1 would prefetch the next successive cache line, a value
of 2 the cacheline 2 away, etc. A value of 0 indicates no prefetch.

Level Which level of cache to prefetch to: L1 Dcache, L2 Cache, or L3 Cache.

Miss_Only Indicates whether to arm the prefetcher on any load, or only loads that miss
L1 Dcache.

Table 6. L1 DCache Attributes (continued)

Attribute L1 Data Cache

Chapter 2 Tile Architecture

12 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

The prefetching operation is initiated when a load instruction is executed, which conditionally
records the address and arms the prefetcher (for example it will not be armed if prefetching is
setup to only happen on a L1 Dcache miss and the load hits). Once armed, the prefetcher sends a
prefetch request to the L1 Dcache. If it hits in L1 Dcache, then the operation is complete; if it
misses then the L2 Cache is checked. If it misses in the L2 Cache then a read request is sent to
memory. The prefetched data is placed in the appropriate cache as defined in the Level parameter.

2.1.5.3 L2 Cache Subsystem
Table 9 lists some characteristics of the L2 Cache.

Cache Operation

The processor can issue one load or one store per cycle. The L1 Dcache is checked for the
requested data. If it does not have the requested data, the request is sent to the L2 Cache. Stores
update the L1 Dcache if the targeted cache block is present, and always write through to the L2
Cache. If the L2 Cache does not have the requested data, then a request is sent to the home tile (if
the tile is not the home tile) or to the DRAM controller (if the tile is the home tile). If the home
tile’s L2 Cache does not have the requested cache line, it in turn sends a request to the DRAM con-
troller and delivers the data to the requesting tile.

Instruction fetches that miss in the L1 Icache are sent to L2 Cache, which then handles them in the
same way as L1 Dcache misses described in the previous paragraph.

I/O devices also send memory accesses to the home tile. The request will be completed immedi-
ately if the address is found in L2 Cache, otherwise the tile will send a request to the DRAM
controller.

The L2 cache subsystem supports up to 8 outstanding cacheline requests to DDR memory and/or
to other caches. The L2 subsystem contains an 8-entry (64B/entry) coalescing write buffer that
merges writes to the same cacheline before writing through to the home tile, saving bandwidth
and power consumption on the network.

Dynamic Distributed Caching

TILE-Gx uses Dynamic Distributed Caching (DDC) to provide a hardware-managed, cache-coher-
ent approach to shared memory. Each address in physical memory space is assigned to a home
tile. The mechanism for assigning the home is flexible; for example a specific tile can be chosen, or
addresses can be distributed across many tiles. Data from any address can be cached at the home

Table 9. L2 Cache Attributes

Attribute L2 Cache

Capacity 256 kB

Line Size 64 bytes

Lines 4096

Associativity 8-way

Sets 512

Allocate Policy Load or store miss (home tile); Load (non-home tile)

Write Policy Write back

Data Integrity
ECC (single bit correct, double bit detect) on Data
1 bit parity on Tag

Tile Processor Architecture Overview for the TILE-Gx Series 13

Tilera Confidential — Subject to Change Without Notice

Processor Core

tile and also remotely by other tiles. This mechanism allows each tile to view the collection of all
tiles’ caches as a large shared, distributed coherent cache. It promotes on-chip access and avoids
the bottleneck of off-chip global memory.

2.1.6 Special Purpose Registers (SPRs)
The Tile Processor contains special purpose registers (SPRs) that are used for several reasons:

• Hold state information and provide locations for storing data that is not in the general purpose
register file or memory

• Provide access to structures such as TLBs

• Control and monitor interrupts

• Configure and monitor hardware features, for example prefetching, iMesh routing options, etc.

SPRs can be read and written by tile software (via mfspr and mtspr instructions, respectively),
and in some cases are updated by hardware.

The SPRs are grouped by function into protection domains, each of which can be set to an access
protection level, called the minimum protection level (MPL) for that protection domain. The “Pro-
tection Architecture” on page 14 defines how the MPLs are used.

2.1.7 Interrupts and Exceptions
Interrupt and exceptions are conditions that cause an unexpected change in control flow of the
currently executing code. Interrupts are asynchronous to the program; exceptions are caused
directly by execution of an instruction.

Some examples of interrupts are:

• UDN data available

• Tile timer interval expired

• Inter-processor interrupt (IPI), which could be result of:

• I/O device operation completed

• Packet available on the mPIPE network interface

• IPI sent from a different tile

Some examples of exceptions are:

• Attempt to execute a privileged instruction from a non-privileged program

• load or store instruction to a virtual address that is not in DTLB

• Instruction fetch to a virtual address that is not in ITLB

• Software interrupt instruction (swint)

Interrupts and exceptions are tile specific, meaning that they are only reported to the local tile to
which they are relevant. By localizing the reporting, no global structures or communication are
needed to process the interrupt or exception. If action is required of a remote tile, it is software
responsibility to communicate that need via one of the inter-tile communication mechanisms.

The interrupt/exception structure of the tile architecture is tightly integrated with the protection
model, discussed in the next section. Each interrupt/exception type provides a programmable
Minimum Protection Level (MPL) at which the corresponding handler executes.

Chapter 2 Tile Architecture

14 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

On an interrupt or exception, the PC is loaded with an address derived from the
INTERRUPT_VECTOR_BASE SPR, the specific type of interrupt or exception, and the protection
level at which the handler will execute. This minimizes latency by dispatching directly to the
appropriate handler at the appropriate protection level. The PC at which the interrupt or excep-
tion occurred is automatically saved to allow the handler to resume the interrupted flow.

2.1.8 Protection Architecture
This section discusses tile protection levels, also referred to as access or privilege levels.

2.1.8.1 Levels of Protection
The Tile architecture contains four levels of protection. The protection levels are a strict hierarchy,
thus code executing at one protection level is afforded all of the privileges of that protection level
and all lower protection levels. The protection levels are numbered 0-3 with protection level 0
being the least privileged protection level and 3 being the most privileged protection level.
Table 10 presents one example use of the protection level number to names; other protection
schemes different from the example are possible.

2.1.8.2 Protected Resources
The Tile architecture contains several categories of protection mechanisms. These include:

• Prevention of illegal instruction execution

• Memory protection via multiple translation lookaside buffers (TLBs)

• Instructions to prevent the access selected networks

• Negotiated Application Programmer Interfaces (APIs) for physical device multiplexing

• Control of the protection level of an interrupt or exception

More description for each of the above is provided below.

Preventing Illegal Instruction Execution

The most basic protection mechanism prevents the execution of certain instructions unless a suffi-
cient protection level is achieved. Not all instructions should be available to all programs, because
some instructions are capable of modifying machine state beyond the scope of what a restricted
process should be capable of modifying. Thus, the instruction set is partitioned into non-privi-
leged and privileged instructions. The Tile architecture has a very small set of privileged
instructions, namely mtspr, mfspr, and iret.

Also, some instruction encodings are invalid or architecturally reserved. Detecting invalid and
reserved instructions is useful for finding bugs in a program, and allows an architecture to be
extended via software emulation of ISA (Instruction Set Architecture) extensions.

Table 10. Example Protection Level Usage

Protection Level Usage

0 User

1 Supervisor

2 Hypervisor

3 Virtual Machine Level

Tile Processor Architecture Overview for the TILE-Gx Series 15

Tilera Confidential — Subject to Change Without Notice

Processor Core

An attempt to execute an instruction that is either beyond the program’s protection level, or ille-
gal or reserved, will result in a exception.

Memory Protection

A translation lookaside buffer (TLB) is primarily utilized to translate a virtual address to physical
address on memory access. In the Tile architecture, the TLB is also used to store protection infor-
mation in addition to translation information. The translation information also provides a form of
protection by only allowing access to a subset of the address space. An attempt to access memory
outside that subset will result in a exception. Additional protection information can also mark a
page as read-only or as a member of a certain eviction class.

Preventing Instructions from Accessing Selected Networks

The Tile architecture both allows or disallows execution of instructions that access a particular
network. By using this feature, access to UDN and/or IDN can be restricted to specific processes.

Negotiated APIs for Physical Device Multiplexing

One problem that arises in a system where multiple entities communicate with the same
input/output devices involves device multiplexing. Multiple software processes on different tiles
need to interact with one physical hardware device, for instance a network device, at the same
time. To make this problem more challenging, the multiple software drivers must be protected
from one another. To solve this problem, the Tile architecture utilizes virtual device APIs to allow
physical device multiplexing. With this approach, the physical device driver resides in a hypervi-
sor layer. The system level driver uses a virtualized device API to interface with the hypervisor. It
is the hypervisor’s responsibility to verify that the desired operation is legitimate and to provide
a way to multiplex the physical device between multiple supervisor drivers.

Controlling the Protection Level of an Interrupt or Exception

The Tile Processor provides a mechanism to restrict access to the registers controlling protection
levels. One function these registers control is the protection level. They specify what protection
level is used when an interrupt or exception is taken. This mechanism is critical to building a pro-
tected machine and is described in the next section. When a process attempts to change a
protection level, but does not have the appropriate privilege level needed, it causes a general pro-
tection violation interrupt.

Protection Levels

Every portion of the Tile architecture that requires protection has an associated MPL (Minimum
Protection Level) register. This register contains a value from 0-3. The protection level contained
in the MPL register specifies the protection level needed to complete a desired operation without
faulting. Each tile contains a CPL (Current Protection Level) register that determines the privilege
level of that tile.

When a protected event or action is initiated, the MPL required for the action is compared with
the CPL of the tile. If the MPL is less than or equal to the CPL, then the action completes. On the
other hand, if the MPL is greater than the CPL, an exception occurs (the exception is sent before
the violating action completes). The interrupt handler associated with the specific violation is
invoked. The processor’s CPL is set to the minimum of the interrupt’s minimum protection level
and the current CPL (that is, if the tile’s CPL is already greater than or equal to the MPL associ-
ated with the exception, the CPL is not changed, otherwise it is raised to the MPL).

The Tile architecture supports many MPL registers, which are mapped into the processor’s SPR
(Special Purpose Register) space. Some strict rules must be followed in order to set MPL registers.
A process executing with a CPL at or above the MPL contained in a MPL register is capable of

Chapter 2 Tile Architecture

16 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

changing the MPL register arbitrarily lower or higher up to the process’s CPL without faulting. If
a process attempts to change a MPL register that has a higher value than its CPL, or attempts to
set a MPL register to a value higher than its CPL, a general protection violation interrupt occurs.

MPL registers are prepended with the MPL acronym, for example the Minimum Protection Level
for Boot Access register is named MPL_BOOT_ACCESS.

How to Set Protection Levels

Each MPL contains a read-only SPR named MPL_protected_resource, which is protected by
the MPL itself. In order to set the MPL, a write is done to the
MPL_protected_resource_SET_n register.

where:

protected_resource is the resource class being protected.

n is the level to which it is set.

Writing to these registers requires a CPL that has a maximum value of the
MPL_protected_resource register and the level to which the MPL is being set (n above). This
requirement guarantees that an MPL register can only be set to a value below the CPL of the exe-
cuting process.

For example, to set MPL_ITLB_MISS to a protection level of 2 the system software needs to write
a 1 to the MPL_ITLB_MISS_SET_2 SPR, which sets the MPL_ITLB_MISS SPR to the value to 2.

2.2 Switch Interface and Mesh
2.2.1 The iMesh
All communication within the tile array and between the tiles and I/O devices takes place over
the iMesh™ Interconnect, shown in Figure 2-4. The iMesh Interconnect consists of two classes of
networks, both supporting low latency and high bandwidth communication. The first class com-
prises a set of software visible networks for application level streaming and messaging, while the
second consists of the networks used by the memory system to handle memory requests,
exchange cache coherency commands and support high performance shared memory communica-
tion. Dedicated switches are used to implement the iMesh Interconnect, allowing for a complete
decoupling of data routing from the processor.

Tile Processor Architecture Overview for the TILE-Gx Series 17

Tilera Confidential — Subject to Change Without Notice

Switch Interface and Mesh

Figure 2-4. TILE-Gx Switch Interfaces

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cahe

Proc

UDN
IDN

Memory Networks

Legend

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cahe

Proc

Switch

Cache

Proc

Switch

Cache

Proc

Switch

Cahe

Proc

Switch

Cahe

Proc

Chapter 2 Tile Architecture

18 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

2.2.2 Switch Interface
Each switch point is a crossbar, and each switch connects for neighboring switches (N, S, E, and
W) with the processor core, as shown in Figure 2-5. When input passes from one switch to the
input of a neighboring switch it takes a single cycle (latency).

Figure 2-5. Switch Points

A “packet” is a message on the network (for example, a cache line from memory to a tile’s cache),
divided into units the width of the network (flits), plus a header. The header is used to specify the
destination for the packet, illustrated in Figure 2-6.

Figure 2-6. Header Configuration

The header arbitrates for an output port. Once the output port is granted, the packet is routed at
the rate of one flit per cycle. Each output port maintains a “credit” counter for how many flit-sized
entries are available in the connecting switch input buffer, and will route flits until the credit
count is zero. Other packets requiring the same output port are blocked until the current packet
has finished routing. This is often called “wormhole routing”. As shown in Figure 2-7, the packet
from West to North will be sent after the current packet from East to North has been completed
sent.

Core

Core

Header

The 64B cache
line, divided into
four chunks (flits)

Tile Processor Architecture Overview for the TILE-Gx Series 19

Tilera Confidential — Subject to Change Without Notice

Switch Interface and Mesh

Figure 2-7. Packet Processing

2.2.3 Switch Micro Architecture
2.2.3.1 Arbitration

When multiple input ports require the same output port, the arbitration logic, shown as the Arbi-
ter in Figure 2-8, must determine which input port is granted use of the output port.

The TILE-Gx devices support two flavors of arbitration, round robin arbitration (RRA), and Net-
work Priority Arbitration (NPA).

Figure 2-8. Arbitration Mechanism

Core

Core

Core

South

North

East

To West

Arbiter

Chapter 2 Tile Architecture

20 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

2.2.3.2 Round Robin Arbitration
When multiple input ports want the same output port (see Figure 2-9), the following guidelines
are followed:

• Give each input port equal priority.

• Process all requests in a round robin fashion through the input ports, which need the required
output port.

• When nobody wants an output port, reset to a default value.

• Act locally fair, which treats requesting ports globally unfairly.

Figure 2-9. Round Robin Arbitration

2.2.3.3 Network Priority Arbitration
Give priority to packets already in the network (see Figure 2-10) as follows:

• Give Round Robin arbitration to network inputs.

• Only grant access to requests from the Core when no network inputs need the output port.

• Provide a configurable starvation counter for the core.

• Prevents cores on the edge from impacting high speed I/Os.

• Act locally fair, which treats requesting ports globally unfairly.

Core

South

North

East

To WestEqual Priority

Arbiter

Tile Processor Architecture Overview for the TILE-Gx Series 21

Tilera Confidential — Subject to Change Without Notice

Switch Interface and Mesh

Figure 2-10. Network Priority Arbitration

2.2.4 TILE-Gx Processor — Partitioning
The tile array within the chip can be partitioned to create virtualized computing “islands” with
any number of tiles ranging from 1 to 36. This partitioning is enabled with software at the Hyper-
visor level and is enforced via standard TLB based memory partitioning as well as Tilera’s
patented Hardwall™ protection. Refer to Figure 2-11 for an example of how a TILE-Gx processor
can be partitioned.

Figure 2-11. TILE-Gx Block Diagram — with Partitioning

Core

South

North

East

To West

Low Priority

Equal Priority

Arbiter

MiCA

Flexible
I/O

PCIe
Interfaces

Misc
I/O

1,
1

3,
2

4,
2

5,
2

Memory Memory

Network
I/O

Memory Memory

Partition
5

Partition
1

1,
1

1,
1

Partition
2

Partition 3

Partition 4

Partition
6

Chapter 2 Tile Architecture

22 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Other system approaches include utilizing the cores as a unified “sea of computing” power where
any tile can be called upon for application processing, often in a “run to completion” mode. The
nature of the Tile Architecture makes it straightforward to explore different parallel programming
models to select the best one for the system requirements.

Tile Processor Architecture Overview for the TILE-Gx Series 23

Tilera Confidential — Subject to Change Without Notice

CHAPTER 3 I/O DEVICE INTRODUCTION

3.1 Overview
The TILE-Gx™ family of processors contains numerous on-chip I/O devices to facilitate direct
connections to DDR3 memory, Ethernet, PCI Express, USB, I2C, and other standard interfaces.

This chapter provides a brief overview of the on-chip I/O devices. For additional information
about the I/O devices, refer to Tile Processor I/O Device Guide (UG404). For detailed system pro-
gramming information refer to the Special Purpose Registers (SPRs) and the associated device API
guides.

3.1.1 Tile-to-Device Communication
Tile processors communicate with I/O devices via loads and stores to MMIO (Memory Mapped
IO) space. The page table entries installed in a Tile’s Translation Lookaside Buffer (TLB) contain a
MEMORY_ATTRIBUTE field, which is set to MMIO for pages that are used for I/O device commu-
nication.

The X,Y fields in the page table entry indicate the location of the I/O device on the mesh and the
translated physical address is used by the I/O device to determine the service or register being
accessed.

Since each I/O TLB entry contains the X,Y coordinate of the I/O device being accessed, each
device effectively has its own 40-bit physical address space for MMIO communication that is not
shared with other devices or Tile physical memory space.

This physical memory space is divided into the fields shown in Figure 3-1 and defined in
Table 11.

Note: Not all I/O devices use this partitioning. For example MICA does not have Regions or
Service Domains. It uses a different type of division, which is described in Chapter 10 of the
Tile Processor I/O Device Guide (UG404).

Figure 3-1. TILE-Gx Device Address Space

031

Offset: 0...E

RESERVED

Region: 0...D

Reserved: 0...C

ED

Service Domain: 0...B

Channel: 0...A

BA

Chapter 3 I/O Device Introduction

24 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Each device has registers in Region-0 used to control and monitor the device. Devices can also
implement additional MMIO address spaces for device communication protocols, such as posting
DMA descriptors or returning buffers. System software is responsible for creating and maintain-
ing the page table mappings that provide access to device services.

3.1.2 Coherent Shared Memory
I/O devices that provide bulk data transport utilize the high-performance, shared memory sys-
tem implemented on TILE-Gx processors. All Tile memory system reads and writes initiated from
an I/O device are delivered to a home Tile as specified in the physical memory attributes for the
associated cacheline.

I/O TLBs and/or memory management units (MMUs) are used to translate user or external I/O
domain addresses into Tile physical addresses. This provides protection, isolation, and virtualiza-
tion via a standard virtual memory model.

3.1.3 Device Protection
In addition to the protection provided by the TLB for MMIO loads and stores, devices can provide
additional protection mechanisms via the service domain field of the physical address. This
allows, for example, portions of a large I/O physical address space to be fragmented, such that
services can be allowed/denied to particular user processes without requiring dedicated (smaller)
TLB mappings for each allowed service.

3.1.4 Interrupts
Devices interrupts are delivered to Tile software via the Tile Interprocess Interrupt (IPI) mecha-
nism. Each Tile has four IPI MPLs, each with 32 interrupt events. I/O interrupts have
programmable bindings in their MMIO register space, which specify the target Tile, interrupt
number (also referred to as the IPI Minimum Protection Level or IPI MPL), and event number.

System software can choose to share Tile interrupt event bits among multiple I/O devices or ded-
icate the interrupt bits to a single I/O interrupt. Interrupt bits can also be shared between I/O and
Tile-to-Tile interrupts.

I/O devices implement interrupt status and enable bits to allow interrupt sharing and coalescing.

Table 11. TILE-Gx Physical Memory Space Descriptions

Bits Bit Name Required Size Description

A Channel No Variable Used when more than one device shares the same mesh location.

B Service
Domain

No Variable Used to index “permissions” table and allow/deny access to specific
device services.

C Reserved No Variable Any “middle” bits of address that are not used.

D Region No Variable Selects service being accessed (for example register space vs.
DMA descriptor post).

E Offset Yes Variable Address within the “Region” being accessed.

Tile Processor Architecture Overview for the TILE-Gx Series 25

Tilera Confidential — Subject to Change Without Notice

Overview

3.1.5 Device Discovery
To facilitate a common device initialization framework, the TILE-Gx processors contain registers
and I/O structures that allow non-device-specific software to “discover” the connected I/O
devices for a given chip. After discovery, device-specific software drivers can be launched as
needed.

All TILE-Gx processors contain an Rshim. The Rshim contains chip-wide services including boot
controls, diagnostics, clock controls, reset controls, and global device information.

The Rshim’s RSH_FABRIC_DIM, RSH_FABRIC_CONN, and RSH_IPI_LOC registers provide
Tile-fabric sizing, I/O connectivity, and IPI information to allow software to enumerate the vari-
ous devices. The common registers located on each device contain the device identifier used to
launch device-specific driver software.

In order for Level-1 boot software to perform discovery, it must first find the Rshim. This is done
by reading the RSH_COORD SPR located in each Tile.

Thus the basic device discovery flow is:

1. Read the RSHIM_COORD SPR to determine the Rshim location on the mesh.

2. Install an MMIO TLB entry for the Rshim.

3. Read the RSH_FABRIC_CONN vectors from Rshim to determine I/O device locations.

4. Install MMIO TLB entries for each I/O device.

5. Read the RSH_DEV_INFO register from each device to determine what the device type is, and
launch any device-specific software.

3.1.6 Common Registers
While each device has unique performance and API requirements, a common device architecture
allows a modular software driver model and device initialization process. The first 256 bytes of
MMIO space contains the “common” registers that all I/O devices implement.1 The common reg-
isters are used for device discovery as well as basic physical memory initialization and MMIO
page sizing.

1 The “common registers” are located from 0x0000-0x0058.

Table 12. Common Registers

Register Address Description

DEV_INFO 0x0000 This provides general information about the device attached to this port and
channel.

DEV_CTL 0x0008 This provides general device control.

MMIO_INFO 0x0010 This provides information about how the physical address is interpreted by
the I/O device.

MEM_INFO 0x0018 This provides information about memory setup required for this device.

SCRATCHPAD 0x0020 This is for general software use and is not used by the I/O shim hardware
for any purpose.

SEMAPHORE0 and
SEMAPHORE1

0x0028 and
0x0030

This is for general software use and is not used by the I/O shim hardware
for any purpose.

../html/io_cfg/rsh.html#RSH_FABRIC_DIM
../html/io_cfg/rsh.html#RSH_FABRIC_CONN
../html/io_cfg/rsh.html#RSH_IPI_LOC
../html/io_cfg/rsh.html#RSH_FABRIC_CONN
../html/io_cfg/rsh.html#RSH_DEV_INFO

Chapter 3 I/O Device Introduction

26 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Each of the major register sets (for example: the GPIO, UART, and MICA Crypto registers) for a
specific device includes the common registers in the register set. The SCRATCHPAD register, for
example, is a common register included in each of the register sets. The register set name pre-
pends the register name as follows:

• GPIO Register: GPIO_SCRATCHPAD register

• UART Register: UART_SCRATCHPAD register

• MICA_CRYPTO Register: MICA_CRYPTO_SCRATCHPAD register

Registers beyond 0x100 contain the device specific registers.

Register definitions can be found as part of the MDE build and are located in the HTML directory.
The directory structure is as follows:

• Memory Controller

• GPIO

• Rshim

• I2C Slave

• I2C Master

• SROM

• UART

Compression

• MiCA Compression Global

• MiCA Compression Inflate Engine

• MiCA Compression Deflate Engine

• MiCA Compression User Context

• MiCA Compression System Context

Crypto

• MiCA Crypto Global

• MiCA Crypto Engine

• MiCA Crypto User Context

• MiCA Crypto System Context

MPIPE / MACs

• mPIPE

• XAUI (Interface/MAC)

CLOCK_COUNT 0x0038 This is for general software use and is not used by the I/O shim hardware
for any purpose.

HFH_INIT_CTL 0x0050 Initialization control for the hash-for-home tables.

HFH_INIT_DAT 0x0058 Read/Write data for hash-for-home tables.

Table 12. Common Registers (Cont’d)

Register Address Description

Tile Processor Architecture Overview for the TILE-Gx Series 27

Tilera Confidential — Subject to Change Without Notice

Overview

• GbE (Interface/MAC)

• Interlaken (Interface/MAC)

• mPIPE SERDES Control

TRIO / PCIe

• TRIO

• PCIe Interface (SERDES control, endpoint vs. root etc.)

• PCIe Endpoint

• PCIe Root Complex

• PCIe SERDES Control

USB

• USB Host

• USB Endpoint

• USB Host MAC

• USB Endpoint MAC

Chapter 3 I/O Device Introduction

28 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Tile Processor Architecture Overview for the TILE-Gx Series 29

Tilera Confidential — Subject to Change Without Notice

CHAPTER 4 DDR3 MEMORY CONTROLLERS

The TILE-Gx™ processor has two identical independent memory channels with on-chip memory
controllers. Each controller supports the following features:

• Up to 800 MHz memory clock and 1600 MT/s data rate

• 64 bits of data plus optional 8 bits of ECC

• Supports x4, x8, and x16 devices

• Supports up to 16 ranks

• ECC supports (single bit correction, double bit detection)

• Fully programmable DRAM parameters

4.1 Memory Striping
The memory controller striping domain is introduced so that memory workloads are balanced
between the memory controllers within the same striping domain. Memory striping can be
enabled or disabled.

The load balancing decision is determined by a hash function, based on the values of various
address bits. The hash function is configurable to control striping granularity, for example, a
stripe can be placed every 512 bytes or every 8192 bytes, and so on.

4.2 Rank/Bank Hashing
Memory requests from different tiles can access different pages of the same DRAM bank for a
short period of time. To spread requests across rank/banks, memory controller applies one hash-
ing function. The hashing function is configurable and can be disabled.

4.3 Memory Request Scheduling
To optimize for memory bandwidth and latency, the memory controller uses a 32-entry CAM. The
controller looks at all memory requests in the CAM for scheduling. The controller is located
between the tiles and the external DRAMs. The controller reorders memory requests, if necessary.
On one side, the controller tries to avoid memory request starvation from many tiles. On the other
side, the controller tries to reduce the DRAM access overhead (for example from precharge, acti-
vation, turnaround, and so on).

4.4 Page Management Policy
DRAM page management policy is a selectable, closed page policy or open page policy. If the
closed page option is selected, the controller uses the DRAM auto-precharge feature so that the
DRAM page will close after each read or write access. The closed page policy consumes more
DRAM power as the result of the activation and precharge commands.

Chapter 4 DDR3 Memory Controllers

30 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

If the open page is selected, the controller, in general, leaves the DRAM page open after each read
or write memory access, especially when memory requests with spatial and temporal locality are
made. The open page policy is adaptive; it optimizes for memory requests with random address-
ing. When the memory controller detects DRAM page conflicts, it closes the page ahead of time
(for example a precharge command from an available command cycle, or an auto-precharge com-
mand is invoked).

4.5 Priority Control
With many tiles, many memory requests can be in-flight at times. Some memory requests are
latency sensitive, while some are less critical. A high priority can be assigned to latency-sensitive
requests.

The memory controller implements a priority control list in order to control latency conflicts. The
priority control list is configurable by system software. Each memory controller has its own prior-
ity control list.

Memory controller filters the priority control list and determines the priority level for each mem-
ory requests at the run time, for example, read requests from this tile, write requests from that I/O
device, instruction reads, and so on.

4.6 Starvation Control
While priority control reduces memory latency on mission critical requests, starvation avoidance
helps to constrain an upper bound on latency insensitive requests. If a memory request is pending
in a scheduler queue for a long time, then this queue is considered to be “starved”, and a higher
priority will be assigned to this queue.

4.7 Performance Counters
To support performance tuning, performance counters are provided for statistics of various
events, for example, memory request latency, from request to response within the memory con-
troller, can be measured by a performance counter.

Tile Processor Architecture Overview for the TILE-Gx Series 31

Tilera Confidential — Subject to Change Without Notice

CHAPTER 5 HARDWARE ACCELERATORS

5.1 Overview
This section provides an overview of the TILE-Gx™ Multicore iMesh Coprocessing Accelerator
(MiCA™).

MiCA provides a common front-end application interface to off-load or acceleration functions,
and performs operations on data in memory. The exact set of operations that it performs is depen-
dent on the specific MiCA implementation. For instance, the TILE-Gx contains two
implementations of MiCA architecture, one for cryptographic operations and the other for com-
pression/decompression operations. The architecture is extensible for other types of functions in
future generation products.

The MiCA uses a memory-mapped I/O (MMIO) interface to the array of tiles. Because it uses the
MMIO interface, access to the MiCA control registers can be controlled through the use of in-tile
TLBs. The memory mapped interface enables tiles to instruct the MiCA to perform operations
from user processes in a protected manner. Memory accesses performed by the MiCA are vali-
dated and translated by an I/O TLB, which is located in the MiCA. This allows completely
protected access for operations that user code instructs the MiCA to execute. Since the MiCA sys-
tem supports virtualized access, each tile is afforded a private view into the accelerator and
dozens of operations may be in flight at a given time.

The MiCA connects to TILE-Gx’s memory networks and processes requests, which come in via its
memory mapped I/O interface. A request consists of pointers to data in memory (a Source Data
Descriptor, a Destination Data Descriptor, and an optional Pointer to Extra Data (ED)), a Source
Data Length, and an Operation to perform. Many requests can be in flight at one time as the MiCA
supports a large number of independent Contexts, each containing their own state. An operation
is initiated by writing the request parameters to a Context’s User registers.

As the operation progresses, the MiCA verifies that the memory that is accessed by the operation
can be accessed legally. If the operation instructs the MiCA to access data that is not currently
mapped by the Context’s I/O TLB, a TLB Miss interrupt is sent to the Context’s bound tile. It is
the responsibility of the tile TLB miss handler to fill the I/O TLB. It is also possible for the tile to
pre-load the I/O TLB before initiating the request, such that no TLB Misses will occur. At the
completion of the operation the MiCA sends a completion interrupt to the Context’s bound tile.

Because the MiCA is multi-contexted, multiple operations can be serviced at the same time. Each
MiCA implementation has processing engines (for example, crypto, compression, etc.) and a
scheduler, which assigns requesting Context’s to those engines. All Contexts are independent
from each other. Under typical operation, a Context is allocated to a particular tile and that tile
then instructs operations of the Context.

A Context is not multi-threaded. If a tile needs overlapped access to a MiCA accessible accelera-
tor, multiple Contexts can be utilized by a single tile.

The MiCA Block Diagram (Figure 5-1) shows a high level view of the MiCA architecture. Descrip-
tions of each of the sub-blocks are provided in the following section.

Chapter 5 Hardware Accelerators

32 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Figure 5-1. MiCA Block Diagram

5.1.1 Mesh Interface
The MiCA interfaces to the Tiles via the mesh interface. These interfaces allow tile software to
access MiCA internal registers, and MiCA to access memory.

Tile access and control of the operation of the MiCA is provided via a set of memory mapped reg-
isters. Tiles access the registers via MMIO writes and reads to setup operations and check status.

5.1.2 TLB (Translation Lookaside Buffer)
The TLB is used to store VA-to-PA (Virtual Address-to-Physical Address) translations. It is parti-
tioned per Context. Tiles write to and read from the TLB and can initiate probes to it. The MiCA
performs lookups in TLB to translate source, destination, and extra data.

Mesh Interface

PA to Route
Header

Generation

Egress DMA
(From

Memory
to MiCA)

QDN
MMIO Requests

RDN
Memory Read Data

and Write Acks

RDN
MMIO Read Data

and Write Acks/
IPI Interrupts

SDN
Memory Read and

Write Requests

Read Requests

Read Data

Notification

Write Requests

Write Data

Notification

Engine Front End

Engine
Scheduler

Function-Specific Engines
(For example Crypto or Compression)

TLB
Context Registers

Global Registers

MMIO Registers and Context State

R
ea

d
or

 W
rit

e
R

eq
ue

st
s

W
rit

e
D

at
a

R
ea

d
D

at
a

O
pe

ra
tio

n
R

eq
ue

st
s

C
on

te
xt

A
ss

ig
nm

en
ts

E
ng

in
e

S
ta

tu
s

E
ng

in
e

A
ss

ig
nm

en
ts

Context
Specific

State

VA
s

PA
s

To/From
Tiles

Ingress DMA
(From MiCA
to Memory)

Network
Interfaces

Tile Processor Architecture Overview for the TILE-Gx Series 33

Tilera Confidential — Subject to Change Without Notice

Overview

5.1.3 Engine Scheduler
Scheduling consists of assigning Contexts that have operations to perform to hardware resources
to perform them (for example, the Function-Specific Engines that do encryption or compression).
This function is necessary because there are many more Contexts than Engines. Once an Engine is
scheduled to a Context, it completes the operation, that is, without being time-shared within an
operation.

5.1.4 Function-Specific Engines
Each MiCA contains multiple Processing Engines, each one is capable of performing a given oper-
ation — for example, for compression, decompression, etc. The exact list and number of instances
of each type is specific to each MiCA implementation, and typically is much lower than the num-
ber of Contexts.

5.1.5 DMA Channels
The DMA channels move data between memory and the Function Specific Engines. Egress DMA
is for reading data from memory (packet data and related operating parameters), and Ingress
DMA is for writing packet data to memory (note that this convention is the same as for the
mPIPE, where Ingress packets travel from external interface into memory, and Egress packets
travel from memory to the external interface).

Each Engine has dedicated DMA Egress and Ingress channels assigned to it, so that no Engine is
blocked by any other.

5.1.6 PA-to-Header Generation
This block takes the physical address and page attributes from a DMA channel and converts them
into a route header to pass to the mesh interface.

5.1.7 Operation
Each MiCA operation reads Source Data from memory, operates on it, and then writes out results
to memory as Destination Data. Source data can be specified as either a section of virtual memory,
or as a chained buffer as created by mPIPE. Destination data can be specified as either a section of
virtual memory, a mPIPE Buffer Descriptor, or a list of mPIPE Buffer Descriptors. The operations
can also optionally read and/or write Extra Data that will be needed by an operation. Some oper-
ations done in MiCA might not need any Extra Data. For example, encryption keys are specified
in Extra Data; a memory-to-memory copy does not use any Extra Data. When used, the Extra Data
is specified by its Virtual Address.

The flow of an operation through MiCA is:

1. Tile software or hardware puts source data in memory. For example, the data could be a
packet received by the mPIPE.

2. Tile software allocates memory for destination data.

3. Tile software puts extra data, if needed, in memory.

4. Tile software writes parameters describing the operation into its allocated Context Registers.

5. The Context requests use of an Engine from the Scheduler.

6. When an Engine is available, the Scheduler assigns a waiting Context to it.

7. The Engine front end reads operation parameters from the Context’s registers.

8. The Engine front end accesses data from memory and sends it to the Engine.

Chapter 5 Hardware Accelerators

34 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

9. Source data is processed by the Engine (for example, encrypted/decrypted, com-
pressed/decompressed, etc), and output is passed to Engine front end and then written to
Destination.

Note: Engine front end performs TLB lookups to translate VAs, as needed. TLB misses
generates an IPI interrupt to the Tile (if not masked).

10. When all Destination data has been written to memory, MiCA interrupts the tile. The inter-
rupt also acts as a memory fence; it is not sent until the destination data is visible in memory.

5.1.8 Crypto Accelerators
The MiCA crypto accelerator supports a rich suite of cryptographic algorithms to enable many
security protocols, including:

• MACsec (802.1AE)

• IPsec

• SRTP

• SSL/TLS

• Wireless GSM and 3GPP

The MiCA engine supports a range of modes from simple encryption/decryption to complex
“packet processing” sequences that offload many of the security protocol steps. However, bulk
encryption or proprietary security protocols are also easily supported since the encapsulation and
header/trailer processing can be completely handled in tile software.

For key generation, a true entropy-based Random Number Generator (RNG) is incorporated
on-chip and it includes a FIPS-140-2 certified whitening function.

The TILE-Gx8036 MiCA system delivers up to 30Gbps of AES encryption performance (128-bit
key, CBC or GCM mode).

The symmetric encryption algorithms supported are:

Table 13. Supported Symmetric Encryption Algorithms

Encryption Type Key Size Modes

AES 128, 192, 256-bits CBC, GCM, CTR, ECB

3DES 56, 168-bits CBC, ECB

ARC4 40 - 256-bits Stream cipher

KASUMI 128-bits Stream cipher

SNOW 3G 128-bits Stream cipher

Tile Processor Architecture Overview for the TILE-Gx Series 35

Tilera Confidential — Subject to Change Without Notice

Overview

The cryptographic hashing algorithms supported are:

The public key algorithms supported include:

5.1.9 Compression Accelerators
Lossless data compression is accelerated through a high-performance “Deflate” com-
press/decompress engine. Like the MiCA engine, the compression system DMAs data from and
to coherent tile memory with no Tile Processor overhead.

The compression acceleration capability is intended to assist with protocols such as:

• IPcomp

• SSL/TLS compression

• gzip

The implementation is fully GZIP compliant with support for dynamic Huffman tables and a
32KB history depth.

The TILE-Gx36 compression system delivers up to 10Gbps of deflate compression performance
plus up to 10Gbps of decompression. As there are separate compress and decompress engines,
both compress and decompress operations may run simultaneously.

5.1.10 MemCopy DMA Engine
Each of the MiCA engines also incorporates a high-performance DMA capability that can be use-
ful to accelerate memory copy operations for example. It is useful to think of this as a “Null
Crypto” or “Null Compress” operation, as the API is virtually identical.

Table 14. Supported Hashing Encryption Algorithms

Algorithm Modes

MD5 Straight hash, HMAC

SHA-1 Straight hash, HMAC

SHA-256 (SHA-2) Straight hash, HMAX

Table 15. Supported Public key Algorithms

Algorithm Key Sizes

RSA (w/ without CRT) Up to 4096-bit

DSA Up to 2048-bit

Elliptic Curve Up to 1024-bit

ECDSA Up to 1024-bit

Diffie-Hellman Up to 2048-bit

Chapter 5 Hardware Accelerators

36 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Tile Processor Architecture Overview for the TILE-Gx Series 37

Tilera Confidential — Subject to Change Without Notice

CHAPTER 6 PCIE/TRIO

6.1 PCIe Interfaces
The TILE-Gx8036 incorporates three Gen2 (PCIe 2.0) PCI Express (PCIe) interfaces on-chip. Each
of these can be operated in either “Root Complex” or “Endpoint” modes, allowing the
TILE-Gx36™ either to be the PCIe master or to appear as an add-in device to a host system.

One of the PCIe interfaces provides 8-lanes and negotiates back to x4, x2 or x1. The raw through-
put of this interface in x8 mode is 32 Gbps after the 8b/10b encoding.

The other two PCIe interfaces are configured as 4-lanes and can negotiate back to x2 or x1. They
each deliver up to 16 Gbps of raw throughput.

Note that a total of 12-lanes of PCIe SerDes are provided, allowing three ports configured x4 or
one port x8 plus one port x4.

Chapter 6 PCIe/TRIO

38 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Tile Processor Architecture Overview for the TILE-Gx Series 39

Tilera Confidential — Subject to Change Without Notice

CHAPTER 7 XAUI/MPIPE

7.1 mPIPE Subsystem
Packet streams from any of the Ethernet ports or optionally from the PCIe ports are fed into the
mPIPE™ subsystem for Packet Classification, Load Balancing, and Buffer Management and Dis-
tribution. This block is designed to parse packet headers, perform programmable de-capsulation,
filtering, and hashing on selected fields for the purpose of load-balancing flows across “worker
tiles”. A flexible hardware packet distribution engine works together with a hardware buffer
manager to deliver packet streams coherently into the virtual memory system of the chip for
access by the designated Tile(s). Packets can be delivered directly to Tile cache or into DDR3
memory as appropriate.

The packet classification engine is C-programmable and can be tailored for a wide ranging field of
protocol types and filtering/hashing rules. The packet processing subsystem is designed to han-
dle “wire-speed” packet traffic from the smallest packets (64-bytes) to large Jumbo frames
(10Kbytes) at 40Gbps full duplex. For small packets, this means 60 million packets-per-second
ingress and 60 million packets-per-second egress.

The packet I/O system supports IEEE 1588 v2 time synchronization protocol. In addition, packets
are time-stamped upon arrival with a 64-bit nanosecond-level timer.

IEEE 802.1Qbb priority flow-control is supported.

Chapter 7 XAUI/mPIPE

40 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Tile Processor Architecture Overview for the TILE-Gx Series 41

Tilera Confidential — Subject to Change Without Notice

CHAPTER 8 OTHER I/OS (USB, ETC.)

8.1 USB Subsystem
The TILE-Gx™ Universal Serial Bus (USB) 2.0-compliant system includes two host controllers and
one device endpoint controller. Two sets of the UTMI+ Low Pin Interface (ULPI) interface connect
the system to the external PHYs. One set of the ULPI interfaces is either used by the host control-
ler or the device endpoint controller, and the other ULPI interface is dedicated to the second host
controller.

One host controller system consists of one Enhanced Host Controller Interface (EHCI) core and
one Open Host Controller Interface (OHCI) core. It accesses the memory system via the iMesh™
network with 64-bit addressing capability. The addresses are translated to physical addresses
using a Translation Lookaside Buffer (TLB) that supports all the standard TILE-Gx I/O-TLB
attributes.

The device endpoint controller supports one configuration and up to four interfaces. In addition
to the default endpoint 0, seven extra sets of endpoint functions are provided. Data transfers
between the main memory and the endpoints are controlled by the Tile processors using the mem-
ory-mapped I/O (MMIO) interface. The device endpoint controller can also be used in the boot
and debug the TILE-Gx under the special mode operation.

8.2 Flexible I/O System
The TILE-Gx flexible I/O system consists of 64 data pins that are capable of configuring and for-
matting data to implement low-speed status and control bits, or implementing moderate speed
asynchronous interface protocols such as HPI, ATA, etc. Each I/O pin can be individually config-
ured to be an input, output, or bidirectional pin with a number of drive and input options.

The system supports simultaneous use by multiple processes with full protection and virtualiza-
tion support. The virtualization support allows direct access to the interface by application-level
programs with full process isolation and protection. MMIO transfers are used to configure the
interface and to supply and receive data from the I/O pins. An interrupt capability is supplied to
allow interrupts to be generated on any transition of a pin.

8.3 UART System
The TILE-Gx UART system communicates the processors with the external device via the two
UART serial bits. The system can operate in two modes: interrupt mode and protocol mode.

In the interrupt mode, the UART controller provides a typical transmit/receive interface between
an external device and on-chip processors. Data written to the write FIFO by a processor is trans-
ferred to an internal transmit FIFO and then transmitted out the serial transmit output. Data
received on the serial receive input is transferred to the receive FIFO, which the processor can
then read.

Chapter 8 Other I/Os (USB, etc.)

42 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

In the protocol mode, the UART controller provides an external devices with the ability to read or
write any register in any TILE-Gx RSHIM devices. Bytes received via the serial receive input are
interpreted as register reads or write commands. Read responses are transmitted via the serial
transmit output.

8.4 I2C Systems
The I2C Master Interface provides an interface for processors to write and read an external I2C
devices. It is capable of reading from an external EEPROM at boot and writing to any Rshim
device registers.

The I2C Slave interface is the interface to an external initiator (master). The interface supports
Standard-mode, Fast-mode, and Fast-mode plus. The I2C slave controller also supports clock
stretching.

8.5 SPI System
The SPI SROM system provides an interface for processors to write and read an off-chip SPI
SROM. It also includes a hardware state machine that can read from the SPI SROM at boot time
and then write any Rshim device registers.

Tile Processor Architecture Overview for the TILE-Gx Series 43

Tilera Confidential — Subject to Change Without Notice

CHAPTER 9 DEBUG

Debugging of applications software typically uses industry-standard methods, such as the GNU
debugger (GDB).

In addition each Tile provides hardware diagnostics, and performance monitoring capabilities:

• Tile Timer

A 31-bit down counter with an interrupt is provided in the Tile. The interrupt interval is pro-
grammable and can be used for operating system level “tick” functionality or for any other
timing task.

• Cycle Counter

The Tile provides a 64-bit free running cycle counter; the counter initializes to 0 but can be
changed by privileged software. It can also be read by software at any privilege level.

• Events

The performance monitoring and system debug capabilities of the Tile architecture rely on
implementation-defined events. The specific set of events available to software varies depend-
ing on implementation, but examples include cache-miss, instruction bundle retired, network
word sent and so on. Events are used to increment performance counters or interact with sys-
tem debug/diagnostics functionality.

• Counters

The Tile architecture provides four 32-bit performance counters. The counters can be assigned
to any one of the implementation specific events. On overflow, the counter triggers an
interrupt.

• Watch Registers

The Tile architecture provides programmable watch registers to track matches to implementa-
tion specific multi-bit fields. For example, match on a specific fetch PC, or a specific memory
reference Virtual Address.

• Tile Debug Port

This feature aids with system software debugging, TILE-Gx™ provides access to essential
processor state data such as fetch-PC, registers, SPRs, and caches.

Chapter 9 Debug

44 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Tile Processor Architecture Overview for the TILE-Gx Series 45

Tilera Confidential — Subject to Change Without Notice

CHAPTER 10 BOOT

Booting the TILE-Gx™ device is fundamentally a three-step process.

The level-0 boot code is built into a ROM in each Tile, and consists of a small program that
receives the level-1 boot code from an external device such as a serial ROM, I2C master (the
TILE-Gx™ is the slave), flash memory, USB, or PCIe host.

The level-1 boot performs primary device initialization functions including memory controller
configuration, physical address space mapping, and local I/O device discovery.

Once level-1 boot is complete, the level-2 boot (remaining Hypervisor, OS, application) can be
performed over any of TILE-Gx interfaces including PCIe, Ethernet, UART, I2C, or Flexible I/O.
The level-1 boot code must initialize the level-2 boot interface to enable the level-2 boot process.

Chapter 10 Boot

46 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Tile Processor Architecture Overview for the TILE-Gx Series 47

Tilera Confidential — Subject to Change Without Notice

G GLOSSARY

Term Definition

BARs Base address registers.

BIST Built in Self Test.

CAM Content Addressable Memory.

CPLD Complex PLD. A programmable logic device (PLD) that is made up of
several simple PLDs (SPLDs) with a programmable switching matrix in
between the logic blocks. CPLDs typically use EEPROM, flash memory
or SRAM to hold the logic design interconnections.

DDC™ Dynamic Distributed Cache. A system for accelerating multicore coher-
ent cache subsystem performance. Based on the concept of a distrib-
uted L3 cache, a portion of which exists on each tile and is accessible to
other tiles through the iMesh. A TLB directory structure exists on each
tile - eliminating bottlenecks of centralized coherency management -
mapping the locations of pages among the other tiles.

ECC Error-Correcting Code. A type of memory that corrects errors on the fly.

fabric chaining The ability to cascade multiple Tilera chips together seamlessly in order
to provide more processing power, memory, and I/O for an application.
The architecture is designed to allow fabric chaining to be done trans-
parently to the application such that major software rewrites are unnec-
essary.

hardwall technology A microcode feature that can partition a Tile Processor into multiple vir-
tual machines, allowing different instances of Linux and their applica-
tions to run on the chip and be isolated from each other.

host port interfaces (HPIs) A 16-bit-wide parallel port through which a host processor can directly
access the CPU’s memory space. The host device functions as a mas-
ter to the interface, which increases ease of access. The host and CPU
can exchange information via internal or external memory. The host
also has direct access to memory-mapped peripherals. Connectivity to
the CPU's memory space is provided through the DMA controller.

Hypervisor services Provided to support two basic operations: install a new page table (per-
formed on context switch), and flush the TLB (performed after invalidat-
ing or changing a page table entry). On a page fault, the client receives
an interrupt, and is responsible for taking appropriate action (such as
making the necessary data available via appropriate changes to the
page table, or terminating a user program which has used an invalid
address).

Glossary

48 Tile Processor Architecture Overview for the TILE-Gx Series

Tilera Confidential — Subject to Change Without Notice

Interpacket Gap (IPG) Ethernet devices must allow a minimum idle period between transmis-
sion of Ethernet frames known as the interframe gap (IFG) or inter-
packet gap (IPG). It provides a brief recovery time between frames to
allow devices to prepare for reception of the next frame.

MDIO Management interface I/O bidirectional pin. The management interface
controls the behavior of the PHY.

MiCA™ Multistream iMesh Crypto Accelerator engines. The MiCA engines
include a robust set of encryption, hashing, and public key operations.

MMIO Memory-Mapped I/O.

Multicore Development
Environment™ (MDE)

Multicore software programming environment.

promiscuous mode In computing, refers to a configuration of a network card wherein a set-
ting is enabled so that the card passes all traffic it receives to the CPU
rather than just packets addressed to it, a feature normally used for
packet sniffing. Many operating systems require superuser privileges to
enable promiscuous mode. A non-routing node in promiscuous mode
can generally only monitor traffic to and from other nodes within the
same collision domain (for Ethernet and Wireless LAN) or ring (for
Token ring or FDDI).

RGMII Reduced Gigabit Media Independent Interface.

SPI ROM Serial Flash with serial peripheral interface.

TRIO interface Transaction IO. The TRIO interface provides DMA and other data move-
ment services for “read/write” protocols such as PCIe, SRIO, and
streaming IO.

UART (Universal Asynchronous Receiver Transmitter). The electronic circuit
that makes up the serial port. Also known as “universal serial asynchro-
nous receiver transmitter” (USART), it converts parallel bytes from the
CPU into serial bits for transmission, and vice versa. It generates and
strips the start and stop bits appended to each character.

VLIW architecture VLIW (Very Long Instruction Word). A microprocessor design technol-
ogy. A chip with VLIW technology is capable of executing many opera-
tions within one clock cycle. Essentially, a compiler reduces program
instructions into basic operations that the processor can perform simul-
taneously. The operations are put into a very long instruction word that
the processor then takes apart and passes the operations off to the
appropriate devices.

Term Definition

Tile Processor Architecture Overview for the TILE-Gx Series 49

I INDEX

A
AES encryption performance 34
algorithms

cryptographic hashing 35
public key 35
symmetric encryption 34

ALU
destination 5
operations 6

ATA 41
atomic

memory operations 10
operations 9

B
Ball Grid Array

 See BGA
BAR 47
base address registers

 See BAR
BGA 1
BIST 47
bit field insert/extract 4
block diagram

cache subsystem 10
branch predict 5

stage 6
bulk encryption 34
byte shuffle 4

C
C intrinsics 4
cache

operation 12
cache-coherent approach to shared memory 12
CAM 47
clock rate 1
closed page policy 29
cmpexch 10
CmpXchg 9
common

registers 25
complex

multiply 3
PLD 47

compression accelerators 35

conditional
branches 6
result support 4

context’s user registers 31
CPL 15
CPLD 47
crypto accelerators 34
cryptographic hashing algorithms, listed 35

D
DDC 12, 47
DDR3 memory

packet processing 39
decode 5

pipeline stage 5
stage 6

detail of a Tile within the Tile Processor 3
device specific registers 26
DMA channels 33
DRAM auto-precharge feature 29
DSP

and SIMD instructions 3
applications 11

DTLB 13
hazard 5

Dynamic Distributed Cache 47
Dynamic Distributed Caching

 See DDC

E
ED 31
encapsulation 34
Endpoint mode 37
engine scheduler 33
engines

function-specific 33
Enhanced Host Controller Interface (EHCI) 41
exceptions 13
exch 10
execute0 6
execute1 6

pipeline stage 6
execution units/pipelines 8
extra data

 See ED

Index

50 Tile Processor Architecture Overview for the TILE-Gx Series

F
fabric chaining 47
FABRIC_CONN register 25
fetch 4
fetchadd 9, 10
fetchaddgez 9, 10
fetchand 9, 10
fetchor 9, 10
flexible I/O system 41
flits 18
front end 7
function-specific engines 33

G
GCM mode 34
gzip 35

H
hardwall technology

defined 47
hardware buffer manager 39
hashing function 29
header 18
home tile 12
host port interfaces

 See HPIs
how to set protection levels 16
HPI 41, 47

defined 47
Huffman tables 35
Hypervisor services 47

I
I/O connectivity 25
I2C slave interface 42
icoh 5

instruction 9
IFG 48
iMesh 16

interconnect 16
independent contexts 31
instruction

execution
preventing illegal instructions 14

memory 9
set

overview 3
instruction set architecture

 See ISA
instructions

DSP and SIMD 3
interframe gap

 See IFG
interpacket gap

 See IPG

Interprocess Interrupt
 See IPI

interrupt
number

 See also IPI MPL 24
interrupt mode 41
interrupts 13
INTERRUPT_VECTOR_BASE SPR 14
IPcomp 35
IPG 48
IPI 24

information 25
IPI MPL 24
IPsec 34
iret 14
ISA 3, 14
I-stream prefetch operation 8
ITLB 13

K
key generation 34

L
L2 cache subsystem 3
laned

compare 3
multiply 3

large Jumbo frames 39
load

balancing 39
destination 5

M
MACsec 34
MDE 48
MDIO 48
MemCopy DMA engine 35
memory

controller striping domain 29
fence 5
fence instruction 9

 See mf
management units (MMUs) 24
mapped I/O

 See MMIO
ordering 9
request latency 30
system 1

MEMORY_ATTRIBUTE 23
mesh interface 32
mf 10
mfspr 14
MiCA 31, 48

block diagram 32
operation flow through 33

Tile Processor Architecture Overview for the TILE-Gx Series 51

Index

minimum protection level
 See MPL

MMIO 9, 23, 31, 41, 48
transfers 41

MMUs 24
mPIPE subsystem 39
MPL 13, 15
MPL_BOOT_ACCESS 16
MPL_ITLB_MISS 16
mtspr 14
Multicore iMesh Coprocessing Accelerator

 See MiCA

N
nap instruction 4, 5
network mapped GPR 5
Network Priority Arbitration (NPA) 19
Null Compress operation 35
Null Crypto operation 35

O
on-chip mesh interconnects 3
Open Host Controller Interface (OHCI) 41
open page 30

policy 29
operation flow through MiCA 33
operations

Null Compress 35
Null Crypto 35

P
packet

classification 39
headers

parsing 39
processing subsystem 39

page tables 9
PA-to-header generation 33
PC 4, 14
PCB designs 1
PCIe

master 37
ports 39

performance
counters 30
tuning 30

physical addresses 9
pipeline latencies 6
population count 4
preventing illegal instruction execution 14
priority control list 30
privileged SPR 8
processing engines 31
processor core 3

program counter
 See PC

promiscuous mode
defined 48

protected_resource 16
protection

architecture 14
levels 15

how to set 16
mechanisms 14

protocol mode 41
public key algorithms, listed 35

R
Random Number Generator

 See RNG
RAS 5, 8
register file 6
registers 3
return address stack

 See RAS
RGMII 48
RNG 34
RoHS-6 compliant 1
root complex mode 37
round robin arbitration (RRA) 19
RSH_COORD SPR 25
RSH_DEV_INFO 25
RSH_FABRIC_CONN register 25
Rshim device registers 42
RSHIM_COORD SPR 25
RSH_IPI_LOC register 25
run-to-completion process 1

S
SAD 4
saturating arithmetic 3
SBOX_CONFIG SPR 8
security protocols

IPsec 34
MACsec 34
SRTP 34
SSL//TLS 34
wireless GSM and 3GPP 34

self-modifying code 9
SMP 1

Linux 1
software interrupt instruction

 See swint
source operand 6
Source Operand RAW 5
Special Purpose Registers

 See SPRs
SPI ROM 48
SPI SROM 42

Index

52 Tile Processor Architecture Overview for the TILE-Gx Series

SPRs 4, 13
SRTP 34
SSL/TLS 34

compression 35
standard Linux 1
sum of absolute differences

 See SAD
swint 13
switch interface 3
symmetric encryption algorithms, listed 34
Symmetric Multi-Processing

 See SMP
synchronization protocol 39

T
tile

block diagram showing cache subsystem 10
cache 10
cache attributes 7, 10, 12
processor

cross-section 3
tile-fabric sizing 25
TILE-Gx switch interfaces

illustrated 17
TILE-Gx8036 1
TLB 15, 23, 32, 41

lookups 34
Translation Lookaside Buffer

 See TLB
TRIO interface

defined 48

U
UART 41

defined 48
ULPI 41
Universal Serial Bus

 See USB
USB 41
UTMI+ Low Pin Interface

 See ULPI

V
VA-to-PA translations 32
Very Long Instruction Word

 See VLIW
virtual

addresses 9
VLIW 3

architecture
defined 48

W
wireless GSM and 3GPP 34
write back 6

pipeline stage 6
stage 6

X
Xchg 9

	Tile Processor Architecture Overview for the TILE-Gx Series
	Contents
	Chapter 1 Tile-Gx Processor Overview
	1.1 TILE-Gx Processor

	Chapter 2 Tile Architecture
	2.1 Processor Core
	2.1.1 Instruction Set Architecture Overview
	2.1.2 Processing Pipeline
	2.1.3 Front End
	2.1.3.1 Instruction Cache
	2.1.3.2 Instruction TLB
	2.1.3.3 Instruction Prefetch
	2.1.3.4 Branch Prediction

	2.1.4 Execution Units/Pipelines
	2.1.5 Cache and Memory Architecture
	2.1.5.1 Tile Caches
	2.1.5.2 L1 DCache
	2.1.5.3 L2 Cache Subsystem

	2.1.6 Special Purpose Registers (SPRs)
	2.1.7 Interrupts and Exceptions
	2.1.8 Protection Architecture
	2.1.8.1 Levels of Protection
	2.1.8.2 Protected Resources

	2.2 Switch Interface and Mesh
	2.2.1 The iMesh
	2.2.2 Switch Interface
	2.2.3 Switch Micro Architecture
	2.2.3.1 Arbitration
	2.2.3.2 Round Robin Arbitration
	2.2.3.3 Network Priority Arbitration

	2.2.4 TILE-Gx Processor — Partitioning

	Chapter 3 I/O Device Introduction
	3.1 Overview
	3.1.1 Tile-to-Device Communication
	3.1.2 Coherent Shared Memory
	3.1.3 Device Protection
	3.1.4 Interrupts
	3.1.5 Device Discovery
	3.1.6 Common Registers

	Chapter 4 DDR3 Memory Controllers
	4.1 Memory Striping
	4.2 Rank/Bank Hashing
	4.3 Memory Request Scheduling
	4.4 Page Management Policy
	4.5 Priority Control
	4.6 Starvation Control
	4.7 Performance Counters

	Chapter 5 Hardware Accelerators
	5.1 Overview
	5.1.1 Mesh Interface
	5.1.2 TLB (Translation Lookaside Buffer)
	5.1.3 Engine Scheduler
	5.1.4 Function-Specific Engines
	5.1.5 DMA Channels
	5.1.6 PA-to-Header Generation
	5.1.7 Operation
	5.1.8 Crypto Accelerators
	5.1.9 Compression Accelerators
	5.1.10 MemCopy DMA Engine

	Chapter 6 PCIe/TRIO
	6.1 PCIe Interfaces

	Chapter 7 XAUI/mPIPE
	7.1 mPIPE Subsystem

	Chapter 8 Other I/Os (USB, etc.)
	8.1 USB Subsystem
	8.2 Flexible I/O System
	8.3 UART System
	8.4 I2C Systems
	8.5 SPI System

	Chapter 9 Debug
	Chapter 10 Boot
	G Glossary
	I Index

