
Instructor’s Manual
by Thomas H. Cormen

to Accompany

Introduction to Algorithms
Third Edition
by Thomas H. Cormen

Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

The MIT Press
Cambridge, Massachusetts London, England

Instructor’s Manual to AccompanyIntroduction to Algorithms, Third Edition
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,and Clifford Stein

Published by the MIT Press. Copyrightc 2009 by The Massachusetts Institute of Technology. All rights
reserved.

No part of this publication may be reproduced or distributedin any form or by any means, or stored in a database
or retrieval system, without the prior written consent of The MIT Press, including, but not limited to, network or
other electronic storage or transmission, or broadcast fordistance learning.

Contents

Revision History R-1

Preface P-1

Chapter 2: Getting Started
Lecture Notes 2-1
Solutions 2-17

Chapter 3: Growth of Functions
Lecture Notes 3-1
Solutions 3-7

Chapter 4: Divide-and-Conquer
Lecture Notes 4-1
Solutions 4-17

Chapter 5: Probabilistic Analysis and Randomized Algorithms
Lecture Notes 5-1
Solutions 5-9

Chapter 6: Heapsort
Lecture Notes 6-1
Solutions 6-10

Chapter 7: Quicksort
Lecture Notes 7-1
Solutions 7-9

Chapter 8: Sorting in Linear Time
Lecture Notes 8-1
Solutions 8-10

Chapter 9: Medians and Order Statistics
Lecture Notes 9-1
Solutions 9-10

Chapter 11: Hash Tables
Lecture Notes 11-1
Solutions 11-16

Chapter 12: Binary Search Trees
Lecture Notes 12-1
Solutions 12-15

Chapter 13: Red-Black Trees
Lecture Notes 13-1
Solutions 13-13

Chapter 14: Augmenting Data Structures
Lecture Notes 14-1
Solutions 14-9

iv Contents

Chapter 15: Dynamic Programming
Lecture Notes 15-1
Solutions 15-21

Chapter 16: Greedy Algorithms
Lecture Notes 16-1
Solutions 16-9

Chapter 17: Amortized Analysis
Lecture Notes 17-1
Solutions 17-14

Chapter 21: Data Structures for Disjoint Sets
Lecture Notes 21-1
Solutions 21-6

Chapter 22: Elementary Graph Algorithms
Lecture Notes 22-1
Solutions 22-13

Chapter 23: Minimum Spanning Trees
Lecture Notes 23-1
Solutions 23-8

Chapter 24: Single-Source Shortest Paths
Lecture Notes 24-1
Solutions 24-13

Chapter 25: All-Pairs Shortest Paths
Lecture Notes 25-1
Solutions 25-9

Chapter 26: Maximum Flow
Lecture Notes 26-1
Solutions 26-12

Chapter 27: Multithreaded Algorithms
Solutions 27-1

Index I-1

Revision History

Revisions are listed by date rather than being numbered.

� 22 February 2014. Corrected an error in the solution to Exercise 4.3-7, courtesy
of Dan Suthers. Corrected an error in the solution to Exercise 23.1-6, courtesy
of Rachel Ginzberg. Updated the Preface.

� 3 January 2012. Added solutions to Chapter 27. Added an alternative solution
to Exercise 2.3-7, courtesy of Viktor Korsun and Crystal Peng. Corrected a
minor error in the Chapter 15 notes in the recurrence forT .n/ for the recursive
CUT-ROD procedure. Updated the solution to Problem 24-3. Correctedan
error in the proof about the Edmonds-Karp algorithm performing O.VE/ flow
augmentations. The bodies of all pseudocode procedures areindented slightly.

� 28 January 2011. Corrected an error in the solution to Problem 2-4(c), and
removed unnecessary code in the solution to Problem 2-4(d).Added a missing
parameter to recursive calls of REC-MAT-MULT on page 4-7. Changed the
pseudocode for HEAP-EXTRACT-MAX on page 6-8 and MAX -HEAP-INSERT

on page 6-9 to assume that the parametern is passed by reference.
� 7 May 2010. Changed the solutions to Exercises 22.2-3 and 22.3-4 because

these exercises changed.
� 17 February 2010. Corrected a minor error in the solution to Exercise 4.3-7.
� 16 December 2009. Added an alternative solution to Exercise6.3-3, courtesy

of Eyal Mashiach.
� 7 December 2009. Added solutions to Exercises 16.3-1, 26.1-1, 26.1-3, 26.1-7,

26.2-1, 26.2-8, 26.2-9, 26.2-12, 26.2-13, and 26.4-1 and toProblem 26-3. Cor-
rected spelling in the solution to Exercise 16.2-4. Severalcorrections to the
solution to Exercise 16.4-3, courtesy of Zhixiang Zhu. Minor changes to the
solutions to Exercises 24.3-3 and 24.4-7 and Problem 24-1.

� 7 August 2009. Initial release.

Preface

This document is an instructor’s manual to accompanyIntroduction to Algorithms,
Third Edition, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. It is intended for use in a course on algorithms. You might also find
some of the material herein to be useful for a CS 2-style course in data structures.

Unlike the instructor’s manual for the first edition of the text—which was organized
around the undergraduate algorithms course taught by Charles Leiserson at MIT
in Spring 1991—but like the instructor’s manual for the second edition, we have
chosen to organize the manual for the third edition according to chapters of the
text. That is, for most chapters we have provided a set of lecture notes and a set of
exercise and problem solutions pertaining to the chapter. This organization allows
you to decide how to best use the material in the manual in yourown course.

We have not included lecture notes and solutions for every chapter, nor have we
included solutions for every exercise and problem within the chapters that we have
selected. We felt that Chapter 1 is too nontechnical to include here, and Chap-
ter 10 consists of background material that often falls outside algorithms and data-
structures courses. We have also omitted the chapters that are not covered in the
courses that we teach: Chapters 18–20 and 27–35 (though we doinclude some
solutions for Chapter 27), as well as Appendices A–D; futureeditions of this man-
ual may include some of these chapters. There are two reasonsthat we have not
included solutions to all exercises and problems in the selected chapters. First,
writing up all these solutions would take a long time, and we felt it more important
to release this manual in as timely a fashion as possible. Second, if we were to
include all solutions, this manual would be much longer thanthe text itself.

We have numbered the pages in this manual using the formatCC-PP, whereCC
is a chapter number of the text andPP is the page number within that chapter’s
lecture notes and solutions. ThePPnumbers restart from 1 at the beginning of each
chapter’s lecture notes. We chose this form of page numbering so that if we add
or change solutions to exercises and problems, the only pages whose numbering is
affected are those for the solutions for that chapter. Moreover, if we add material
for currently uncovered chapters, the numbers of the existing pages will remain
unchanged.

The lecture notes

The lecture notes are based on three sources:

P-2 Preface

� Some are from the first-edition manual; they correspond to Charles Leiserson’s
lectures in MIT’s undergraduate algorithms course, 6.046.

� Some are from Tom Cormen’s lectures in Dartmouth College’s undergraduate
algorithms course, CS 25.

� Some are written just for this manual.

You will find that the lecture notes are more informal than thetext, as is appro-
priate for a lecture situation. In some places, we have simplified the material for
lecture presentation or even omitted certain considerations. Some sections of the
text—usually starred—are omitted from the lecture notes. (We have included lec-
ture notes for one starred section: 12.4, on randomly built binary search trees,
which we covered in an optional CS 25 lecture.)

In several places in the lecture notes, we have included “asides” to the instruc-
tor. The asides are typeset in a slanted font and are enclosedin square brack-
ets. [Here is an aside.]Some of the asides suggest leaving certain material on the
board, since you will be coming back to it later. If you are projecting a presenta-
tion rather than writing on a blackboard or whiteboard, you might want to replicate
slides containing this material so that you can easily reprise them later in the lec-
ture.

We have chosen not to indicate how long it takes to cover material, as the time nec-
essary to cover a topic depends on the instructor, the students, the class schedule,
and other variables.

There are two differences in how we write pseudocode in the lecture notes and the
text:

� Lines are not numbered in the lecture notes. We find them inconvenient to
number when writing pseudocode on the board.

� We avoid using thelength attribute of an array. Instead, we pass the array
length as a parameter to the procedure. This change makes thepseudocode
more concise, as well as matching better with the description of what it does.

We have also minimized the use of shading in figures within lecture notes, since
drawing a figure with shading on a blackboard or whiteboard isdifficult.

The solutions

The solutions are based on the same sources as the lecture notes. They are written
a bit more formally than the lecture notes, though a bit less formally than the text.
We do not number lines of pseudocode, but we do use thelengthattribute (on the
assumption that you will want your students to write pseudocode as it appears in
the text).

As of the third edition, we have publicly posted a few solutions on the book’s web-
site. These solutions also appear in this manual, with the notation “This solution
is also posted publicly” after the exercise or problem number. The set of pub-
licly posted solutions might increase over time, and so we encourage you to check
whether a particular solution is posted on the website before you assign an exercise
or problem to your students.

Preface P-3

The index lists all the exercises and problems for which thismanual provides solu-
tions, along with the number of the page on which each solution starts.

Asides appear in a handful of places throughout the solutions. Also, we are less
reluctant to use shading in figures within solutions, since these figures are more
likely to be reproduced than to be drawn on a board.

Source files

For several reasons, we are unable to publish or transmit source files for this man-
ual. We apologize for this inconvenience.

You can use the clrscode3e package for LATEX 2" to typeset pseudocode in the same
way that we do. You can find this package at http://www.cs.dartmouth.edu/�thc/
clrscode/. That site also includes documentation. Make sure to use the clrscode3e
package, not the clrscode package; clrscode is for the second edition of the book.

Reporting errors and suggestions

Undoubtedly, instructors will find errors in this manual. Please report errors by
sending email to clrs-manual-bugs@mitpress.mit.edu.

If you have a suggestion for an improvement to this manual, please feel free to
submit it via email to clrs-manual-suggestions@mitpress.mit.edu.

As usual, if you find an error in the text itself, please verifythat it has not already
been posted on the errata web page before you submit it. You can use the MIT
Press web site for the text, http://mitpress.mit.edu/algorithms/, to locate the errata
web page and to submit an error report.

We thank you in advance for your assistance in correcting errors in both this manual
and the text.

How we produced this manual

Like the third edition ofIntroduction to Algorithms, this manual was produced in
LATEX 2". We used the Times font with mathematics typeset using the MathTime
Pro 2 fonts. As in all three editions of the textbook, we compiled the index using
Windex, a C program that we wrote. We drew the illustrations using MacDraw
Pro,1 with some of the mathematical expressions in illustrationslaid in with the
psfrag package for LATEX 2". We created the PDF files for this manual on a
MacBook Pro running OS 10.5.

Acknowledgments

This manual borrows heavily from the manuals for the first twoeditions. Julie
Sussman, P.P.A., wrote the first-edition manual. Julie did such a superb job on the

1See our plea in the preface for the third edition to Apple, asking that they update MacDraw Pro for
OS X.

P-4 Preface

first-edition manual, finding numerous errors in the first-edition text in the process,
that we were thrilled to have her serve as technical copyeditor for both the second
and third editions of the book. Charles Leiserson also put inlarge amounts of time
working with Julie on the first-edition manual.

The manual for the second edition was written by Tom Cormen, Clara Lee, and
Erica Lin. Clara and Erica were undergraduate computer science majors at Dart-
mouth at the time, and they did a superb job.

The other threeIntroduction to Algorithmsauthors—Charles Leiserson, Ron
Rivest, and Cliff Stein—provided helpful comments and suggestions for solutions
to exercises and problems. Some of the solutions are modifications of those written
over the years by teaching assistants for algorithms courses at MIT and Dartmouth.
At this point, we do not know which TAs wrote which solutions,and so we simply
thank them collectively. Several of the solutions to new exercises and problems
in the third edition were written by Sharath Gururaj of Columbia University; we
thank Sharath for his fine work. The solutions for Chapter 27 were written by Priya
Natarajan.

We also thank the MIT Press and our editors—Ada Brunstein, Jim DeWolf, and
Marie Lee— for moral and financial support. Tim Tregubov and Wayne Cripps
provided computer support at Dartmouth.

THOMAS H. CORMEN

Hanover, New Hampshire
August 2009

Lecture Notes for Chapter 2:
Getting Started

Chapter 2 overview

Goals
� Start using frameworks for describing and analyzing algorithms.
� Examine two algorithms for sorting: insertion sort and merge sort.
� See how to describe algorithms in pseudocode.
� Begin using asymptotic notation to express running-time analysis.
� Learn the technique of “divide and conquer” in the context ofmerge sort.

Insertion sort

The sorting problem

Input: A sequence ofn numbersha1; a2; : : : ; ani.
Output: A permutation (reordering)ha0

1; a0
2; : : : ; a0

ni of the input sequence such
thata0

1 � a0
2 � � � � � a0

n.

The sequences are typically stored in arrays.

We also refer to the numbers askeys. Along with each key may be additional
information, known assatellite data. [You might want to clarify that “satellite
data” does not necessarily come from a satellite.]

We will see several ways to solve the sorting problem. Each way will be expressed
as analgorithm: a well-defined computational procedure that takes some value, or
set of values, as input and produces some value, or set of values, as output.

Expressing algorithms

We express algorithms in whatever way is the clearest and most concise.

English is sometimes the best way.

When issues of control need to be made perfectly clear, we often usepseudocode.

2-2 Lecture Notes for Chapter 2: Getting Started

� Pseudocode is similar to C, C++, Pascal, and Java. If you knowany of these
languages, you should be able to understand pseudocode.

� Pseudocode is designed forexpressing algorithms to humans. Software en-
gineering issues of data abstraction, modularity, and error handling are often
ignored.

� We sometimes embed English statements into pseudocode. Therefore, unlike
for “real” programming languages, we cannot create a compiler that translates
pseudocode to machine code.

Insertion sort

A good algorithm for sorting a small number of elements.

It works the way you might sort a hand of playing cards:

� Start with an empty left hand and the cards face down on the table.
� Then remove one card at a time from the table, and insert it into the correct

position in the left hand.
� To find the correct position for a card, compare it with each ofthe cards already

in the hand, from right to left.
� At all times, the cards held in the left hand are sorted, and these cards were

originally the top cards of the pile on the table.

Pseudocode

We use a procedure INSERTION-SORT.

� Takes as parameters an arrayAŒ1 : : n� and the lengthn of the array.
� As in Pascal, we use “: :” to denote a range within an array.
� [We usually use 1-origin indexing, as we do here. There are a few places in

later chapters where we use 0-origin indexing instead. If you are translating
pseudocode to C, C++, or Java, which use 0-origin indexing, you need to be
careful to get the indices right. One option is to adjust all index calculations in
the C, C++, or Java code to compensate. An easier option is, when using an
arrayAŒ1 : : n�, to allocate the array to be one entry longer—AŒ0 : : n�—and just
don’t use the entry at index0.]

� [In the lecture notes, we indicate array lengths by parameters rather than by
using thelengthattribute that is used in the book. That saves us a line of pseu-
docode each time. The solutions continue to use thelengthattribute.]

� The arrayA is sortedin place: the numbers are rearranged within the array,
with at most a constant number outside the array at any time.

Lecture Notes for Chapter 2: Getting Started 2-3

INSERTION-SORT.A; n/ cost times

for j D 2 to n c1 n

keyD AŒj � c2 n � 1

// InsertAŒj � into the sorted sequenceAŒ1 : : j � 1�. 0 n � 1

i D j � 1 c4 n � 1

while i > 0 andAŒi� > key c5

Pn

j D2 tj

AŒi C 1� D AŒi� c6

Pn

j D2.tj � 1/

i D i � 1 c7

Pn

j D2.tj � 1/

AŒi C 1� D key c8 n � 1

[Leave this on the board, but show only the pseudocode for now. We’ll put in the
“cost” and “times” columns later.]

Example

1 2 3 4 5 6

5 2 4 6 1 3
1 2 3 4 5 6

2 5 4 6 1 3
1 2 3 4 5 6

2 4 5 6 1 3

1 2 3 4 5 6

2 4 5 6 1 3
1 2 3 4 5 6

2 4 5 61 3
1 2 3 4 5 6

2 4 5 61 3

j j j

j j

[Read this figure row by row. Each part shows what happens for aparticular itera-
tion with the value ofj indicated.j indexes the “current card” being inserted into
the hand. Elements to the left ofAŒj � that are greater thanAŒj � move one position
to the right, andAŒj � moves into the evacuated position. The heavy vertical lines
separate the part of the array in which an iteration works—AŒ1 : : j �—from the part
of the array that is unaffected by this iteration—AŒj C 1 : : n�. The last part of the
figure shows the final sorted array.]

Correctness

We often use aloop invariant to help us understand why an algorithm gives the
correct answer. Here’s the loop invariant for INSERTION-SORT:

Loop invariant: At the start of each iteration of the “outer”for loop—the
loop indexed byj —the subarrayAŒ1 : : j �1� consists of the elements orig-
inally in AŒ1 : : j � 1� but in sorted order.

To use a loop invariant to prove correctness, we must show three things about it:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant—usually along withthe
reason that the loop terminated—gives us a useful property that helps show that
the algorithm is correct.

2-4 Lecture Notes for Chapter 2: Getting Started

Using loop invariants is like mathematical induction:
� To prove that a property holds, you prove a base case and an inductive step.
� Showing that the invariant holds before the first iteration is like the base case.
� Showing that the invariant holds from iteration to iteration is like the inductive

step.
� The termination part differs from the usual use of mathematical induction, in

which the inductive step is used infinitely. We stop the “induction” when the
loop terminates.

� We can show the three parts in any order.

For insertion sort

Initialization: Just before the first iteration,j D 2. The subarrayAŒ1 : : j � 1�

is the single elementAŒ1�, which is the element originally inAŒ1�, and it is
trivially sorted.

Maintenance: To be precise, we would need to state and prove a loop invariant
for the “inner” while loop. Rather than getting bogged down in another loop
invariant, we instead note that the body of the innerwhile loop works by moving
AŒj � 1�, AŒj � 2�, AŒj � 3�, and so on, by one position to the right until the
proper position forkey(which has the value that started out inAŒj �) is found.
At that point, the value ofkeyis placed into this position.

Termination: The outerfor loop ends whenj > n, which occurs whenj D nC1.
Therefore,j � 1 D n. Pluggingn in for j � 1 in the loop invariant, the
subarrayAŒ1 : : n� consists of the elements originally inAŒ1 : : n� but in sorted
order. In other words, the entire array is sorted.

Pseudocode conventions

[Covering most, but not all, here. See book pages 20–22 for all conventions.]

� Indentation indicates block structure. Saves space and writing time.
� Looping constructs are like in C, C++, Pascal, and Java. We assume that the

loop variable in afor loop is still defined when the loop exits (unlike in Pascal).
� // indicates that the remainder of the line is a comment.
� Variables are local, unless otherwise specified.
� We often useobjects, which haveattributes. For an attributeattr of objectx, we

write x:attr. (This notation matchesx:attr in Java and is equivalent tox->attr
in C++.) Attributes can cascade, so that ifx:y is an object and this object has
attributeattr, thenx:y:attr indicates this object’s attribute. That is,x:y:attr is
implicitly parenthesized as.x:y/:attr.

� Objects are treated as references, like in Java. Ifx andy denote objects, then
the assignmenty D x makesx andy reference the same object. It does not
cause attributes of one object to be copied to another.

� Parameters are passed by value, as in Java and C (and the default mechanism in
Pascal and C++). When an object is passed by value, it is actually a reference
(or pointer) that is passed; changes to the reference itselfare not seen by the
caller, but changes to the object’s attributes are.

Lecture Notes for Chapter 2: Getting Started 2-5

� The boolean operators “and” and “or” areshort-circuiting: if after evaluating
the left-hand operand, we know the result of the expression,then we don’t
evaluate the right-hand operand. (Ifx is FALSE in “x andy” then we don’t
evaluatey. If x is TRUE in “x or y” then we don’t evaluatey.)

Analyzing algorithms

We want to predict the resources that the algorithm requires. Usually, running time.

In order to predict resource requirements, we need a computational model.

Random-access machine (RAM) model

� Instructions are executed one after another. No concurrentoperations.
� It’s too tedious to define each of the instructions and their associated time costs.
� Instead, we recognize that we’ll use instructions commonlyfound in real com-

puters:

� Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling). Also,
shift left/shift right (good for multiplying/dividing by2k).

� Data movement: load, store, copy.
� Control: conditional/unconditional branch, subroutine call and return.

Each of these instructions takes a constant amount of time.

The RAM model uses integer and floating-point types.

� We don’t worry about precision, although it is crucial in certain numerical ap-
plications.

� There is a limit on the word size: when working with inputs of size n, assume
that integers are represented byc lg n bits for some constantc � 1. (lg n is a
very frequently used shorthand for log2 n.)

� c � 1)we can hold the value ofn)we can index the individual elements.
� c is a constant) the word size cannot grow arbitrarily.

How do we analyze an algorithm’s running time?

The time taken by an algorithm depends on the input.

� Sorting 1000 numbers takes longer than sorting 3 numbers.
� A given sorting algorithm may even take differing amounts oftime on two

inputs of the same size.
� For example, we’ll see that insertion sort takes less time tosortn elements when

they are already sorted than when they are in reverse sorted order.

2-6 Lecture Notes for Chapter 2: Getting Started

Input size

Depends on the problem being studied.

� Usually, the number of items in the input. Like the sizen of the array being
sorted.

� But could be something else. If multiplying two integers, could be the total
number of bits in the two integers.

� Could be described by more than one number. For example, graph algorithm
running times are usually expressed in terms of the number ofvertices and the
number of edges in the input graph.

Running time

On a particular input, it is the number of primitive operations (steps) executed.

� Want to define steps to be machine-independent.
� Figure that each line of pseudocode requires a constant amount of time.
� One line may take a different amount of time than another, buteach execution

of line i takes the same amount of timeci .
� This is assuming that the line consists only of primitive operations.

� If the line is a subroutine call, then the actual call takes constant time, but the
execution of the subroutine being called might not.

� If the line specifies operations other than primitive ones, then it might take
more than constant time. Example: “sort the points byx-coordinate.”

Analysis of insertion sort

[Now add statement costs and number of times executed toINSERTION-SORT

pseudocode.]

� Assume that thei th line takes timeci , which is a constant. (Since the third line
is a comment, it takes no time.)

� For j D 2; 3; : : : ; n, let tj be the number of times that thewhile loop test is
executed for that value ofj .

� Note that when afor or while loop exits in the usual way—due to the test in the
loop header—the test is executed one time more than the loop body.

The running time of the algorithm is
X

all statements

.cost of statement/ � .number of times statement is executed/ :

Let T .n/ D running time of INSERTION-SORT.

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

n
X

j D2

tj C c6

n
X

j D2

.tj � 1/

C c7

n
X

j D2

.tj � 1/C c8.n � 1/ :

The running time depends on the values oftj . These vary according to the input.

Lecture Notes for Chapter 2: Getting Started 2-7

Best case

The array is already sorted.

� Always find thatAŒi� � keyupon the first time thewhile loop test is run (when
i D j � 1).

� All tj are1.
� Running time is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5.n � 1/C c8.n � 1/

D .c1 C c2 C c4 C c5 C c8/n � .c2 C c4 C c5 C c8/ :

� Can expressT .n/ asanCb for constantsa andb (that depend on the statement
costsci)) T .n/ is a linear functionof n.

Worst case

The array is in reverse sorted order.

� Always find thatAŒi� > keyin while loop test.
� Have to comparekeywith all elements to the left of thej th position) compare

with j � 1 elements.
� Since the while loop exits becausei reaches0, there’s one additional test after

thej � 1 tests) tj D j .

�

n
X

j D2

tj D
n
X

j D2

j and
n
X

j D2

.tj � 1/ D
n
X

j D2

.j � 1/.

�

n
X

j D1

j is known as anarithmetic series, and equation (A.1) shows that it equals

n.nC 1/

2
.

� Since
n
X

j D2

j D

n
X

j D1

j

!

� 1, it equals
n.nC 1/

2
� 1.

[The parentheses around the summation are not strictly necessary. They are
there for clarity, but it might be a good idea to remind the students that the
meaning of the expression would be the same even without the parentheses.]

� Letting k D j � 1, we see that
n
X

j D2

.j � 1/ D
n�1
X

kD1

k D n.n � 1/

2
.

� Running time is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

�
n.nC 1/

2
� 1

�

C c6

�
n.n � 1/

2

�

C c7

�
n.n � 1/

2

�

C c8.n � 1/

D
�c5

2
C c6

2
C c7

2

�

n2 C
�

c1 C c2 C c4 C
c5

2
� c6

2
� c7

2
C c8

�

n

� .c2 C c4 C c5 C c8/ :

� Can expressT .n/ asan2 C bnC c for constantsa; b; c (that again depend on
statement costs)) T .n/ is aquadratic functionof n.

2-8 Lecture Notes for Chapter 2: Getting Started

Worst-case and average-case analysis

We usually concentrate on finding theworst-case running time: the longest run-
ning time forany input of sizen.

Reasons
� The worst-case running time gives a guaranteed upper bound on the running

time for any input.
� For some algorithms, the worst case occurs often. For example, when search-

ing, the worst case often occurs when the item being searchedfor is not present,
and searches for absent items may be frequent.

� Why not analyze the average case? Because it’s often about asbad as the worst
case.

Example: Suppose that we randomly choosen numbers as the input to inser-
tion sort.

On average, the key inAŒj � is less than half the elements inAŒ1 : : j � 1� and
it’s greater than the other half.
) On average, thewhile loop has to look halfway through the sorted subarray
AŒ1 : : j � 1� to decide where to dropkey.
) tj � j=2.

Although the average-case running time is approximately half of the worst-case
running time, it’s still a quadratic function ofn.

Order of growth

Another abstraction to ease analysis and focus on the important features.

Look only at the leading term of the formula for running time.

� Drop lower-order terms.
� Ignore the constant coefficient in the leading term.

Example: For insertion sort, we already abstracted away the actual statement costs
to conclude that the worst-case running time isan2 C bnC c.
Drop lower-order terms) an2.
Ignore constant coefficient) n2.

But we cannot say that the worst-case running timeT .n/ equalsn2.

It grows liken2. But it doesn’tequaln2.

We say that the running time is‚.n2/ to capture the notion that theorder of growth
is n2.

We usually consider one algorithm to be more efficient than another if its worst-
case running time has a smaller order of growth.

Lecture Notes for Chapter 2: Getting Started 2-9

Designing algorithms

There are many ways to design algorithms.

For example, insertion sort isincremental: having sortedAŒ1 : : j � 1�, placeAŒj �

correctly, so thatAŒ1 : : j � is sorted.

Divide and conquer

Another common approach.

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively.
Base case:If the subproblems are small enough, just solve them by bruteforce.

[It would be a good idea to make sure that your students are comfortable with
recursion. If they are not, then they will have a hard time understanding divide
and conquer.]

Combine the subproblem solutions to give a solution to the original problem.

Merge sort

A sorting algorithm based on divide and conquer. Its worst-case running time has
a lower order of growth than insertion sort.

Because we are dealing with subproblems, we state each subproblem as sorting a
subarrayAŒp : : r�. Initially, p D 1 and r D n, but these values change as we
recurse through subproblems.

To sortAŒp : : r�:

Divide by splitting into two subarraysAŒp : : q� andAŒq C 1 : : r�, whereq is the
halfway point ofAŒp : : r�.

Conquer by recursively sorting the two subarraysAŒp : : q� andAŒq C 1 : : r�.

Combineby merging the two sorted subarraysAŒp : : q� andAŒq C 1 : : r� to pro-
duce a single sorted subarrayAŒp : : r�. To accomplish this step, we’ll define a
procedure MERGE.A; p; q; r/.

The recursion bottoms out when the subarray has just1 element, so that it’s trivially
sorted.

MERGE-SORT.A; p; r/

if p < r // check for base case
q D b.p C r/=2c // divide
MERGE-SORT.A; p; q/ // conquer
MERGE-SORT.A; q C 1; r/ // conquer
MERGE.A; p; q; r/ // combine

2-10 Lecture Notes for Chapter 2: Getting Started

Initial call: MERGE-SORT.A; 1; n/

[It is astounding how often students forget how easy it is to compute the halfway
point of p andr as their average.p C r/=2. We of course have to take the floor
to ensure that we get an integer indexq. But it is common to see students perform
calculations likepC .r �p/=2, or even more elaborate expressions, forgetting the
easy way to compute an average.]

Example

Bottom-up view forn D 8: [Heavy lines demarcate subarrays used in subprob-
lems.]

1 2 3 4 5 6 7 8

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

initial array

merge

2 4 5 7 1 2 3 6

merge

1 2 3 4 5 6 7

merge

sorted array

2
1 2 3 4 5 6 7 8

[Examples whenn is a power of2 are most straightforward, but students might
also want an example whenn is not a power of2.]

Bottom-up view forn D 11:

1 2 3 4 5 6 7 8

4 7 2 6 1 4 7 3

initial array

merge

merge

merge

sorted array

5 2 6

9 10 11

4 7 2 1 6 4 3 7 5 2 6

2 4 7 1 4 6 3 5 7 2 6

1 2 4 4 6 7 2 3 5 6 7

1 2 2 3 4 4 5 6 6 7 7
1 2 3 4 5 6 7 8 9 10 11

merge

[Here, at the next-to-last level of recursion, some of the subproblems have only1
element. The recursion bottoms out on these single-elementsubproblems.]

Lecture Notes for Chapter 2: Getting Started 2-11

Merging

What remains is the MERGEprocedure.

Input: Array A and indicesp; q; r such that
� p � q < r .
� SubarrayAŒp : : q� is sorted and subarrayAŒq C 1 : : r� is sorted. By the

restrictions onp; q; r , neither subarray is empty.

Output: The two subarrays are merged into a single sorted subarray inAŒp : : r�.

We implement it so that it takes‚.n/ time, wheren D r �pC 1 D the number of
elements being merged.

What isn? Until now, n has stood for the size of the original problem. But now
we’re using it as the size of a subproblem. We will use this technique when we
analyze recursive algorithms. Although we may denote the original problem size
by n, in generaln will be the size of a given subproblem.

Idea behind linear-time merging
Think of two piles of cards.
� Each pile is sorted and placed face-up on a table with the smallest cards on top.
� We will merge these into a single sorted pile, face-down on the table.
� A basic step:

� Choose the smaller of the two top cards.
� Remove it from its pile, thereby exposing a new top card.
� Place the chosen card face-down onto the output pile.

� Repeatedly perform basic steps until one input pile is empty.
� Once one input pile empties, just take the remaining input pile and place it

face-down onto the output pile.
� Each basic step should take constant time, since we check just the two top cards.
� There are� n basic steps, since each basic step removes one card from the

input piles, and we started withn cards in the input piles.
� Therefore, this procedure should take‚.n/ time.

We don’t actually need to check whether a pile is empty beforeeach basic step.
� Put on the bottom of each input pile a specialsentinelcard.
� It contains a special value that we use to simplify the code.
� We use1, since that’s guaranteed to “lose” to any other value.
� The only way that1 cannotlose is when both piles have1 exposed as their

top cards.
� But when that happens, all the nonsentinel cards have already been placed into

the output pile.
� We know in advance that there are exactlyr � pC 1 nonsentinel cards) stop

once we have performedr � p C 1 basic steps. Never a need to check for
sentinels, since they’ll always lose.

� Rather than even counting basic steps, just fill up the outputarray from indexp
up through and including indexr .

2-12 Lecture Notes for Chapter 2: Getting Started

Pseudocode

MERGE.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� andRŒ1 : : n2 C 1� be new arrays
for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1
RŒn2 C 1� D 1
i D 1

j D 1

for k D p to r

if LŒi� � RŒj �

AŒk� D LŒi�

i D i C 1

elseAŒk� D RŒj �

j D j C 1

[The book uses a loop invariant to establish thatMERGE works correctly. In a
lecture situation, it is probably better to use an example toshow that the procedure
works correctly.]

Example

A call of MERGE.9; 12; 16/

Lecture Notes for Chapter 2: Getting Started 2-13

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7 1 2 3 6

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 4 5 7 1 2 3 6 4 5 7 1 2 3 6

A

L R

9 10 11 12 13 14 15 16

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

5 7 1 2 3 62 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

7 1 2 3 62 2

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 168
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

1 2 3 62 2 3 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 3 62 2 3 4

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

3 62 2 3 4 5 A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

62 2 3 4 5

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

6

A

L R
1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

72 2 3 4 5

5
∞

5
∞

6

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

[Read this figure row by row. The first part shows the arrays at the start of the
“ for k D p to r” loop, whereAŒp : : q� is copied intoLŒ1 : : n1� andAŒqC1 : : r� is
copied intoRŒ1 : : n2�. Succeeding parts show the situation at the start of successive
iterations. Entries inA with slashes have had their values copied to eitherL or R

and have not had a value copied back in yet. Entries inL andR with slashes have
been copied back intoA. The last part shows that the subarrays are merged back
into AŒp : : r�, which is now sorted, and that only the sentinels (1) are exposed in
the arraysL andR.]

2-14 Lecture Notes for Chapter 2: Getting Started

Running time

The first twofor loops take‚.n1 C n2/ D ‚.n/ time. The lastfor loop makesn
iterations, each taking constant time, for‚.n/ time.
Total time:‚.n/.

Analyzing divide-and-conquer algorithms

Use arecurrence equation(more commonly, arecurrence) to describe the running
time of a divide-and-conquer algorithm.

Let T .n/ D running time on a problem of sizen.

� If the problem size is small enough (say,n � c for some constantc), we have a
base case. The brute-force solution takes constant time:‚.1/.

� Otherwise, suppose that we divide intoa subproblems, each1=b the size of the
original. (In merge sort,a D b D 2.)

� Let the time to divide a size-n problem beD.n/.
� Have a subproblems to solve, each of sizen=b) each subproblem takes

T .n=b/ time to solve) we spendaT .n=b/ time solving subproblems.
� Let the time to combine solutions beC.n/.
� We get the recurrence

T .n/ D
(

‚.1/ if n � c ;

aT .n=b/CD.n/C C.n/ otherwise:

Analyzing merge sort

For simplicity, assume thatn is a power of2) each divide step yields two sub-
problems, both of size exactlyn=2.

The base case occurs whenn D 1.

Whenn � 2, time for merge sort steps:

Divide: Just computeq as the average ofp andr)D.n/ D ‚.1/.

Conquer: Recursively solve2 subproblems, each of sizen=2) 2T .n=2/.

Combine: MERGEon ann-element subarray takes‚.n/ time) C.n/ D ‚.n/.

SinceD.n/ D ‚.1/ andC.n/ D ‚.n/, summed together they give a function that
is linear inn: ‚.n/) recurrence for merge sort running time is

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 :

Solving the merge-sort recurrence

By the master theorem in Chapter 4, we can show that this recurrence has the
solutionT .n/ D ‚.n lg n/. [Reminder:lg n stands forlog2 n.]

Compared to insertion sort (‚.n2/ worst-case time), merge sort is faster. Trading
a factor ofn for a factor of lgn is a good deal.

Lecture Notes for Chapter 2: Getting Started 2-15

On small inputs, insertion sort may be faster. But for large enough inputs, merge
sort will always be faster, because its running time grows more slowly than inser-
tion sort’s.

We can understand how to solve the merge-sort recurrence without the master the-
orem.

� Let c be a constant that describes the running time for the base case and also
is the time per array element for the divide and conquer steps. [Of course, we
cannot necessarily use the same constant for both. It’s not worth going into this
detail at this point.]

� We rewrite the recurrence as

T .n/ D
(

c if n D 1 ;

2T .n=2/C cn if n > 1 :

� Draw arecursion tree, which shows successive expansions of the recurrence.
� For the original problem, we have a cost ofcn, plus the two subproblems, each

costingT .n=2/:

cn

T(n/2) T(n/2)

� For each of the size-n=2 subproblems, we have a cost ofcn=2, plus two sub-
problems, each costingT .n=4/:

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

� Continue expanding until the problem sizes get down to1:

2-16 Lecture Notes for Chapter 2: Getting Started

cn

cn

…

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

…

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

� Each level has costcn.

� The top level has costcn.
� The next level down has2 subproblems, each contributing costcn=2.
� The next level has4 subproblems, each contributing costcn=4.
� Each time we go down one level, the number of subproblems doubles but the

cost per subproblem halves) cost per level stays the same.

� There are lgnC 1 levels (height is lgn).

� Use induction.
� Base case:n D 1) 1 level, and lg1C 1 D 0C 1 D 1.
� Inductive hypothesis is that a tree for a problem size of2i has lg2iC1 D iC1

levels.
� Because we assume that the problem size is a power of2, the next problem

size up after2i is 2iC1.
� A tree for a problem size of2iC1 has one more level than the size-2i tree)

i C 2 levels.
� Since lg2iC1 C 1 D i C 2, we’re done with the inductive argument.

� Total cost is sum of costs at each level. Have lgn C 1 levels, each costingcn

) total cost iscn lg nC cn.
� Ignore low-order term ofcn and constant coefficientc) ‚.n lg n/.

Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2
This solution is also posted publicly

SELECTION-SORT.A/

n D A: length
for j D 1 to n � 1

smallestD j

for i D j C 1 to n

if AŒi� < AŒsmallest�
smallestD i

exchangeAŒj � with AŒsmallest�

The algorithm maintains the loop invariant that at the startof each iteration of the
outerfor loop, the subarrayAŒ1 : : j � 1� consists of thej � 1 smallest elements
in the arrayAŒ1 : : n�, and this subarray is in sorted order. After the firstn � 1

elements, the subarrayAŒ1 : : n � 1� contains the smallestn � 1 elements, sorted,
and therefore elementAŒn� must be the largest element.

The running time of the algorithm is‚.n2/ for all cases.

Solution to Exercise 2.2-4
This solution is also posted publicly

Modify the algorithm so it tests whether the input satisfies some special-case con-
dition and, if it does, output a pre-computed answer. The best-case running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-3

The base case is whenn D 2, and we haven lg n D 2 lg 2 D 2 � 1 D 2.

2-18 Solutions for Chapter 2: Getting Started

For the inductive step, our inductive hypothesis is thatT .n=2/ D .n=2/ lg.n=2/.
Then

T .n/ D 2T .n=2/C n

D 2.n=2/ lg.n=2/C n

D n.lg n � 1/C n

D n lg n � nC n

D n lg n ;

which completes the inductive proof for exact powers of2.

Solution to Exercise 2.3-4

Since it takes‚.n/ time in the worst case to insertAŒn� into the sorted array
AŒ1 : : n � 1�, we get the recurrence

T .n/ D
(

‚.1/ if n D 1 ;

T .n � 1/C‚.n/ if n > 1 :

Although the exercise does not ask you to solve this recurrence, its solution is
T .n/ D ‚.n2/.

Solution to Exercise 2.3-5
This solution is also posted publicly

Procedure BINARY-SEARCH takes a sorted arrayA, a value�, and a range
Œlow : : high� of the array, in which we search for the value�. The procedure com-
pares� to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,
each of which returns either an indexi such thatAŒi� D �, or NIL if no entry of
AŒlow : : high� contains the value�. The initial call to either version should have
the parametersA; �; 1; n.

ITERATIVE-BINARY-SEARCH.A; �; low; high/

while low � high
mid D b.lowC high/=2c
if � == AŒmid�

return mid
elseif� > AŒmid�

low D midC 1

elsehigh D mid� 1

return NIL

Solutions for Chapter 2: Getting Started 2-19

RECURSIVE-BINARY-SEARCH.A; �; low; high/

if low > high
return NIL

mid D b.lowC high/=2c
if � == AŒmid�

return mid
elseif� > AŒmid�

return RECURSIVE-BINARY-SEARCH.A; �; midC 1; high/

else return RECURSIVE-BINARY-SEARCH.A; �; low; mid� 1/

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,
low > high) and terminate it successfully if the value� has been found. Based
on the comparison of� to the middle element in the searched range, the search
continues with the range halved. The recurrence for these procedures is therefore
T .n/ D T .n=2/C‚.1/, whose solution isT .n/ D ‚.lg n/.

Solution to Exercise 2.3-6

The while loop of lines 5–7 of procedure INSERTION-SORT scans backward
through the sorted arrayAŒ1 : : j � 1� to find the appropriate place forAŒj �. The
hitch is that the loop not only searches for the proper place for AŒj �, but that it also
moves each of the array elements that are bigger thanAŒj � one position to the right
(line 6). These movements can take as much as‚.j / time, which occurs when all
thej � 1 elements precedingAŒj � are larger thanAŒj �. We can use binary search
to improve the running time of the search to‚.lg j /, but binary search will have no
effect on the running time of moving the elements. Therefore, binary search alone
cannot improve the worst-case running time of INSERTION-SORT to ‚.n lg n/.

Solution to Exercise 2.3-7

The following algorithm solves the problem:

1. Sort the elements inS .

2. Form the setS 0 D f´ W ´ D x � y for somey 2 Sg.
3. Sort the elements inS 0.

4. Merge the two sorted setsS andS 0.

5. There exist two elements inS whose sum is exactlyx if and only if the same
value appears in consecutive positions in the merged output.

To justify the claim in step 4, first observe that if any value appears twice in the
merged output, it must appear in consecutive positions. Thus, we can restate the
condition in step 5 as there exist two elements inS whose sum is exactlyx if and
only if the same value appears twice in the merged output.

2-20 Solutions for Chapter 2: Getting Started

Suppose that some valuew appears twice. Thenw appeared once inS and once
in S 0. Becausew appeared inS 0, there exists somey 2 S such thatw D x � y, or
x D w C y. Sincew 2 S , the elementsw andy are inS and sum tox.

Conversely, suppose that there are valuesw; y 2 S such thatw C y D x. Then,
sincex � y D w, the valuew appears inS 0. Thus,w is in bothS andS 0, and so it
will appear twice in the merged output.

Steps 1 and 3 require‚.n lg n/ steps. Steps 2, 4, 5, and 6 requireO.n/ steps. Thus
the overall running time isO.n lg n/.

A reader submitted a simpler solution that also runs in‚.n lg n/ time. First, sort
the elements inS , taking‚.n lg n/ time. Then, for each elementy in S , perform a
binary search inS for x � y. Each binary search takesO.lg n/ time, and there are
are mostn of them, and so the time for all the binary searches isO.n lg n/. The
overall running time is‚.n lg n/.

Another reader pointed out that sinceS is a set, if the valuex=2 appears inS , it
appears inS just once, and sox=2 cannot be a solution.

Solution to Problem 2-1

[It may be better to assign this problem after covering asymptotic notation in Sec-
tion 3.1; otherwise part (c) may be too difficult.]

a. Insertion sort takes‚.k2/ time perk-element list in the worst case. Therefore,
sorting n=k lists of k elements each takes‚.k2n=k/ D ‚.nk/ worst-case
time.

b. Just extending the 2-list merge to merge all the lists at oncewould take
‚.n � .n=k// D ‚.n2=k/ time (n from copying each element once into the
result list,n=k from examiningn=k lists at each step to select next item for
result list).

To achieve‚.n lg.n=k//-time merging, we merge the lists pairwise, then merge
the resulting lists pairwise, and so on, until there’s just one list. The pairwise
merging requires‚.n/ work at each level, since we are still working onn el-
ements, even if they are partitioned among sublists. The number of levels,
starting withn=k lists (with k elements each) and finishing with1 list (with n

elements), isdlg.n=k/e. Therefore, the total running time for the merging is
‚.n lg.n=k//.

c. The modified algorithm has the same asymptotic running time as standard
merge sort when‚.nk C n lg.n=k// D ‚.n lg n/. The largest asymptotic
value ofk as a function ofn that satisfies this condition isk D ‚.lg n/.

To see why, first observe thatk cannot be more than‚.lg n/ (i.e., it can’t have
a higher-order term than lgn), for otherwise the left-hand expression wouldn’t
be‚.n lg n/ (because it would have a higher-order term thann lg n). So all we
need to do is verify thatk D ‚.lg n/ works, which we can do by plugging
k D lg n into ‚.nk C n lg.n=k// D ‚.nk C n lg n � n lg k/ to get

Solutions for Chapter 2: Getting Started 2-21

‚.n lg nC n lg n � n lg lg n/ D ‚.2n lg n � n lg lg n/ ;

which, by taking just the high-order term and ignoring the constant coefficient,
equals‚.n lg n/.

d. In practice,k should be the largest list length on which insertion sort is faster
than merge sort.

Solution to Problem 2-2

a. We need to show that the elements ofA0 form a permutation of the elements
of A.

b. Loop invariant: At the start of each iteration of thefor loop of lines 2–4,
AŒj � D minfAŒk� W j � k � ng and the subarrayAŒj : : n� is a permuta-
tion of the values that were inAŒj : : n� at the time that the loop started.

Initialization: Initially, j D n, and the subarrayAŒj : : n� consists of single
elementAŒn�. The loop invariant trivially holds.

Maintenance: Consider an iteration for a given value ofj . By the loop in-
variant, AŒj � is the smallest value inAŒj : : n�. Lines 3–4 exchangeAŒj �

and AŒj � 1� if AŒj � is less thanAŒj � 1�, and soAŒj � 1� will be the
smallest value inAŒj � 1 : : n� afterward. Since the only change to the sub-
arrayAŒj � 1 : : n� is this possible exchange, and the subarrayAŒj : : n� is
a permutation of the values that were inAŒj : : n� at the time that the loop
started, we see thatAŒj � 1 : : n� is a permutation of the values that were in
AŒj � 1 : : n� at the time that the loop started. Decrementingj for the next
iteration maintains the invariant.

Termination: The loop terminates whenj reachesi . By the statement of the
loop invariant,AŒi� D minfAŒk� W i � k � ng andAŒi : : n� is a permutation
of the values that were inAŒi : : n� at the time that the loop started.

c. Loop invariant: At the start of each iteration of thefor loop of lines 1–4,
the subarrayAŒ1 : : i �1� consists of thei �1 smallest values originally in
AŒ1 : : n�, in sorted order, andAŒi : : n� consists of then� i C 1 remaining
values originally inAŒ1 : : n�.

Initialization: Before the first iteration of the loop,i D 1. The subarray
AŒ1 : : i � 1� is empty, and so the loop invariant vacuously holds.

Maintenance: Consider an iteration for a given value ofi . By the loop invari-
ant,AŒ1 : : i � 1� consists of thei smallest values inAŒ1 : : n�, in sorted order.
Part (b) showed that after executing thefor loop of lines 2–4,AŒi� is the
smallest value inAŒi : : n�, and soAŒ1 : : i � is now thei smallest values orig-
inally in AŒ1 : : n�, in sorted order. Moreover, since thefor loop of lines 2–4
permutesAŒi : : n�, the subarrayAŒi C 1 : : n� consists of then� i remaining
values originally inAŒ1 : : n�.

Termination: Thefor loop of lines 1–4 terminates wheni D n, so thati �1 D
n � 1. By the statement of the loop invariant,AŒ1 : : i � 1� is the subarray

2-22 Solutions for Chapter 2: Getting Started

AŒ1 : : n�1�, and it consists of then�1 smallest values originally inAŒ1 : : n�,
in sorted order. The remaining element must be the largest value inAŒ1 : : n�,
and it is inAŒn�. Therefore, the entire arrayAŒ1 : : n� is sorted.

Note: Tn the second edition, thefor loop of lines 1–4 had an upper bound
of A: length. The last iteration of the outerfor loop would then result in no
iterations of the innerfor loop of lines 1–4, but the termination argument would
simplify: AŒ1 : : i � 1� would be the entire arrayAŒ1 : : n�, which, by the loop
invariant, is sorted.

d. The running time depends on the number of iterations of thefor loop of
lines 2–4. For a given value ofi , this loop makesn � i iterations, andi takes
on the values1; 2; : : : ; n � 1. The total number of iterations, therefore, is
n�1
X

iD1

.n � i/ D
n�1
X

iD1

n �
n�1
X

iD1

i

D n.n� 1/ � n.n � 1/

2

D n.n� 1/

2

D n2

2
� n

2
:

Thus, the running time of bubblesort is‚.n2/ in all cases. The worst-case
running time is the same as that of insertion sort.

Solution to Problem 2-4
This solution is also posted publicly

a. The inversions are.1; 5/; .2; 5/; .3; 4/; .3; 5/; .4; 5/. (Remember that inversions
are specified by indices rather than by the values in the array.)

b. The array with elements fromf1; 2; : : : ; ng with the most inversions is
hn; n � 1; n � 2; : : : ; 2; 1i. For all 1 � i < j � n, there is an inversion.i; j /.
The number of such inversions is

�
n

2

�

D n.n � 1/=2.

c. Suppose that the arrayA starts out with an inversion.k; j /. Thenk < j and
AŒk� > AŒj �. At the time that the outerfor loop of lines 1–8 setskeyD AŒj �,
the value that started inAŒk� is still somewhere to the left ofAŒj �. That is,
it’s in AŒi�, where1 � i < j , and so the inversion has become.i; j /. Some
iteration of thewhile loop of lines 5–7 movesAŒi� one position to the right.
Line 8 will eventually dropkey to the left of this element, thus eliminating
the inversion. Because line 5 moves only elements that are greater thankey,
it moves only elements that correspond to inversions. In other words, each
iteration of thewhile loop of lines 5–7 corresponds to the elimination of one
inversion.

d. We follow the hint and modify merge sort to count the number ofinversions in
‚.n lg n/ time.

Solutions for Chapter 2: Getting Started 2-23

To start, let us define amerge-inversionas a situation within the execution of
merge sort in which the MERGE procedure, after copyingAŒp : : q� to L and
AŒq C 1 : : r� to R, has valuesx in L andy in R such thatx > y. Consider
an inversion.i; j /, and letx D AŒi� andy D AŒj �, so thati < j andx > y.
We claim that if we were to run merge sort, there would be exactly one merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within the MERGE procedure. More-
over, since MERGEkeeps elements withinL in the same relative order to each
other, and correspondingly forR, the only way in which two elements can
change their ordering relative to each other is for the greater one to appear inL
and the lesser one to appear inR. Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of MERGE that involves bothx andy, they are in the
same sorted subarray and will therefore both appear inL or both appear inR
in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the
correspondence between inversions and merge-inversions is one-to-one. Sup-
pose we have a merge-inversion involving valuesx andy, wherex originally
wasAŒi� andy was originallyAŒj �. Since we have a merge-inversion,x > y.
And sincex is in L andy is in R, x must be within a subarray preceding the
subarray containingy. Thereforex started out in a positioni precedingy’s
original positionj , and so.i; j / is an inversion.

Having shown a one-to-one correspondence between inversions and merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingy in R. Let ´ be the smallest value inL
that is greater thany. At some point during the merging process,´ andy will
be the “exposed” values inL andR, i.e., we will havé D LŒi� andy D RŒj �

in line 13 of MERGE. At that time, there will be merge-inversions involvingy

andLŒi�; LŒi C 1�; LŒi C 2�; : : : ; LŒn1�, and thesen1 � i C 1 merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
that´ andy become exposed during the MERGE procedure and add the value
of n1 � i C 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as wehave just de-
scribed. It also sorts the arrayA.

COUNT-INVERSIONS.A; p; r/

in�ersionsD 0

if p < r

q D b.p C r/=2c
in�ersionsD in�ersionsC COUNT-INVERSIONS.A; p; q/

in�ersionsD in�ersionsC COUNT-INVERSIONS.A; q C 1; r/

in�ersionsD in�ersionsCMERGE-INVERSIONS.A; p; q; r/

return in�ersions

2-24 Solutions for Chapter 2: Getting Started

MERGE-INVERSIONS.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� andRŒ1 : : n2 C 1� be new arrays
for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1
RŒn2 C 1� D 1
i D 1

j D 1

in�ersionsD 0

for k D p to r

if RŒj � < LŒi�

in�ersionsD in�ersionsC n1 � i C 1

AŒk� D RŒj �

j D j C 1

elseAŒk� D LŒi�

i D i C 1

return in�ersions

The initial call is COUNT-INVERSIONS.A; 1; n/.

In MERGE-INVERSIONS, wheneverRŒj � is exposed and a value greater than
RŒj � becomes exposed in theL array, we increasein�ersionsby the number
of remaining elements inL. Then becauseRŒj C 1� becomes exposed,RŒj �

can never be exposed again. We don’t have to worry about merge-inversions
involving the sentinel1 in R, since no value inL will be greater than1.

Since we have added only a constant amount of additional workto each pro-
cedure call and to each iteration of the lastfor loop of the merging procedure,
the total running time of the above pseudocode is the same as for merge sort:
‚.n lg n/.

Lecture Notes for Chapter 3:
Growth of Functions

Chapter 3 overview

� A way to describe behavior of functionsin the limit. We’re studyingasymptotic
efficiency.

� Describegrowthof functions.
� Focus on what’s important by abstracting away low-order terms and constant

factors.
� How we indicate running times of algorithms.
� A way to compare “sizes” of functions:

O � �
� � �
‚ � D
o � <

! � >

Asymptotic notation

O-notation

O.g.n// D ff .n/ W there exist positive constantsc andn0 such that
0 � f .n/ � cg.n/ for all n � n0g :

n0
n

f(n)

cg(n)

g.n/ is anasymptotic upper boundfor f .n/.

If f .n/ 2 O.g.n//, we writef .n/ D O.g.n// (will precisely explain this soon).

3-2 Lecture Notes for Chapter 3: Growth of Functions

Example

2n2 D O.n3/, with c D 1 andn0 D 2.

Examples of functions inO.n2/:

n2

n2 C n

n2 C 1000n

1000n2 C 1000n

Also,
n

n=1000

n1:99999

n2= lg lg lg n

�-notation

�.g.n// D ff .n/ W there exist positive constantsc andn0 such that
0 � cg.n/ � f .n/ for all n � n0g :

n0
n

f(n)

cg(n)

g.n/ is anasymptotic lower boundfor f .n/.

Example
p

n D �.lg n/, with c D 1 andn0 D 16.

Examples of functions in�.n2/:

n2

n2 C n

n2 � n

1000n2 C 1000n

1000n2 � 1000n

Also,
n3

n2:00001

n2 lg lg lg n

22n

Lecture Notes for Chapter 3: Growth of Functions 3-3

‚-notation

‚.g.n// D ff .n/ W there exist positive constantsc1, c2, andn0 such that
0 � c1g.n/ � f .n/ � c2g.n/ for all n � n0g :

n0
n

f(n)

c1g(n)

c2g(n)

g.n/ is anasymptotically tight boundfor f .n/.

Example

n2=2 � 2n D ‚.n2/, with c1 D 1=4, c2 D 1=2, andn0 D 8.

Theorem
f .n/ D ‚.g.n// if and only if f D O.g.n// andf D �.g.n// :

Leading constants and low-order terms don’t matter.

Asymptotic notation in equations

When on right-hand side

O.n2/ stands for some anonymous function in the setO.n2/.

2n2 C 3n C 1 D 2n2 C ‚.n/ means2n2 C 3n C 1 D 2n2 C f .n/ for some
f .n/ 2 ‚.n/. In particular,f .n/ D 3nC 1.

By the way, we interpret # of anonymous functions asD # of times the asymptotic
notation appears:

n
X

iD1

O.i/ OK: 1 anonymous function

O.1/CO.2/C � � � CO.n/ not OK:n hidden constants
) no clean interpretation

When on left-hand side

No matter how the anonymous functions are chosen on the left-hand side, there
is a way to choose the anonymous functions on the right-hand side to make the
equation valid.

Interpret2n2 C ‚.n/ D ‚.n2/ as meaningfor all functionsf .n/ 2 ‚.n/, there
exists a functiong.n/ 2 ‚.n2/ such that2n2 C f .n/ D g.n/.

3-4 Lecture Notes for Chapter 3: Growth of Functions

Can chain together:

2n2 C 3nC 1 D 2n2 C‚.n/

D ‚.n2/ :

Interpretation:

� First equation: There existsf .n/ 2 ‚.n/ such that2n2C3nC1 D 2n2Cf .n/.
� Second equation: For allg.n/ 2 ‚.n/ (such as thef .n/ used to make the first

equation hold), there existsh.n/ 2 ‚.n2/ such that2n2 C g.n/ D h.n/.

o-notation

o.g.n// D ff .n/ W for all constantsc > 0, there exists a constant
n0 > 0 such that0 � f .n/ < cg.n/ for all n � n0g :

Another view, probably easier to use: lim
n!1

f .n/

g.n/
D 0.

n1:9999 D o.n2/

n2= lg n D o.n2/

n2 ¤ o.n2/ (just like 2 6< 2)
n2=1000 ¤ o.n2/

!-notation

!.g.n// D ff .n/ W for all constantsc > 0, there exists a constant
n0 > 0 such that0 � cg.n/ < f .n/ for all n � n0g :

Another view, again, probably easier to use: lim
n!1

f .n/

g.n/
D 1.

n2:0001 D !.n2/

n2 lg n D !.n2/

n2 ¤ !.n2/

Comparisons of functions

Relational properties:

Transitivity:
f .n/ D ‚.g.n// andg.n/ D ‚.h.n//) f .n/ D ‚.h.n//.
Same forO; �; o; and!.

Reflexivity:
f .n/ D ‚.f .n//.
Same forO and�.

Symmetry:
f .n/ D ‚.g.n// if and only if g.n/ D ‚.f .n//.

Transpose symmetry:
f .n/ D O.g.n// if and only if g.n/ D �.f .n//.
f .n/ D o.g.n// if and only if g.n/ D !.f .n//.

Lecture Notes for Chapter 3: Growth of Functions 3-5

Comparisons:

� f .n/ is asymptotically smallerthang.n/ if f .n/ D o.g.n//.
� f .n/ is asymptotically largerthang.n/ if f .n/ D !.g.n//.

No trichotomy. Although intuitively, we can likenO to �, � to �, etc., unlike
real numbers, wherea < b, a D b, or a > b, we might not be able to compare
functions.

Example:n1Csinn andn, since1C sinn oscillates between 0 and 2.

Standard notations and common functions

[You probably do not want to use lecture time going over all the definitions and
properties given in Section 3.2, but it might be worth spending a few minutes of
lecture time on some of the following.]

Monotonicity

� f .n/ is monotonically increasingif m � n) f .m/ � f .n/.
� f .n/ is monotonically decreasingif m � n) f .m/ � f .n/.
� f .n/ is strictly increasingif m < n) f .m/ < f .n/.
� f .n/ is strictly decreasingif m > n) f .m/ > f .n/.

Exponentials

Useful identities:

a�1 D 1=a ;

.am/n D amn ;

aman D amCn :

Can relate rates of growth of polynomials and exponentials:for all real constants
a andb such thata > 1,

lim
n!1

nb

an
D 0 ;

which implies thatnb D o.an/.

A suprisingly useful inequality: for all realx,

ex � 1C x :

As x gets closer to0, ex gets closer to1C x.

3-6 Lecture Notes for Chapter 3: Growth of Functions

Logarithms

Notations:

lg n D log2 n (binary logarithm) ,

ln n D loge n (natural logarithm) ,

lgk n D .lg n/k (exponentiation) ,

lg lg n D lg.lg n/ (composition) .

Logarithm functions apply only to the next term in the formula, so that lgn C k

means.lg n/C k, andnot lg.nC k/.

In the expression logb a:

� If we hold b constant, then the expression is strictly increasing asa increases.
� If we hold a constant, then the expression is strictly decreasing asb increases.

Useful identities for all reala > 0, b > 0, c > 0, andn, and where logarithm bases
are not1:

a D b logb a ;

logc.ab/ D logc aC logc b ;

logb an D n logb a ;

logb a D logc a

logc b
;

logb.1=a/ D � logb a ;

logb a D 1

loga b
;

alogb c D c logb a :

Changing the base of a logarithm from one constant to anotheronly changes the
value by a constant factor, so we usually don’t worry about logarithm bases in
asymptotic notation. Convention is to use lg within asymptotic notation, unless the
base actually matters.

Just as polynomials grow more slowly than exponentials, logarithms grow more

slowly than polynomials. In lim
n!1

nb

an
D 0, substitute lgn for n and2a for a:

lim
n!1

lgb n

.2a/lg n
D lim

n!1

lgb n

na
D 0 ;

implying that lgb n D o.na/.

Factorials

nŠ D 1 � 2 � 3 � n. Special case:0Š D 1.

Can useStirling’s approximation,

nŠ D
p

2�n
�n

e

�n
�

1C‚

�
1

n

��

;

to derive that lg.nŠ/ D ‚.n lg n/.

Solutions for Chapter 3:
Growth of Functions

Solution to Exercise 3.1-1

First, let’s clarify what the function max.f .n/; g.n// is. Let’s define the function
h.n/ D max.f .n/; g.n//. Then

h.n/ D
(

f .n/ if f .n/ � g.n/ ;

g.n/ if f .n/ < g.n/ :

Sincef .n/ and g.n/ are asymptotically nonnegative, there existsn0 such that
f .n/ � 0 and g.n/ � 0 for all n � n0. Thus forn � n0, f .n/ C g.n/ �
f .n/ � 0 and f .n/ C g.n/ � g.n/ � 0. Since for any particularn, h.n/

is eitherf .n/ or g.n/, we havef .n/ C g.n/ � h.n/ � 0, which shows that
h.n/ D max.f .n/; g.n// � c2.f .n/C g.n// for all n � n0 (with c2 D 1 in the
definition of‚).

Similarly, since for any particularn, h.n/ is the larger off .n/ andg.n/, we have
for all n � n0, 0 � f .n/ � h.n/ and0 � g.n/ � h.n/. Adding these two inequal-
ities yields0 � f .n/ C g.n/ � 2h.n/, or equivalently0 � .f .n/C g.n//=2 �
h.n/, which shows thath.n/ D max.f .n/; g.n// � c1.f .n/Cg.n// for all n � n0

(with c1 D 1=2 in the definition of‚).

Solution to Exercise 3.1-2
This solution is also posted publicly

To show that.nC a/b D ‚.nb/, we want to find constantsc1; c2; n0 > 0 such that
0 � c1nb � .nC a/b � c2nb for all n � n0.

Note that
nC a � nC jaj

� 2n whenjaj � n ,
and
nC a � n � jaj

� 1

2
n whenjaj � 1

2
n .

Thus, whenn � 2 jaj,

3-8 Solutions for Chapter 3: Growth of Functions

0 � 1

2
n � nC a � 2n :

Sinceb > 0, the inequality still holds when all parts are raised to the powerb:

0 �
�

1

2
n

�b

� .nC a/b � .2n/b ;

0 �
�

1

2

�b

nb � .nC a/b � 2bnb :

Thus,c1 D .1=2/b , c2 D 2b, andn0 D 2 jaj satisfy the definition.

Solution to Exercise 3.1-3
This solution is also posted publicly

Let the running time beT .n/. T .n/ � O.n2/ means thatT .n/ � f .n/ for some
function f .n/ in the setO.n2/. This statement holds for any running timeT .n/,
since the functiong.n/ D 0 for all n is in O.n2/, and running times are always
nonnegative. Thus, the statement tells us nothing about therunning time.

Solution to Exercise 3.1-4
This solution is also posted publicly

2nC1 D O.2n/, but22n ¤ O.2n/.

To show that2nC1 D O.2n/, we must find constantsc; n0 > 0 such that

0 � 2nC1 � c � 2n for all n � n0 :

Since2nC1 D 2 � 2n for all n, we can satisfy the definition withc D 2 andn0 D 1.

To show that22n 6D O.2n/, assume there exist constantsc; n0 > 0 such that

0 � 22n � c � 2n for all n � n0 :

Then22n D 2n � 2n � c � 2n) 2n � c. But no constant is greater than all2n, and
so the assumption leads to a contradiction.

Solution to Exercise 3.1-8

�.g.n; m// D ff .n; m/ W there exist positive constantsc, n0, andm0

such that0 � cg.n; m/ � f .n; m/

for all n � n0 or m � m0g :

‚.g.n; m// D ff .n; m/ W there exist positive constantsc1, c2, n0, andm0

such that0 � c1g.n; m/ � f .n; m/ � c2g.n; m/

for all n � n0 or m � m0g :

Solutions for Chapter 3: Growth of Functions 3-9

Solution to Exercise 3.2-4
This solution is also posted publicly

dlg neŠ is not polynomially bounded, butdlg lg neŠ is.

Proving that a functionf .n/ is polynomially bounded is equivalent to proving that
lg.f .n// D O.lg n/ for the following reasons.

� If f is polynomially bounded, then there exist constantsc, k, n0 such that for
all n � n0, f .n/ � cnk. Hence, lg.f .n// � kc lg n, which, sincec andk are
constants, means that lg.f .n// D O.lg n/.

� Similarly, if lg.f .n// D O.lg n/, thenf is polynomially bounded.

In the following proofs, we will make use of the following twofacts:

1. lg.nŠ/ D ‚.n lg n/ (by equation (3.19)).

2. dlg ne D ‚.lg n/, because

� dlg ne � lg n
� dlg ne < lg nC 1 � 2 lg n for all n � 2

lg.dlg neŠ/ D ‚.dlg ne lg dlg ne/
D ‚.lg n lg lg n/

D !.lg n/ :

Therefore, lg.dlg neŠ/ ¤ O.lg n/, and sodlg neŠ is not polynomially bounded.

lg.dlg lg neŠ/ D ‚.dlg lg ne lg dlg lg ne/
D ‚.lg lg n lg lg lg n/

D o..lg lg n/2/

D o.lg2.lg n//

D o.lg n/ :

The last step above follows from the property that any polylogarithmic function
grows more slowly than any positive polynomial function, i.e., that for constants
a; b > 0, we have lgb n D o.na/. Substitute lgn for n, 2 for b, and1 for a, giving
lg2.lg n/ D o.lg n/.

Therefore, lg.dlg lg neŠ/ D O.lg n/, and sodlg lg neŠ is polynomially bounded.

Solution to Exercise 3.2-5

lg�.lg n/ is asymptotically larger because lg�.lg n/ D lg� n � 1.

3-10 Solutions for Chapter 3: Growth of Functions

Solution to Exercise 3.2-6

Both �2 and� C 1 equal.3C
p

5/=2, and bothy�2 and y� C 1 equal.3�
p

5/=2.

Solution to Exercise 3.2-7

We have two base cases:i D 0 andi D 1. For i D 0, we have

�0 � y�0

p
5

D 1� 1p
5

D 0

D F0 ;

and fori D 1, we have

�1 � y�1

p
5

D .1C
p

5/ � .1 �
p

5/

2
p

5

D 2
p

5

2
p

5
D 1

D F1 :

For the inductive case, the inductive hypothesis is thatFi�1 D .�i�1 � y�i�1/=
p

5

andFi�2 D .�i�2 � y�i�2/=
p

5. We have

Fi D Fi�1 C Fi�2 (equation (3.22))

D �i�1 � y�i�1

p
5

C �i�2 � y�i�2

p
5

(inductive hypothesis)

D �i�2.� C 1/ � y�i�2.y� C 1/p
5

D �i�2�2 � y�i�2 y�2

p
5

(Exercise 3.2-6)

D �i � y�i

p
5

:

Solution to Problem 3-3

a. Here is the ordering, where functions on the same line are in the same equiva-
lence class, and those higher on the page are� of those below them:

Solutions for Chapter 3: Growth of Functions 3-11

22nC1

22n

.nC 1/Š

nŠ see justification 7
en see justification 1
n � 2n

2n

.3=2/n

.lg n/lg n D nlg lg n see identity 1

.lg n/Š see justifications 2, 8
n3

n2 D 4lg n see identity 2
n lg n and lg.nŠ/ see justification 6
n D 2lg n see identity 3
.
p

2/lg n.D
p

n/ see identity 6, justification 3
2

p
2 lg n see identity 5, justification 4

lg2 n

ln n
p

lg n

ln ln n see justification 5
2lg� n

lg� n and lg�.lg n/ see identity 7
lg.lg�/n

n1= lg n.D 2/ and1 see identity 4

Much of the ranking is based on the following properties:

� Exponential functions grow faster than polynomial functions, which grow
faster than polylogarithmic functions.

� The base of a logarithm doesn’t matter asymptotically, but the base of an
exponential and the degree of a polynomial do matter.

We have the followingidentities:

1. .lg n/lg n D nlg lg n becausealogb c D c logb a.
2. 4lg n D n2 becausealogb c D c logb a.
3. 2lg n D n.
4. 2 D n1= lg n by raising identity 3 to the power1= lg n.

5. 2
p

2 lg n D n
p

2= lg n by raising identity 4 to the power
p

2 lg n.

6.
�p

2
�lg n D pn because

�p
2
�lg n D 2.1=2/ lg n D 2lg

p
n D pn.

7. lg�.lg n/ D .lg� n/ � 1.

The following justificationsexplain some of the rankings:

1. en D 2n.e=2/n D !.n2n/, since.e=2/n D !.n/.
2. .lg n/Š D !.n3/ by taking logs: lg.lg n/Š D ‚.lg n lg lg n/ by Stirling’s

approximation, lg.n3/ D 3 lg n. lg lg n D !.3/.

3-12 Solutions for Chapter 3: Growth of Functions

3. .
p

2/lg n D !
�

2
p

2 lg n
�

by taking logs: lg.
p

2/lg n D .1=2/ lg n, lg 2
p

2 lg n D
p

2 lg n. .1=2/ lg n D !.
p

2 lg n/.

4. 2
p

2 lg n D !.lg2 n/ by taking logs: lg2
p

2 lg n D
p

2 lg n, lg lg2 n D 2 lg lg n.
p

2 lg n D !.2 lg lg n/.

5. ln lnn D !.2lg� n/ by taking logs: lg2lg� n D lg� n. lg ln ln n D !.lg� n/.
6. lg.nŠ/ D ‚.n lg n/ (equation (3.19)).
7. nŠ D ‚.nnC1=2e�n/ by dropping constants and low-order terms in equa-

tion (3.18).
8. .lg n/Š D ‚..lg n/lg nC1=2e� lg n/ by substituting lgn for n in the previous

justification..lg n/Š D ‚..lg n/lg nC1=2n� lg e/ becausealogb c D c logb a.

b. The followingf .n/ is nonnegative, and for all functionsgi.n/ in part (a),f .n/

is neitherO.gi .n// nor �.gi .n//.

f .n/ D
(

22nC2

if n is even;

0 if n is odd:

Lecture Notes for Chapter 4:
Divide-and-Conquer

Chapter 4 overview

Recall the divide-and-conquer paradigm, which we used for merge sort:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively.
Base case:If the subproblems are small enough, just solve them by bruteforce.

Combine the subproblem solutions to give a solution to the original problem.

We look at two more algorithms based on divide-and-conquer.

Analyzing divide-and-conquer algorithms

Use a recurrence to characterize the running time of a divide-and-conquer algo-
rithm. Solving the recurrence gives us the asymptotic running time.

A recurrenceis a function is defined in terms of

� one or more base cases, and
� itself, with smaller arguments.

Examples

� T .n/ D
(

1 if n D 1 ;

T .n � 1/C 1 if n > 1 :

Solution:T .n/ D n.

� T .n/ D
(

1 if n D 1 ;

2T .n=2/C n if n � 1 :

Solution:T .n/ D n lg nC n.

� T .n/ D
(

0 if n D 2 ;

T .
p

n/C 1 if n > 2 :

Solution:T .n/ D lg lg n.

4-2 Lecture Notes for Chapter 4: Divide-and-Conquer

� T .n/ D
(

1 if n D 1 ;

T .n=3/C T .2n=3/C n if n > 1 :

Solution:T .n/ D ‚.n lg n/.

[The notes for this chapter are fairly brief because we teachrecurrences in much
greater detail in a separate discrete math course.]

Many technical issues:

� Floors and ceilings

[Floors and ceilings can easily be removed and don’t affect the solution to the
recurrence. They are better left to a discrete math course.]

� Exact vs. asymptotic functions
� Boundary conditions

In algorithm analysis, we usually express both the recurrence and its solution using
asymptotic notation.

� Example:T .n/ D 2T .n=2/C‚.n/, with solutionT .n/ D ‚.n lg n/.
� The boundary conditions are usually expressed as “T .n/ D O.1/ for suffi-

ciently smalln.”
� When we desire an exact, rather than an asymptotic, solution, we need to deal

with boundary conditions.
� In practice, we just use asymptotics most of the time, and we ignore boundary

conditions.

[In my course, there are only two acceptable ways of solving recurrences: the
substitution method and the master method. Unless the recursion tree is carefully
accounted for, I do not accept it as a proof of a solution, though I certainly accept
a recursion tree as a way to generate a guess for substitutionmethod. You may
choose to allow recursion trees as proofs in your course, in which case some of the
substitution proofs in the solutions for this chapter become recursion trees.

I also never use the iteration method, which had appeared in the first edition of
Introduction to Algorithms. I find that it is too easy to make an error in paren-
thesization, and that recursion trees give a better intuitive idea than iterating the
recurrence of how the recurrence progresses.]

Maximum-subarray problem

Input: An array AŒ1 : : n� of numbers. [Assume that some of the numbers are
negative, because this problem is trivial when all numbers are nonnegative.]

Output: Indicesi andj such thatAŒi : : j � has the greatest sum of any nonempty,
contiguous subarray ofA, along with the sum of the values inAŒi : : j �.

Lecture Notes for Chapter 4: Divide-and-Conquer 4-3

Scenario

� You have the prices that a stock traded at over a period ofn consecutive days.
� When should you have bought the stock? When should you have sold the stock?
� Even though it’s in retrospect, you can yell at your stockbroker for not recom-

mending these buy and sell dates.

To convert to a maximum-subarray problem, let

AŒi� D (price after dayi) � (price after day.i � 1/) :

[Assuming that we start with a price after day 0, i.e., just before day 1.] Then the
nonempty, contiguous subarray with the greatest sum brackets the days that you
should have held the stock.

If the maximum subarray isAŒi : : j �, then should have bought just before dayi

(i.e., just after day.i � 1/) and sold just after dayj .

Why do we need to find the maximum subarray? Why not just “buy low, sell high”?

� Lowest price might occurafter the highest price.
� But wouldn’t the optimal strategy involve buying at the lowest priceor selling

at the highest price?
� Not necessarily:

0 1 2 3 4

11

10

9

8

7

6

Maximum profit is $3 per share, from buying after day 2 and selling after day 3.
Yet lowest price occurs after day 4 and highest occurs after day 1.

Can solve by brute force: check all
�

n

2

�

D ‚.n2/ subarrays. Can organize the
computation so that each subarrayAŒi : : j � takesO.1/ time, given that you’ve
computedAŒi : : j � 1�, so that the brute-force solution takes‚.n2/ time.

Solving by divide-and-conquer

Use divide-and-conquer to solve inO.n lg n/ time.

[Maximum subarray might not be unique, though its value is, so we speak ofa
maximum subarray, rather thanthemaximum subarray.]

Subproblem: Find a maximum subarray ofAŒlow : : high�.
In original call,lowD 1, highD n.

4-4 Lecture Notes for Chapter 4: Divide-and-Conquer

Divide the subarray into two subarrays of as equal size as possible.Find the
midpoint mid of the subarrays, and consider the subarraysAŒlow : : mid� and
AŒmidC 1 : : high�.

Conquer by finding a maximum subarrays ofAŒlow : : mid� andAŒmidC1 : : high�.

Combineby finding a maximum subarray that crosses the midpoint, and using the
best solution out of the three (the subarray crossing the midpoint and the two
solutions found in the conquer step).

This strategy works because any subarray must either lie entirely on one side of the
midpoint or cross the midpoint.

Finding the maximum subarray that crosses the midpoint

Not a smaller instance of the original problem: has the added restriction that the
subarray must cross the midpoint.

Again, could use brute force. If size ofAŒlow : : high� is n, would haven=2 choices
for left endpoint andn=2 choices right endpoint, so would have‚.n2/ combina-
tions altogether.

Can solve in linear time.

� Any subarray crossing the midpointAŒmid� is made of two subarraysAŒi : : mid�

andAŒmidC 1 : : j �, wherelow � i � mid andmid < j � high.
� Find maximum subarrays of the formAŒi : : mid� andAŒmidC 1 : : j � and then

combine them.

Procedure to take arrayA and indiceslow, mid, high and return a tuple giving
indices of maximum subarray that crosses the midpoint, along with the sum in this
maximum subarray:

FIND-MAX -CROSSING-SUBARRAY .A; low; mid; high/

// Find a maximum subarray of the formAŒi : : mid�.
left-sumD �1
sumD 0

for i D mid downto low
sumD sumC AŒi�

if sum> left-sum
left-sumD sum
max-left D i

// Find a maximum subarray of the formAŒmidC 1 : : j �.
right-sumD �1
sumD 0

for j D midC 1 to high
sumD sumC AŒj �

if sum> right-sum
right-sumD sum
max-right D j

// Return the indices and the sum of the two subarrays.
return .max-left; max-right; left-sumC right-sum/

Lecture Notes for Chapter 4: Divide-and-Conquer 4-5

Time: The two loops together consider each index in the rangelow; : : : ; high ex-
actly once, and each iteration takes‚.1/ time) procedure takes‚.n/ time.

Divide-and-conquer procedure for the maximum-subarray problem

FIND-MAXIMUM -SUBARRAY.A; low; high/

if high == low
return .low; high; AŒlow�/ // base case: only one element

elsemid D b.lowC high/=2c
.left-low; left-high; left-sum/ D

FIND-MAXIMUM -SUBARRAY .A; low; mid/

.right-low; right-high; right-sum/ D
FIND-MAXIMUM -SUBARRAY .A; midC 1; high/

.cross-low; cross-high; cross-sum/ D
FIND-MAX -CROSSING-SUBARRAY .A; low; mid; high/

if left-sum� right-sumandleft-sum� cross-sum
return .left-low; left-high; left-sum/

elseif right-sum� left-sumandright-sum� cross-sum
return .right-low; right-high; right-sum/

else return .cross-low; cross-high; cross-sum/

Initial call: FIND-MAXIMUM -SUBARRAY .A; 1; n/

� Divide by computingmid.
� Conquer by the two recursive calls to FIND-MAXIMUM -SUBARRAY.
� Combine by calling FIND-MAX -CROSSING-SUBARRAY and then determining

which of the three results gives the maximum sum.
� Base case is when the subarray has only 1 element.

Analysis

Simplifying assumption:Original problem size is a power of2, so that all sub-
problem sizes are integer.[We made the same simplifying assumption when we
analyzed merge sort.]

Let T .n/ denote the running time of FIND-MAXIMUM -SUBARRAY on a subarray
of n elements.

Base case:Occurs whenhigh equalslow, so thatn D 1. The procedure just
returns) T .n/ D ‚.1/.

Recursive case:Occurs whenn > 1.

� Dividing takes‚.1/ time.
� Conquering solves two subproblems, each on a subarray ofn=2 elements. Takes

T .n=2/ time for each subproblem) 2T .n=2/ time for conquering.
� Combining consists of calling FIND-MAX -CROSSING-SUBARRAY, which

takes‚.n/ time, and a constant number of constant-time tests)‚.n/C‚.1/

time for combining.

4-6 Lecture Notes for Chapter 4: Divide-and-Conquer

Recurrence for recursive case becomes

T .n/ D ‚.1/C 2T .n=2/C‚.n/C‚.1/

D 2T .n=2/C‚.n/ (absorb‚.1/ terms into‚.n/) :

The recurrence for all cases:

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 :

Same recurrence as for merge sort. Can use the master method to show that it has
solutionT .n/ D ‚.n lg n/.

Thus, with divide-and-conquer, we have developed a‚.n lg n/-time solution.
Better than the‚.n2/-time brute-force solution.

[Can actually solve this problem in‚.n/ time. See Exercise 4.1-5.]

Strassen’s algorithm for matrix multiplication

Input: Two n � n (square) matrices,A D .aij / andB D .bij /.

Output: n � n matrix C D .cij /, whereC D A � B, i.e.,

cij D
n
X

kD1

aikbkj

for i; j D 1; 2; : : : ; n.

Need to computen2 entries ofC . Each entry is the sum ofn values.

Obvious method

[Using a shorter procedure name than in the book.]

SQUARE-MAT-MULT .A; B; n/

let C be a newn � n matrix
for i D 1 to n

for j D 1 to n

cij D 0

for k D 1 to n

cij D cij C aik � bkj

return C

Analysis: Three nested loops, each iteratesn times, and innermost loop body takes
constant time) ‚.n3/.

Lecture Notes for Chapter 4: Divide-and-Conquer 4-7

Is ‚.n3/ the best we can do? Can we multiply matrices ino.n3/ time?

Seems like any algorithm to multiply matrices must take�.n3/ time:

� Must computen2 entries.
� Each entry is the sum ofn terms.

But with Strassen’s method, we can multiply matrices ino.n3/ time.

� Strassen’s algorithm runs in‚.nlg 7/ time.
� 2:80 � lg 7 � 2:81.
� Hence, runs inO.n2:81/ time.

Simple divide-and-conquer method

As with the other divide-and-conquer algorithms, assume that n is a power of2.

Partition each ofA; B; C into four n=2 � n=2 matrices:

A D
�

A11 A12

A21 A22

�

; B D
�

B11 B12

B21 B22

�

; C D
�

C11 C12

C21 C22

�

:

RewriteC D A � B as
�

C11 C12

C21 C22

�

D
�

A11 A12

A21 A22

�

�
�

B11 B12

B21 B22

�

;

giving the four equations

C11 D A11 � B11 C A12 � B21 ;

C12 D A11 � B12 C A12 � B22 ;

C21 D A21 � B11 C A22 � B21 ;

C22 D A21 � B12 C A22 � B22 :

Each of these equations multiplies twon=2 � n=2 matrices and then adds their
n=2 � n=2 products.

Use these equations to get a divide-and-conquer algorithm:[Using a shorter pro-
cedure name than in the book.]

REC-MAT-MULT .A; B; n/

let C be a newn � n matrix
if n == 1

c11 D a11 � b11

elsepartitionA, B, andC into n=2 � n=2 submatrices
C11 D REC-MAT-MULT .A11; B11; n=2/C REC-MAT-MULT .A12; B21; n=2/

C12 D REC-MAT-MULT .A11; B12; n=2/C REC-MAT-MULT .A12; B22; n=2/

C21 D REC-MAT-MULT .A21; B11; n=2/C REC-MAT-MULT .A22; B21; n=2/

C22 D REC-MAT-MULT .A21; B12; n=2/C REC-MAT-MULT .A22; B22; n=2/

return C

[The book briefly discusses the question of how to avoid copying entries when par-
titioning matrices. Can partition matrices without copying entries by instead using
index calculations. Identify a submatrix by ranges of row and column matrices

4-8 Lecture Notes for Chapter 4: Divide-and-Conquer

from the original matrix. End up representing a submatrix differently from how
we represent the original matrix. The advantage of avoidingcopying is that par-
titioning would take only constant time, instead of‚.n2/ time. The result of the
asymptotic analysis won’t change, but using index calculations to avoid copying
gives better constant factors.]

Analysis

Let T .n/ be the time to multiply twon=2 � n=2 matrices.

Base case:n D 1. Perform one scalar multiplication:‚.1/.

Recursive case:n > 1.

� Dividing takes‚.1/ time, using index calculations.[Otherwise,‚.n2/ time.]
� Conquering makes8 recursive calls, each multiplyingn=2 � n=2 matrices)

8T .n=2/.
� Combining takes‚.n2/ time to addn=2 � n=2 matrices four times.[Doesn’t

even matter asymptotically whether we use index calculations or copy: would
be‚.n2/ either way.]

Recurrence is

T .n/ D
(

‚.1/ if n D 1 ;

8T .n=2/C‚.n2/ if n > 1 :

Can use master method to show that it has solutionT .n/ D ‚.n3/.
Asymptotically, no better than the obvious method.

Constant factors and recurrences:When setting up recurrences, can absorb con-
stant factors into asymptotic notation, but cannot absorb aconstant number of sub-
probems. Although we absorb the4 additions ofn=2�n=2 matrices into the‚.n2/

time, we cannot lose the8 in front of theT .n=2/ term. If we absorb the constant
number of subproblems, then the recursion tree would not be “bushy” and would
instead just be a linear chain.

Strassen’s method

Idea: Make the recursion tree less bushy. Perform only7 recursive multiplications
of n=2 � n=2 matrices, rather than8. Will cost several additions ofn=2 � n=2

matrices, but just a constant number more) can still absorb the constant factor
for matrix additions into the‚.n=2/ term.

The algorithm:

1. As in the recursive method, partition each of the matricesinto four n=2 � n=2

submatrices. Time:‚.1/.

2. Create10 matricesS1; S2; : : : ; S10. Each isn=2 � n=2 and is the sum or dif-
ference of two matrices created in previous step. Time:‚.n2/ to create all10

matrices.

3. Recursively compute7 matrix productsP1; P2; : : : ; P7, eachn=2 � n=2.

4. Computen=2 � n=2 submatrices ofC by adding and subtracting various com-
binations of thePi . Time: ‚.n2/.

Lecture Notes for Chapter 4: Divide-and-Conquer 4-9

Analysis

Recurrence will be

T .n/ D
(

‚.1/ if n D 1 ;

7T .n=2/C‚.n2/ if n > 1 :

By the master method, solution isT .n/ D ‚.nlg 7/.

Details

Step 2: Create the 10 matrices

S1 D B12 � B22 ;

S2 D A11 C A12 ;

S3 D A21 C A22 ;

S4 D B21 � B11 ;

S5 D A11 C A22 ;

S6 D B11 C B22 ;

S7 D A12 � A22 ;

S8 D B21 C B22 ;

S9 D A11 � A21 ;

S10 D B11 C B12 :

Add or subtractn=2 � n=2 matrices10 times) time is‚.n=2/.

Step 3: Create the 7 matrices

P1 D A11 � S1 D A11 � B12 � A11 � B22 ;

P2 D S2 � B22 D A11 � B22 C A12 � B22 ;

P3 D S3 � B11 D A21 � B11 C A22 � B11 ;

P4 D A22 � S4 D A22 � B21 � A22 � B11 ;

P5 D S5 � S6 D A11 � B11 C A11 � B22 C A22 � B11 C A22 � B22 ;

P6 D S7 � S8 D A12 � B21 C A12 � B22 � A22 � B21 � A22 � B22 ;

P7 D S9 � S10 D A11 � B11 C A11 � B12 � A21 � B11 � A21 � B12 :

The only multiplications needed are in the middle column; right-hand column just
shows the products in terms of the original submatrices ofA andB.

Step 4: Add and subtract thePi to construct submatrices ofC :

C11 D P5 C P4 � P2 C P6 ;

C12 D P1 C P2 ;

C21 D P3 C P4 ;

C22 D P5 C P1 � P3 � P7 :

To see how these computations work, expand each right-hand side, replacing
eachPi with the submatrices ofA and B that form it, and cancel terms:[We
expand out all four right-hand sides here. You might want to do just one or two of
them, to convince students that it works.]

4-10 Lecture Notes for Chapter 4: Divide-and-Conquer

A11 �B11CA11 �B22CA22 �B11CA22 �B22

� A22 �B11 CA22 �B21

� A11 �B22 � A12 �B22

� A22 �B22� A22 �B21CA12 �B22CA12 �B21

A11 �B11 CA12 �B21

A11 �B12 � A11 �B22

CA11 �B22CA12 �B22

A11 �B12 CA12 �B22

A21 �B11CA22 �B11

� A22 �B11CA22 �B21

A21 �B11 CA22 �B21

A11 �B11CA11 �B22CA22 �B11CA22 �B22

� A11 �B22 CA11 �B12

� A22 �B11 � A21 �B11

�A11 �B11 � A11 �B12CA21 �B11CA21 �B12

A22 �B22 CA21 �B12

Theoretical and practical notes

Strassen’s algorithm was the first to beat‚.n3/ time, but it’s not the asymptotically
fastest known. A method by Coppersmith and Winograd runs inO.n2:376/ time.

Practical issues against Strassen’s algorithm:
� Higher constant factor than the obvious‚.n3/-time method.
� Not good for sparse matrices.
� Not numerically stable: larger errors accumulate than in the obvious method.
� Submatrices consume space, especially if copying.

Numerical stability problem is not as bad as previously thought. And can use index
calculations to reduce space requirement.

Various researchers have tried to find the crossover point, where Strassen’s algo-
rthm runs faster than the obvious‚.n3/-time method. Analyses (that ignore caches
and hardware pipelines) have produced crossover points as low asn D 8, and ex-
periments have found crossover points as low asn D 400.

Substitution method

1. Guess the solution.

2. Use induction to find the constants and show that the solution works.

Lecture Notes for Chapter 4: Divide-and-Conquer 4-11

Example

T .n/ D
(

1 if n D 1 ;

2T .n=2/C n if n > 1 :

1. Guess:T .n/ D n lg n C n. [Here, we have a recurrence with an exact func-
tion, rather than asymptotic notation, and the solution is also exact rather than
asymptotic. We’ll have to check boundary conditions and thebase case.]

2. Induction:

Basis:n D 1) n lg nC n D 1 D T .n/

Inductive step: Inductive hypothesis is thatT .k/ D k lg k C k for all k < n.
We’ll use this inductive hypothesis forT .n=2/.

T .n/ D 2T
�n

2

�

C n

D 2
�n

2
lg

n

2
C n

2

�

C n (by inductive hypothesis)

D n lg
n

2
C nC n

D n.lg n � lg 2/C nC n

D n lg n � nC nC n

D n lg nC n :

Generally, we use asymptotic notation:

� We would writeT .n/ D 2T .n=2/C‚.n/.
� We assumeT .n/ D O.1/ for sufficiently smalln.
� We express the solution by asymptotic notation:T .n/ D ‚.n lg n/.
� We don’t worry about boundary cases, nor do we show base casesin the substi-

tution proof.

� T .n/ is always constant for any constantn.
� Since we are ultimately interested in an asymptotic solution to a recurrence,

it will always be possible to choose base cases that work.
� When we want an asymptotic solution to a recurrence, we don’tworry about

the base cases in our proofs.
� When we want an exact solution, then we have to deal with base cases.

For the substitution method:

� Name the constant in the additive term.
� Show the upper (O) and lower (�) bounds separately. Might need to use dif-

ferent constants for each.

Example

T .n/ D 2T .n=2/ C ‚.n/. If we want to show an upper bound ofT .n/ D
2T .n=2/CO.n/, we writeT .n/ � 2T .n=2/C cn for some positive constantc.

4-12 Lecture Notes for Chapter 4: Divide-and-Conquer

1. Upper bound:

Guess:T .n/ � dn lg n for some positive constantd . We are givenc in the
recurrence, and we get to choosed as any positive constant. It’s OK ford to
depend onc.

Substitution:

T .n/ � 2T .n=2/C cn

D 2
�

d
n

2
lg

n

2

�

C cn

D dn lg
n

2
C cn

D dn lg n � dnC cn

� dn lg n if �dnC cn � 0 ;

d � c

Therefore,T .n/ D O.n lg n/.

2. Lower bound:Write T .n/ � 2T .n=2/C cn for some positive constantc.

Guess:T .n/ � dn lg n for some positive constantd .

Substitution:

T .n/ � 2T .n=2/C cn

D 2
�

d
n

2
lg

n

2

�

C cn

D dn lg
n

2
C cn

D dn lg n � dnC cn

� dn lg n if �dnC cn � 0 ;

d � c

Therefore,T .n/ D �.n lg n/.

Therefore,T .n/ D ‚.n lg n/. [For this particular recurrence, we can used D c for
both the upper-bound and lower-bound proofs. That won’t always be the case.]

Make sure you show the sameexactform when doing a substitution proof.

Consider the recurrence

T .n/ D 8T .n=2/C‚.n2/ :

For an upper bound:

T .n/ � 8T .n=2/C cn2 :

Guess:T .n/ � dn3.

T .n/ � 8d.n=2/3 C cn2

D 8d.n3=8/C cn2

D dn3 C cn2

6� dn3 doesn’t work!

Remedy:Subtract offa lower-order term.

Lecture Notes for Chapter 4: Divide-and-Conquer 4-13

Guess:T .n/ � dn3 � d 0n2.

T .n/ � 8.d.n=2/3 � d 0.n=2/2/C cn2

D 8d.n3=8/ � 8d 0.n2=4/C cn2

D dn3 � 2d 0n2 C cn2

D dn3 � d 0n2 � d 0n2 C cn2

� dn3 � d 0n2 if �d 0n2 C cn2 � 0 ;

d 0 � c

Be careful when using asymptotic notation.

The false proof for the recurrenceT .n/ D 4T .n=4/C n, thatT .n/ D O.n/:

T .n/ � 4.c.n=4//C n

� cnC n

D O.n/ wrong!

Because we haven’t proven theexact formof our inductive hypothesis (which is
thatT .n/ � cn), this proof is false.

Recursion trees

Use to generate a guess. Then verify by substitution method.

Example

T .n/ D T .n=3/C T .2n=3/C‚.n/.
For upper bound, rewrite asT .n/ � T .n=3/C T .2n=3/C cn; for lower bound, as
T .n/ � T .n=3/C T .2n=3/C cn.

By summing across each level, the recursion tree shows the cost at each level of
recursion (minus the costs of recursive calls, which appearin subtrees):

…

cncn

cn

cn

c(n/3) c(2n/3)

c(n/9) c(2n/9) c(2n/9) c(4n/9)

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

� There are log3 n full levels, and after log3=2 n levels, the problem size is down
to 1.

� Each level contributes� cn.
� Lower bound guess:� dn log3 n D �.n lg n/ for some positive constantd .

4-14 Lecture Notes for Chapter 4: Divide-and-Conquer

� Upper bound guess:� dn log3=2 n D O.n lg n/ for some positive constantd .
� Thenproveby substitution.

1. Upper bound:

Guess:T .n/ � dn lg n.

Substitution:

T .n/ � T .n=3/C T .2n=3/C cn

� d.n=3/ lg.n=3/C d.2n=3/ lg.2n=3/C cn

D .d.n=3/ lg n � d.n=3/ lg 3/

C .d.2n=3/ lg n � d.2n=3/ lg.3=2//C cn

D dn lg n � d..n=3/ lg 3C .2n=3/ lg.3=2//C cn

D dn lg n � d..n=3/ lg 3C .2n=3/ lg 3� .2n=3/ lg 2/C cn

D dn lg n � dn.lg 3� 2=3/C cn

� dn lg n if �dn.lg 3 � 2=3/C cn � 0 ;

d � c

lg 3 � 2=3
:

Therefore,T .n/ D O.n lg n/.

Note:Make sure that the symbolic constants used in the recurrence(e.g.,c) and
the guess (e.g.,d) are different.

2. Lower bound:

Guess:T .n/ � dn lg n.

Substitution: Same as for the upper bound, but replacing� by �. End up
needing

0 < d � c

lg 3 � 2=3
:

Therefore,T .n/ D �.n lg n/.

Since T .n/ D O.n lg n/ and T .n/ D �.n lg n/, we conclude thatT .n/ D
‚.n lg n/.

Master method

Used for many divide-and-conquer recurrences of the form

T .n/ D aT .n=b/C f .n/ ;

wherea � 1, b > 1, andf .n/ > 0.

Based on themaster theorem(Theorem 4.1).

Comparenlogb a vs.f .n/:

Case 1: f .n/ D O.nlogb a��/ for some constant� > 0.
(f .n/ is polynomially smaller thannlogb a.)
Solution: T .n/ D ‚.nlogb a/.
(Intuitively: cost is dominated by leaves.)

Lecture Notes for Chapter 4: Divide-and-Conquer 4-15

Case 2: f .n/ D ‚.nlogb a lgk n/, wherek � 0.
[This formulation of Case 2 is more general than in Theorem 4.1, and it is given
in Exercise 4.6-2.]
(f .n/ is within a polylog factor ofnlogb a, but not smaller.)
Solution: T .n/ D ‚.nlogb a lgkC1 n/.
(Intuitively: cost isnlogb a lgk n at each level, and there are‚.lg n/ levels.)
Simple case:k D 0) f .n/ D ‚.nlogb a/) T .n/ D ‚.nlogb a lg n/.

Case 3: f .n/ D �.nlogb aC�/ for some constant� > 0 andf .n/ satisfies the regu-
larity conditionaf .n=b/ � cf .n/ for some constantc < 1 and all sufficiently
largen.
(f .n/ is polynomially greater thannlogb a.)
Solution: T .n/ D ‚.f .n//.
(Intuitively: cost is dominated by root.)

What’s with the Case 3 regularity condition?

� Generally not a problem.
� It always holds wheneverf .n/ D nk andf .n/ D �.nlogb aC�/ for constant

� > 0. [Proving this makes a nice homework exercise. See below.]So you
don’t need to check it whenf .n/ is a polynomial.

[Here’s a proof that the regularity condition holds whenf .n/ D nk andf .n/ D
�.nlogb aC�/ for constant� > 0.

Sincef .n/ D �.nlogb aC�/ andf .n/ D nk , we have thatk > logb a. Using a
base ofb and treating both sides as exponents, we havebk > b logb a D a, and so
a=bk < 1. Sincea, b, andk are constants, if we letc D a=bk, thenc is a constant
strictly less than1. We have thataf .n=b/ D a.n=b/k D .a=bk/nk D cf .n/, and
so the regularity condition is satisfied.]

Examples
� T .n/ D 5T .n=2/C‚.n2/

nlog2 5 vs.n2

Since log2 5� � D 2 for some constant� > 0, use Case 1) T .n/ D ‚.nlg 5/

� T .n/ D 27T .n=3/C‚.n3 lg n/

nlog3 27 D n3 vs.n3 lg n

Use Case 2 withk D 1) T .n/ D ‚.n3 lg2 n/

� T .n/ D 5T .n=2/C‚.n3/

nlog2 5 vs.n3

Now lg5C � D 3 for some constant� > 0

Check regularity condition (don’t really need to sincef .n/ is a polynomial):
af .n=b/ D 5.n=2/3 D 5n3=8 � cn3 for c D 5=8 < 1

Use Case 3) T .n/ D ‚.n3/

� T .n/ D 27T .n=3/C‚.n3= lg n/

nlog3 27 D n3 vs.n3= lg n D n3 lg�1 n ¤ ‚.n3 lgk n/ for anyk � 0.
Cannot use the master method.

4-16 Lecture Notes for Chapter 4: Divide-and-Conquer

[We don’t prove the master theorem in our algorithms course.We sometimes prove
a simplified version for recurrences of the formT .n/ D aT .n=b/Cnc. Section 4.6
of the text has the full proof of the master theorem.]

Solutions for Chapter 4:
Divide-and-Conquer

Solution to Exercise 4.1-1

If the index of the greatest element ofA is i , it returns.i; i; AŒi �/.

Solution to Exercise 4.1-2

MAX -SUBARRAY-BRUTE-FORCE.A/

n D A: length
max-so-far D �1
for l D 1 to n

sumD 0

for h D l to n

sumD sumC AŒh�

if sum> max-so-far
max-so-far D sum
low D l

high D h

return .low; high/

Solution to Exercise 4.1-4

If the algorithm returns a negative sum, toss out the answer and use an empty
subarray instead.

4-18 Solutions for Chapter 4: Divide-and-Conquer

Solution to Exercise 4.1-5

MAX -SUBARRAY-L INEAR.A/

n D A: length
max-sumD �1
ending-here-sumD �1
for j D 1 to n

ending-here-high D j

if ending-here-sum> 0

ending-here-sumD ending-here-sumC AŒj �

elseending-here-low D j

ending-here-sumD AŒj �

if ending-here-sum> max-sum
max-sumD ending-here-sum
low D ending-here-low
high D ending-here-high

return .low; high; max-sum/

The variables are intended as follows:

� low andhigh demarcate a maximum subarray found so far.
� max-sumgives the sum of the values in a maximum subarray found so far.
� ending-here-low andending-here-high demarcate a maximum subarray ending

at indexj . Since the high end of any subarray ending at indexj must bej ,
every iteration of thefor loop automatically setsending-here-high D j .

� ending-here-sumgives the sum of the values in a maximum subarray ending at
indexj .

The first test within thefor loop determines whether a maximum subarray
ending at indexj contains justAŒj �. As we enter an iteration of the loop,
ending-here-sumhas the sum of the values in a maximum subarray ending atj �1.
If ending-here-sumC AŒj � > AŒj �, then we extend the maximum subarray end-
ing at indexj � 1 to include indexj . (The test in theif statement just subtracts
out AŒj � from both sides.) Otherwise, we start a new subarray at indexj , so both
its low and high ends have the valuej and its sum isAŒj �. Once we know the
maximum subarray ending at indexj , we test to see whether it has a greater sum
than the maximum subarray found so far, ending at any position less than or equal
to j . If it does, then we updatelow, high, andmax-sumappropriately.

Since each iteration of thefor loop takes constant time, and the loop makesn

iterations, the running time of MAX -SUBARRAY-L INEAR is ‚.n/.

Solutions for Chapter 4: Divide-and-Conquer 4-19

Solution to Exercise 4.2-2

STRASSEN.A; B/

n D A:rows
let C be a newn � n matrix
if n == 1

c11 D a11 � b11

elsepartitionA andB in equations (4.9)
let C11, C12, C21, andC22 ben=2 � n=2 matrices
createn=2 � n=2 matricesS1; S2; : : : ; S10 andP1; P2; : : : ; P7

S1 D B12 � B22

S2 D A11 C A12

S3 D A12 C A22

S4 D B21 � B11

S5 D A11 C A22

S6 D B11 C B22

S7 D A12 � A22

S8 D B21 C B22

S9 D A11 � A21

S10 D B11 C B12

P1 D STRASSEN.A11; S1/

P2 D STRASSEN.S2; B22/

P3 D STRASSEN.S3; B11/

P4 D STRASSEN.A22; S4/

P5 D STRASSEN.S5; S6/

P6 D STRASSEN.S7; S8/

P7 D STRASSEN.S9; S10/

C11 D P5 C P4 � P2 C P6

C12 D P1 C P2

C21 D P3 C P4

C22 D P5 C P1 � P3 � P7

combineC11, C12, C21, andC22 into C

return C

Solution to Exercise 4.2-4
This solution is also posted publicly

If you can multiply3 � 3 matrices usingk multiplications, then you can multiply
n � n matrices by recursively multiplyingn=3 � n=3 matrices, in timeT .n/ D
kT .n=3/C‚.n2/.

Using the master method to solve this recurrence, consider the ratio of nlog3 k

andn2:

� If log3 k D 2, case 2 applies andT .n/ D ‚.n2 lg n/. In this case,k D 9 and
T .n/ D o.nlg 7/.

4-20 Solutions for Chapter 4: Divide-and-Conquer

� If log3 k < 2, case 3 applies andT .n/ D ‚.n2/. In this case,k < 9 and
T .n/ D o.nlg 7/.

� If log3 k > 2, case 1 applies andT .n/ D ‚.nlog3 k/. In this case,k > 9.
T .n/ D o.nlg 7/ when log3 k < lg 7, i.e., whenk < 3lg 7 � 21:85. The largest
such integerk is 21.

Thus,k D 21 and the running time is‚.nlog3 k/ D ‚.nlog3 21/ D O.n2:80/ (since
log3 21 � 2:77).

Solution to Exercise 4.3-1

We guess thatT .n/ � cn2 for some constantc > 0. We have

T .n/ D T .n � 1/C n

� c.n � 1/2 C n

D cn2 � 2cnC c C n

D cn2 C c.1 � 2n/C n :

This last quantity is less than or equal tocn2 if c.1� 2n/C n � 0 or, equivalently,
c � n=.2n � 1/. This last condition holds for alln � 1 andc � 1.

For the boundary condition, we setT .1/ D 1, and soT .1/ D 1 � c � 12. Thus, we
can choosen0 D 1 andc D 1.

Solution to Exercise 4.3-7

If we were to try a straight substitution proof, assuming that T .n/ � cnlog3 4, we
would get stuck:

T .n/ � 4.c.n=3/log3 4/C n

D 4c

�
nlog3 4

4

�

C n

D cnlog3 4 C n ;

which is greater thancnlog3 4. Instead, we subtract off a lower-order term and as-
sume thatT .n/ � cnlog3 4 � dn. Now we have

T .n/ � 4.c.n=3/log3 4 � dn=3/C n

D 4

�
cnlog3 4

4
� dn

3

�

C n

D cnlog3 4 � 4

3
dnC n ;

which is less than or equal tocnlog3 4 � dn if d � 3.

Solutions for Chapter 4: Divide-and-Conquer 4-21

Solution to Exercise 4.4-6
This solution is also posted publicly

The shortest path from the root to a leaf in the recursion treeis n ! .1=3/n !
.1=3/2n ! � � � ! 1. Since.1=3/kn D 1 whenk D log3 n, the height of the part
of the tree in which every node has two children is log3 n. Since the values at each
of these levels of the tree add up tocn, the solution to the recurrence is at least
cn log3 n D �.n lg n/.

Solution to Exercise 4.4-9
This solution is also posted publicly

T .n/ D T .˛n/C T ..1 � ˛/n/C cn

We saw the solution to the recurrenceT .n/ D T .n=3/CT .2n=3/C cn in the text.
This recurrence can be similarly solved.

Without loss of generality, let̨ � 1�˛, so that0 < 1�˛ � 1=2 and1=2 � ˛ < 1.

…

…

log1=.1�˛/ n log1=˛ n

cn

cn

cn

cn

Total: O.n lg n/

c˛n c.1� ˛/n

c˛2n c˛.1� ˛/nc˛.1� ˛/n c.1� ˛/2n

The recursion tree is full for log1=.1�˛/ n levels, each contributingcn, so we guess
�.n log1=.1�˛/ n/ D �.n lg n/. It has log1=˛ n levels, each contributing� cn, so
we guessO.n log1=˛ n/ D O.n lg n/.

Now we show thatT .n/ D ‚.n lg n/ by substitution. To prove the upper bound,
we need to show thatT .n/ � dn lg n for a suitable constantd > 0.

T .n/ D T .˛n/C T ..1 � ˛/n/C cn

� d˛n lg.˛n/C d.1 � ˛/n lg..1� ˛/n/C cn

D d˛n lg ˛ C d˛n lg nC d.1 � ˛/n lg.1� ˛/C d.1 � ˛/n lg nC cn

D dn lg nC dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛//C cn

� dn lg n ;

if dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛//C cn � 0. This condition is equivalent to

d.˛ lg ˛ C .1� ˛/ lg.1� ˛// � �c :

4-22 Solutions for Chapter 4: Divide-and-Conquer

Since1=2 � ˛ < 1 and0 < 1�˛ � 1=2, we have that lg̨ < 0 and lg.1�˛/ < 0.
Thus,˛ lg ˛ C .1 � ˛/ lg.1 � ˛/ < 0, so that when we multiply both sides of the
inequality by this factor, we need to reverse the inequality:

d � �c

˛ lg ˛ C .1� ˛/ lg.1� ˛/

or

d � c

�˛ lg ˛ C�.1� ˛/ lg.1 � ˛/
:

The fraction on the right-hand side is a positive constant, and so it suffices to pick
any value ofd that is greater than or equal to this fraction.

To prove the lower bound, we need to show thatT .n/ � dn lg n for a suitable
constantd > 0. We can use the same proof as for the upper bound, substituting �
for �, and we get the requirement that

0 < d � c

�˛ lg ˛ � .1 � ˛/ lg.1� ˛/
:

Therefore,T .n/ D ‚.n lg n/.

Solution to Exercise 4.5-2

We need to find the largest integera such that log4 a < lg 7. The answer isa D 48.

Solution to Problem 4-1

Note: In parts (a), (b), and (d) below, we are applying case 3 of the master theorem,
which requires the regularity condition thataf .n=b/ � cf .n/ for some constant
c < 1. In each of these parts,f .n/ has the formnk . The regularity condition is
satisfied becauseaf .n=b/ D ank=bk D .a=bk/nk D .a=bk/f .n/, and in each of
the cases below,a=bk is a constant strictly less than1.

a. T .n/ D 2T .n=2/C n3 D ‚.n3/. This is a divide-and-conquer recurrence with
a D 2, b D 2, f .n/ D n3, andnlogb a D nlog2 2 D n. Sincen3 D �.nlog2 2C2/

and a=bk D 2=23 D 1=4 < 1, case 3 of the master theorem applies, and
T .n/ D ‚.n3/.

b. T .n/ D T .9n=10/ C n D ‚.n/. This is a divide-and-conquer recurrence with
a D 1, b D 10=9, f .n/ D n, andnlogb a D nlog10=9 1 D n0 D 1. Since
n D �.nlog10=9 1C1/ anda=bk D 1=.10=9/1 D 9=10 < 1, case 3 of the master
theorem applies, andT .n/ D ‚.n/.

c. T .n/ D 16T .n=4/ C n2 D ‚.n2 lg n/. This is another divide-and-conquer
recurrence witha D 16, b D 4, f .n/ D n2, andnlogb a D nlog4 16 D n2. Since
n2 D ‚.nlog4 16/, case 2 of the master theorem applies, andT .n/ D ‚.n2 lg n/.

Solutions for Chapter 4: Divide-and-Conquer 4-23

d. T .n/ D 7T .n=3/C n2 D ‚.n2/. This is a divide-and-conquer recurrence with
a D 7, b D 3, f .n/ D n2, andnlogb a D nlog3 7. Since1 < log3 7 < 2, we have
thatn2 D �.nlog3 7C�/ for some constant� > 0. We also havea=bk D 7=32 D
7=9 < 1, so that case 3 of the master theorem applies, andT .n/ D ‚.n2/.

e. T .n/ D 7T .n=2/ C n2 D O.nlg 7/. This is a divide-and-conquer recurrence
with a D 7, b D 2, f .n/ D n2, andnlogb a D nlog2 7. Since2 < lg 7 < 3, we
have thatn2 D O.nlog2 7��/ for some constant� > 0. Thus, case 1 of the master
theorem applies, andT .n/ D ‚.nlg 7/.

f. T .n/ D 2T .n=4/ C pn D ‚.
p

n lg n/. This is another divide-and-conquer
recurrence witha D 2, b D 4, f .n/ D pn, andnlogb a D nlog4 2 D pn.
Since

p
n D ‚.nlog4 2/, case 2 of the master theorem applies, andT .n/ D

‚.
p

n lg n/.

g. T .n/ D T .n � 1/C n

Using the recursion tree shown below, we get a guess ofT .n/ D ‚.n2/.

n-1

n-2

n

1

n

n-1

n-2

1

2

n

2

:::

‚.n2/

First, we prove theT .n/ D �.n2/ part by induction. The inductive hypothesis
is T .n/ � cn2 for some constantc > 0.

T .n/ D T .n � 1/C n

� c.n � 1/2 C n

D cn2 � 2cnC c C n

� cn2

if �2cnC nC c � 0 or, equivalently,n.1� 2c/C c � 0. This condition holds
whenn � 0 and0 < c � 1=2.

For the upper bound,T .n/ D O.n2/, we use the inductive hypothesis that
T .n/ � cn2 for some constantc > 0. By a similar derivation, we get that
T .n/ � cn2 if �2cnC n C c � 0 or, equivalently,n.1 � 2c/C c � 0. This
condition holds forc D 1 andn � 1.

Thus,T .n/ D �.n2/ andT .n/ D O.n2/, so we conclude thatT .n/ D ‚.n2/.

4-24 Solutions for Chapter 4: Divide-and-Conquer

h. T .n/ D T .
p

n/C 1

The easy way to do this is with a change of variables, as on page86 of
the text. Letm D lg n and S.m/ D T .2m/. T .2m/ D T .2m=2/ C 1, so
S.m/ D S.m=2/C 1. Using the master theorem,nlogb a D nlog2 1 D n0 D 1

andf .n/ D 1. Since1 D ‚.1/, case 2 applies andS.m/ D ‚.lg m/. There-
fore,T .n/ D ‚.lg lg n/.

Solution to Problem 4-3

[This problem is solved only for parts a, c, e, f, g, h, and i.]

a. T .n/ D 3T .n=2/C n lg n

We havef .n/ D n lg n andnlogb a D nlg 3 � n1:585. Sincen lg n D O.nlg 3��/

for any 0 < � � 0:58, by case 1 of the master theorem, we haveT .n/ D
‚.nlg 3/.

c. T .n/ D 4T .n=2/C n2
p

n

We havef .n/ D n2
p

n D n5=2 and nlogb a D nlog2 4 D n2. Sincen5=2 D
�.n2C�/ for � D 1=2, we look at the regularity condition in case 3 of the
master theorem. We haveaf .n=b/ D 4.n=2/2

p

n=2 D n5=2=
p

2 � cn5=2 for
1=
p

2 � c < 1. Case 3 applies, and we haveT .n/ D ‚.n2
p

n/.

e. T .n/ D 2T .n=2/C n= lg n

We can get a guess by means of a recursion tree:

…

…

lg n

n

lg n

n

lg n

n=2

lg.n=2/

n=2

lg.n=2/

n=4

lg.n=4/

n=4

lg.n=4/

n=4

lg.n=4/

n=4

lg.n=4/

n

lg n � 1

n

lg n � 2

lg n�1
X

iD0

n

lg n � i
D ‚.n lg lg n/

We get the sum on each level by observing that at depthi , we have2i nodes,
each with a numerator ofn=2i and a denominator of lg.n=2i / D lg n � i , so
that the cost at depthi is

2i � n=2i

lg n � i
D n

lg n � i
:

Solutions for Chapter 4: Divide-and-Conquer 4-25

The sum for all levels is
lg n�1
X

iD0

n

lg n � i
D n

lg n
X

iD1

n

i

D n

lg n
X

iD1

1=i

D n �‚.lg lg n/ (by equation (A.7), the harmonic series)

D ‚.n lg lg n/ :

We can use this analysis as a guess thatT .n/ D ‚.n lg lg n/. If we were to do
a straight substitution proof, it would be rather involved.Instead, we will show
by substitution thatT .n/ � n.1 C Hblg nc/ andT .n/ � n � Hdlg ne, whereHk

is thekth harmonic number:Hk D 1=1 C 1=2 C 1=3 C � � � C 1=k. We also
defineH0 D 0. SinceHk D ‚.lg k/, we have thatHblg nc D ‚.lg blg nc/ D
‚.lg lg n/ andHdlg ne D ‚.lg dlg ne/ D ‚.lg lg n/. Thus, we will have that
T .n/ D ‚.n lg lg n/.

The base case for the proof is forn D 1, and we useT .1/ D 1. Here, lgn D 0,
so that lgn D blg nc D dlg ne. SinceH0 D 0, we haveT .1/ D 1 � 1.1CH0/

andT .1/ D 1 � 0 D 1 �H0.

For the upper bound ofT .n/ � n.1CHblg nc/, we have

T .n/ D 2T .n=2/C n= lg n

� 2..n=2/.1CHblg.n=2/c//C n= lg n

D n.1CHblg n�1c/C n= lg n

D n.1CHblg nc�1 C 1= lg n/

� n.1CHblg nc�1 C 1= blg nc/
D n.1CHblg nc/ ;

where the last line follows from the identityHk D Hk�1 C 1=k.

The upper bound ofT .n/ � n �Hdlg ne is similar:

T .n/ D 2T .n=2/C n= lg n

� 2..n=2/ �Hdlg.n=2/e/C n= lg n

D n �Hdlg n�1e C n= lg n

D n � .Hdlg ne�1 C 1= lg n/

� n � .Hdlg ne�1 C 1= dlg ne/
D n �Hdlg ne :

Thus,T .n/ D ‚.n lg lg n/.

f. T .n/ D T .n=2/C T .n=4/C T .n=8/C n

Using the recursion tree shown below, we get a guess ofT .n/ D ‚.n/.

4-26 Solutions for Chapter 4: Divide-and-Conquer

n n

log4 n

n
2

n
4

n
4

n
8

n
8

n
8

n
16

n
16

n
16

n
32

n
32

n
64

log8 n

:::

n.4C2C1
8

/ D 7
8
n

n.1
4
C 2

8
C 3

16
C 2

32
C 1

64
/

D n16C16C12C4C1
64

D n49
64
D 7

8

2
n

logn
X

iD1

�
7

8

�i

n D ‚.n/

We use the substitution method to prove thatT .n/ D O.n/. Our inductive
hypothesis is thatT .n/ � cn for some constantc > 0. We have

T .n/ D T .n=2/C T .n=4/C T .n=8/C n

� cn=2C cn=4C cn=8C n

D 7cn=8C n

D .1C 7c=8/n

� cn if c � 8 :

Therefore,T .n/ D O.n/.

Showing thatT .n/ D �.n/ is easy:

T .n/ D T .n=2/C T .n=4/C T .n=8/C n � n :

SinceT .n/ D O.n/ andT .n/ D �.n/, we have thatT .n/ D ‚.n/.

g. T .n/ D T .n � 1/C 1=n

This recurrence corresponds to the harmonic series, so thatT .n/ D Hn, where
Hn D 1=1C1=2C1=3C� � �C1=n. For the base case, we haveT .1/ D 1 D H1.
For the inductive step, we assume thatT .n � 1/ D Hn�1, and we have

T .n/ D T .n � 1/C 1=n

D Hn�1 C 1=n

D Hn :

SinceHn D ‚.lg n/ by equation (A.7), we have thatT .n/ D ‚.lg n/.

h. T .n/ D T .n � 1/C lg n

We guess thatT .n/ D ‚.n lg n/. To prove the upper bound, we will show that
T .n/ D O.n lg n/. Our inductive hypothesis is thatT .n/ � cn lg n for some
constantc. We have

Solutions for Chapter 4: Divide-and-Conquer 4-27

T .n/ D T .n � 1/C lg n

� c.n � 1/ lg.n � 1/C lg n

D cn lg.n � 1/ � c lg.n � 1/C lg n

� cn lg.n � 1/ � c lg.n=2/C lg n

(since lg.n � 1/ � lg.n=2/ for n � 2)

D cn lg.n � 1/ � c lg nC c C lg n

< cn lg n � c lg nC c C lg n

� cn lg n ;

if �c lg nC c C lg n � 0. Equivalently,

�c lg nC c C lg n � 0

c � .c � 1/ lg n

lg n � c=.c � 1/ :

This works forc D 2 and alln � 4.

To prove the lower bound, we will show thatT .n/ D �.n lg n/. Our inductive
hypothesis is thatT .n/ � cn lg nC dn for constantsc andd . We have

T .n/ D T .n � 1/C lg n

� c.n � 1/ lg.n � 1/C d.n � 1/C lg n

D cn lg.n � 1/ � c lg.n � 1/C dn � d C lg n

� cn lg.n=2/ � c lg.n � 1/C dn � d C lg n

(since lg.n � 1/ � lg.n=2/ for n � 2)

D cn lg n � cn � c lg.n � 1/C dn � d C lg n

� cn lg n ;

if �cn� c lg.n � 1/C dn � d C lg n � 0. Since

�cn � c lg.n � 1/C dn � d C lg n >

�cn � c lg.n � 1/C dn � d C lg.n � 1/ ;

it suffices to find conditions in which�cn�c lg.n�1/Cdn�dClg.n�1/ � 0.
Equivalently,

�cn � c lg.n � 1/C dn � d C lg.n � 1/ � 0

.d � c/n � .c � 1/ lg.n � 1/C d :

This works forc D 1, d D 2, and alln � 2.

SinceT .n/ D O.n lg n/ and T .n/ D �.n lg n/, we conclude thatT .n/ D
‚.n lg n/.

i. T .n/ D T .n � 2/C 2 lg n

We guess thatT .n/ D ‚.n lg n/. We show the upper bound ofT .n/ D
O.n lg n/ by means of the inductive hypothesisT .n/ � cn lg n for some con-
stantc > 0. We have

T .n/ D T .n � 2/C 2 lg n

� c.n � 2/ lg.n � 2/C 2 lg n

� c.n � 2/ lg nC 2 lg n

D .cn � 2c C 2/ lg n

4-28 Solutions for Chapter 4: Divide-and-Conquer

D cn lg nC .2� 2c/ lg n

� cn lg n if c > 1 :

Therefore,T .n/ D O.n lg n/.

For the lower bound ofT .n/ D �.n lg n/, we’ll show thatT .n/ � cn lg nCdn,
for constantsc; d > 0 to be chosen. We assume thatn � 4, which implies that

1. lg.n � 2/ � lg.n=2/,
2. n=2 � lg n, and
3. n=2 � 2.

(We’ll use these inequalities as we go along.) We have

T .n/ � c.n � 2/ lg.n � 2/C d.n � 2/C 2 lg n

D cn lg.n � 2/ � 2c lg.n � 2/C dn � 2d C 2 lg n

> cn lg.n � 2/ � 2c lg nC dn � 2d C 2 lg n

(since� lg n < � lg.n � 2/)

D cn lg.n � 2/ � 2.c � 1/ lg nC dn � 2d

� cn lg.n=2/ � 2.c � 1/ lg nC dn � 2d (by inequality (1) above)

D cn lg n � cn� 2.c � 1/ lg nC dn � 2d

� cn lg n ;

if �cn � 2.c � 1/ lg n C dn � 2d � 0 or, equivalently,dn � cn C 2.c �
1/ lg n C 2d . Pick any constantc > 1=2, and then pick any constantd such
that

d � 2.2c � 1/ :

(The requirement thatc > 1=2 means thatd is positive.) Then

d=2 � 2c � 1 D c C .c � 1/ ;

and addingd=2 to both sides, we have

d � c C .c � 1/C d=2 :

Multiplying by n yields

dn � cnC .c � 1/nC dn=2 ;

and then both multiplying and dividing the middle term by2 gives

dn � cnC 2.c � 1/n=2C dn=2 :

Using inequalities (2) and (3) above, we get

dn � cnC 2.c � 1/ lg nC 2d ;

which is what we needed to show. ThusT .n/ D �.n lg n/. SinceT .n/ D
O.n lg n/ andT .n/ D �.n lg n/, we conclude thatT .n/ D ‚.n lg n/.

Lecture Notes for Chapter 5:
Probabilistic Analysis and Randomized
Algorithms

[This chapter introduces probabilistic analysis and randomized algorithms. It as-
sumes that the student is familiar with the basic probability material in Appendix C.

The primary goals of these notes are to

� explain the difference between probabilistic analysis andrandomized algo-
rithms,

� present the technique of indicator random variables, and
� give another example of the analysis of a randomized algorithm (permuting an

array in place).

These notes omit the technique of permuting an array by sorting, and they omit the
starred Section 5.4.]

The hiring problem

Scenario
� You are using an employment agency to hire a new office assistant.
� The agency sends you one candidate each day.
� You interview the candidate and must immediately decide whether or not to

hire that person. But if you hire, you must also fire your current office assis-
tant—even if it’s someone you have recently hired.

� Cost to interview isci per candidate (interview fee paid to agency).
� Cost to hire isch per candidate (includes cost to fire current office assistant+

hiring fee paid to agency).
� Assume thatch > ci .
� You are committed to having hired, at all times, the best candidate seen so

far. Meaning that whenever you interview a candidate who is better than your
current office assistant, you must fire the current office assistant and hire the
candidate. Since you must have someone hired at all times, you will always
hire the first candidate that you interview.

Goal

Determine what the price of this strategy will be.

5-2 Lecture Notes for Chapter 5: Probabilistic Analysis andRandomized Algorithms

Pseudocode to model this scenario

Assumes that the candidates are numbered1 to n and that after interviewing each
candidate, we can determine if it’s better than the current office assistant. Uses a
dummy candidate0 that is worse than all others, so that the first candidate is always
hired.

HIRE-ASSISTANT.n/

bestD 0 // candidate 0 is a least-qualified dummy candidate
for i D 1 to n

interview candidatei
if candidatei is better than candidatebest

bestD i

hire candidatei

Cost

If n candidates, and we hirem of them, the cost isO.nci Cmch/.

� Have to paynci to interview, no matter how many we hire.
� So we focus on analyzing the hiring costmch.
� mch varies with each run—it depends on the order in which we interview the

candidates.
� This is a model of a common paradigm: we need to find the maximumor

minimum in a sequence by examining each element and maintaining a current
“winner.” The variablem denotes how many times we change our notion of
which element is currently winning.

Worst-case analysis

In the worst case, we hire alln candidates.

This happens if each one is better than all who came before. Inother words, if the
candidates appear in increasing order of quality.

If we hire all n, then the cost isO.nci C nch/ D O.nch/ (sincech > ci).

Probabilistic analysis

In general, we have no control over the order in which candidates appear.

We could assume that they come in a random order:

� Assign a rank to each candidate:rank.i/ is a unique integer in the range1 to n.
� The ordered listhrank.1/; rank.2/; : : : ; rank.n/i is a permutation of the candi-

date numbersh1; 2; : : : ; ni.
� The list of ranks is equally likely to be any one of thenŠ permutations.
� Equivalently, the ranks form auniform random permutation: each of the pos-

siblenŠ permutations appears with equal probability.

Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-3

Essential idea of probabilistic analysis

We must use knowledge of, or make assumptions about, the distribution of inputs.

� The expectation is over this distribution.
� This technique requires that we can make a reasonable characterization of the

input distribution.

Randomized algorithms

We might not know the distribution of inputs, or we might not be able to model it
computationally.

Instead, we use randomization within the algorithm in orderto impose a distribu-
tion on the inputs.

For the hiring problem

Change the scenario:

� The employment agency sends us a list of alln candidates in advance.
� On each day, we randomly choose a candidate from the list to interview (but

considering only those we have not yet interviewed).
� Instead of relying on the candidates being presented to us ina random order,

we take control of the process and enforce a random order.

What makes an algorithm randomized

An algorithm israndomizedif its behavior is determined in part by values pro-
duced by arandom-number generator.

� RANDOM.a; b/ returns an integerr , wherea � r � b and each of theb�aC1

possible values ofr is equally likely.
� In practice, RANDOM is implemented by apseudorandom-number generator,

which is a deterministic method returning numbers that “look” random and pass
statistical tests.

Indicator random variables

A simple yet powerful technique for computing the expected value of a random
variable.

Helpful in situations in which there may be dependence.

Given a sample space and an eventA, we define theindicator random variable

I fAg D
(

1 if A occurs;

0 if A does not occur:

Lemma
For an eventA, let XA D I fAg. Then EŒXA� D PrfAg.

5-4 Lecture Notes for Chapter 5: Probabilistic Analysis andRandomized Algorithms

Proof Letting A be the complement ofA, we have

E ŒXA� D E ŒI fAg�
D 1 � PrfAg C 0 � Pr

˚

A
	

(definition of expected value)

D PrfAg : (lemma)

Simple example

Determine the expected number of heads when we flip a fair coinone time.

� Sample space isfH; T g.
� PrfH g D PrfT g D 1=2.
� Define indicator random variableXH D I fH g. XH counts the number of heads

in one flip.
� Since PrfH g D 1=2, lemma says that EŒXH � D 1=2.

Slightly more complicated example

Determine the expected number of heads inn coin flips.

� Let X be a random variable for the number of heads inn flips.
� Could compute EŒX� D Pn

kD0 k � PrfX D kg. In fact, this is what the book
does in equation (C.37).

� Instead, we’ll use indicator random variables.
� For i D 1; 2; : : : ; n, defineXi D I fthei th flip results in eventH g.
� ThenX D

Pn

iD1 Xi .
� Lemma says that EŒXi � D PrfH g D 1=2 for i D 1; 2; : : : ; n.
� Expected number of heads is EŒX� D E Œ

Pn

iD1 Xi �.
� Problem: We want EŒ

Pn

iD1 Xi �. We have only the individual expectations
E ŒX1� ; E ŒX2� ; : : : ; E ŒXn�.

� Solution: Linearity of expectation says that the expectation of the sum equals
the sum of the expectations. Thus,

E ŒX� D E

"
n
X

iD1

Xi

#

D
n
X

iD1

E ŒXi �

D
n
X

iD1

1=2

D n=2 :

� Linearity of expectation applies even when there is dependence among the ran-
dom variables.[Not an issue in this example, but it can be a great help. The
hat-check problem of Exercise 5.2-4 is a problem with lots ofdependence. See
the solution on page 5-11 of this manual.]

Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-5

Analysis of the hiring problem

Assume that the candidates arrive in a random order.

Let X be a random variable that equals the number of times we hire a new office
assistant.

Define indicator random variablesX1; X2; : : : ; Xn, where

Xi D I fcandidatei is hiredg :

Useful properties:

� X D X1 C X2 C � � � CXn.
� Lemma) E ŒXi � D Prfcandidatei is hiredg.
We need to compute Prfcandidatei is hiredg.
� Candidatei is hired if and only if candidatei is better than each of candidates

1; 2; : : : ; i � 1.
� Assumption that the candidates arrive in random order) candidates1; 2; : : : ; i

arrive in random order) any one of these firsti candidates is equally likely to
be the best one so far.

� Thus, Prfcandidatei is the best so farg D 1=i .
� Which implies EŒXi � D 1=i .

Now compute EŒX�:

E ŒX� D E

"
n
X

iD1

Xi

#

D
n
X

iD1

E ŒXi �

D
n
X

iD1

1=i

D ln nCO.1/ (equation (A.7): the sum is a harmonic series) .

Thus, the expected hiring cost isO.ch ln n/, which is much better than the worst-
case cost ofO.nch/.

Randomized algorithms

Instead of assuming a distribution of the inputs, we impose adistribution.

The hiring problem

For the hiring problem, the algorithm is deterministic:

� For any given input, the number of times we hire a new office assistant will
always be the same.

5-6 Lecture Notes for Chapter 5: Probabilistic Analysis andRandomized Algorithms

� The number of times we hire a new office assistant depends onlyon the input.
� In fact, it depends only on the ordering of the candidates’ ranks that it is given.
� Some rank orderings will always produce a high hiring cost. Example:h1; 2; 3;

4; 5; 6i, where each candidate is hired.
� Some will always produce a low hiring cost. Example: any ordering in which

the best candidate is the first one interviewed. Then only thebest candidate is
hired.

� Some may be in between.

Instead of always interviewing the candidates in the order presented, what if we
first randomly permuted this order?

� The randomization is now in the algorithm, not in the input distribution.
� Given a particular input, we can no longer say what its hiringcost will be. Each

time we run the algorithm, we can get a different hiring cost.
� In other words, each time we run the algorithm, the executiondepends on the

random choices made.
� No particular input always elicits worst-case behavior.
� Bad behavior occurs only if we get “unlucky” numbers from therandom-

number generator.

Pseudocode for randomized hiring problem

RANDOMIZED-HIRE-ASSISTANT.n/

randomly permute the list of candidates
HIRE-ASSISTANT.n/

Lemma
The expected hiring cost of RANDOMIZED-HIRE-ASSISTANT is O.ch ln n/.

Proof After permuting the input array, we have a situation identical to the proba-
bilistic analysis of deterministic HIRE-ASSISTANT.

Randomly permuting an array

[The book considers two methods of randomly permuting ann-element array. The
first method assigns a random priority in the range 1 ton3 to each position and then
reorders the array elements into increasing priority order. We omit this method
from these notes. The second method is better: it works in place (unlike the
priority-based method), it runs in linear time without requiring sorting, and it needs
fewer random bits (n random numbers in the range 1 ton rather than the range 1
to n3). We present and analyze the second method in these notes.]

Goal

Produce a uniform random permutation (each of thenŠ permutations is equally
likely to be produced).

Lecture Notes for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-7

Non-goal: Show that for each elementAŒi�, the probability thatAŒi� moves to
position j is 1=n. (See Exercise 5.3-4, whose solution is on page 5-14 of this
manual.)

The following procedure permutes the arrayAŒ1 : : n� in place (i.e., no auxiliary
array is required).

RANDOMIZE-IN-PLACE.A; n/

for i D 1 to n

swapAŒi� with AŒRANDOM.i; n/�

Idea
� In iterationi , chooseAŒi� randomly fromAŒi : : n�.
� Will never alterAŒi� after iterationi .

Time

O.1/ per iteration) O.n/ total.

Correctness

Given a set ofn elements, ak-permutation is a sequence containingk of the n

elements. There arenŠ=.n � k/Š possiblek-permutations.

Lemma
RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Use a loop invariant:

Loop invariant: Just prior to thei th iteration of thefor loop, for each
possible.i � 1/-permutation, subarrayAŒ1 : : i � 1� contains this.i � 1/-
permutation with probability.n � i C 1/Š=nŠ.

Initialization: Just before first iteration,i D 1. Loop invariant says that for each
possible0-permutation, subarrayAŒ1 : : 0� contains this0-permutation with
probability nŠ=nŠ D 1. AŒ1 : : 0� is an empty subarray, and a0-permutation
has no elements. So,AŒ1 : : 0� contains any0-permutation with probability1.

Maintenance: Assume that just prior to thei th iteration, each possible.i � 1/-
permutation appears inAŒ1 : : i �1� with probability.n� iC1/Š=nŠ. Will show
that after thei th iteration, each possiblei-permutation appears inAŒ1 : : i � with
probability.n� i/Š=nŠ. Incrementingi for the next iteration then maintains the
invariant.

Consider a particulari-permutation� D hx1; x2; : : : ; xii. It consists of an
.i � 1/-permutation� 0 D hx1; x2; : : : ; xi�1i, followed byxi .

Let E1 be the event that the algorithm actually puts� 0 into AŒ1 : : i � 1�. By the
loop invariant, PrfE1g D .n � i C 1/Š=nŠ.

Let E2 be the event that thei th iteration putsxi into AŒi�.

5-8 Lecture Notes for Chapter 5: Probabilistic Analysis andRandomized Algorithms

We get thei-permutation� in AŒ1 : : i � if and only if bothE1 andE2 occur)
the probability that the algorithm produces� in AŒ1 : : i � is PrfE2 \E1g.
Equation (C.14)) PrfE2 \E1g D PrfE2 j E1gPrfE1g.
The algorithm choosesxi randomly from then� i C 1 possibilities inAŒi : : n�

) PrfE2 j E1g D 1=.n � i C 1/. Thus,

PrfE2 \E1g D PrfE2 j E1gPrfE1g

D 1

n � i C 1
� .n � i C 1/Š

nŠ

D .n � i/Š

nŠ
:

Termination: At termination,i D nC 1, so we conclude thatAŒ1 : : n� is a given
n-permutation with probability.n � n/Š=nŠ D 1=nŠ. (lemma)

Solutions for Chapter 5:
Probabilistic Analysis and Randomized
Algorithms

Solution to Exercise 5.1-3

To get an unbiased random bit, given only calls to BIASED-RANDOM, call
BIASED-RANDOM twice. Repeatedly do so until the two calls return different
values, and when this occurs, return the first of the two bits:

UNBIASED-RANDOM

while TRUE

x D BIASED-RANDOM

y D BIASED-RANDOM

if x ¤ y

return x

To see that UNBIASED-RANDOM returns0 and1 each with probability1=2, ob-
serve that the probability that a given iteration returns0 is

Prfx D 0 andy D 1g D .1� p/p ;

and the probability that a given iteration returns1 is

Prfx D 1 andy D 0g D p.1� p/ :

(We rely on the bits returned by BIASED-RANDOM being independent.) Thus, the
probability that a given iteration returns0 equals the probability that it returns1.
Since there is no other way for UNBIASED-RANDOM to return a value, it returns0
and1 each with probability1=2.

Assuming that each iteration takesO.1/ time, the expected running time of
UNBIASED-RANDOM is linear in the expected number of iterations. We can view
each iteration as a Bernoulli trial, where “success” means that the iteration returns
a value. The probability of success equals the probability that0 is returned plus the
probability that1 is returned, or2p.1 � p/. The number of trials until a success
occurs is given by the geometric distribution, and by equation (C.32), the expected
number of trials for this scenario is1=.2p.1 � p//. Thus, the expected running
time of UNBIASED-RANDOM is ‚.1=.2p.1 � p//.

5-10 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Solution to Exercise 5.2-1
This solution is also posted publicly

Since HIRE-ASSISTANT always hires candidate1, it hires exactly once if and only
if no candidates other than candidate1 are hired. This event occurs when candi-
date1 is the best candidate of then, which occurs with probability1=n.

HIRE-ASSISTANT hiresn times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs precisely when the list of ranks
given to the algorithm ish1; 2; : : : ; ni, which occurs with probability1=nŠ.

Solution to Exercise 5.2-2

We make three observations:

1. Candidate1 is always hired.

2. The best candidate, i.e., the one whose rank isn, is always hired.

3. If the best candidate is candidate1, then that is the only candidate hired.

Therefore, in order for HIRE-ASSISTANT to hire exactly twice, candidate1 must
have ranki � n�1 and all candidates whose ranks areiC1; iC2; : : : ; n�1 must
be interviewed after the candidate whose rank isn. (Wheni D n � 1, this second
condition vacuously holds.)

Let Ei be the event in which candidate1 has ranki ; clearly, PrfEig D 1=n for any
given value ofi .

Letting j denote the position in the interview order of the best candidate, letF be
the event in which candidates2; 3; : : : ; j � 1 have ranks strictly less than the rank
of candidate1. Given that eventEi has occurred, eventF occurs when the best
candidate is the first one interviewed out of then � i candidates whose ranks are
i C 1; i C 2; : : : ; n. Thus, PrfF j Eig D 1=.n � i/.

Our final event isA, which occurs when HIRE-ASSISTANT hires exactly twice.
Noting that the eventsE1; E2; : : : ; En are disjoint, we have

A D F \ .E1 [E2 [� � � [En�1/

D .F \E1/ [.F \E2/ [� � � [.F \En�1/ :

and

PrfAg D
n�1
X

iD1

PrfF \Eig :

By equation (C.14),

PrfF \Eig D PrfF j EigPrfEig

D 1

n � i
� 1

n
;

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-11

and so

PrfAg D
n�1
X

iD1

1

n � i
� 1

n

D 1

n

n�1
X

iD1

1

n � i

D 1

n

�
1

n � 1
C 1

n � 2
C � � � C 1

1

�

D 1

n
�Hn�1 ;

whereHn�1 is thenth harmonic number.

Solution to Exercise 5.2-4
This solution is also posted publicly

Another way to think of the hat-check problem is that we want to determine the
expected number of fixed points in a random permutation. (Afixed point of a
permutation� is a valuei for which �.i/ D i .) We could enumerate allnŠ per-
mutations, count the total number of fixed points, and divideby nŠ to determine
the average number of fixed points per permutation. This would be a painstak-
ing process, and the answer would turn out to be1. We can use indicator random
variables, however, to arrive at the same answer much more easily.

Define a random variableX that equals the number of customers that get back their
own hat, so that we want to compute EŒX�.

For i D 1; 2; : : : ; n, define the indicator random variable

Xi D I fcustomeri gets back his own hatg :

ThenX D X1 C X2 C � � � C Xn.

Since the ordering of hats is random, each customer has a probability of 1=n of
getting back his or her own hat. In other words, PrfXi D 1g D 1=n, which, by
Lemma 5.1, implies that EŒXi � D 1=n.

Thus,

E ŒX� D E

"
n
X

iD1

Xi

#

D
n
X

iD1

E ŒXi � (linearity of expectation)

D
n
X

iD1

1=n

D 1 ;

and so we expect that exactly1 customer gets back his own hat.

5-12 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Note that this is a situation in which the indicator random variables arenot inde-
pendent. For example, ifn D 2 andX1 D 1, thenX2 must also equal1. Con-
versely, ifn D 2 andX1 D 0, thenX2 must also equal0. Despite the dependence,
PrfXi D 1g D 1=n for all i , and linearity of expectation holds. Thus, we can use
the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-5
This solution is also posted publicly

Let Xij be an indicator random variable for the event where the pairAŒi�; AŒj �

for i < j is inverted, i.e.,AŒi� > AŒj �. More precisely, we defineXij D
I fAŒi� > AŒj �g for 1 � i < j � n. We have PrfXij D 1g D 1=2, because
given two distinct random numbers, the probability that thefirst is bigger than the
second is1=2. By Lemma 5.1, EŒXij � D 1=2.

Let X be the the random variable denoting the total number of inverted pairs in the
array, so that

X D
n�1
X

iD1

n
X

j DiC1

Xij :

We want the expected number of inverted pairs, so we take the expectation of both
sides of the above equation to obtain

E ŒX� D E

"
n�1
X

iD1

n
X

j DiC1

Xij

#

:

We use linearity of expectation to get

E ŒX� D E

"
n�1
X

iD1

n
X

j DiC1

Xij

#

D
n�1
X

iD1

n
X

j DiC1

E ŒXij �

D
n�1
X

iD1

n
X

j DiC1

1=2

D

n

2

!

1

2

D n.n � 1/

2
� 1

2

D n.n � 1/

4
:

Thus the expected number of inverted pairs isn.n � 1/=4.

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-13

Solution to Exercise 5.3-1

Here’s the rewritten procedure:

RANDOMIZE-IN-PLACE.A/

n D A: length
swapAŒ1� with AŒRANDOM.1; n/�

for i D 2 to n

swapAŒi� with AŒRANDOM.i; n/�

The loop invariant becomes

Loop invariant: Just prior to the iteration of thefor loop for each value of
i D 2; : : : ; n, for each possible.i�1/-permutation, the subarrayAŒ1 : : i�1�

contains this.i � 1/-permutation with probability.n � i C 1/Š=nŠ.

The maintenance and termination parts remain the same. The initialization part
is for the subarrayAŒ1 : : 1�, which contains any1-permutation with probability
.n � 1/Š=nŠ D 1=n.

Solution to Exercise 5.3-2
This solution is also posted publicly

Although PERMUTE-WITHOUT-IDENTITY will not produce the identity permuta-
tion, there are other permutations that it fails to produce.For example, consider
its operation whenn D 3, when it should be able to produce thenŠ � 1 D 5 non-
identity permutations. Thefor loop iterates fori D 1 and i D 2. Wheni D 1,
the call to RANDOM returns one of two possible values (either2 or 3), and when
i D 2, the call to RANDOM returns just one value (3). Thus, PERMUTE-WITHOUT-
IDENTITY can produce only2 � 1 D 2 possible permutations, rather than the5 that
are required.

Solution to Exercise 5.3-3

The PERMUTE-WITH-ALL procedure does not produce a uniform random per-
mutation. Consider the permutations it produces whenn D 3. The procedure
makes3 calls to RANDOM, each of which returns one of3 values, and so calling
PERMUTE-WITH-ALL has27 possible outcomes. Since there are3Š D 6 permuta-
tions, if PERMUTE-WITH-ALL did produce a uniform random permutation, then
each permutation would occur1=6 of the time. That would mean that each permu-
tation would have to occur an integer numberm times, wherem=27 D 1=6. No
integerm satisfies this condition.

In fact, if we were to work out the possible permutations ofh1; 2; 3i and how often
they occur with PERMUTE-WITH-ALL , we would get the following probabilities:

5-14 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

permutation probability
h1; 2; 3i 4=27

h1; 3; 2i 5=27

h2; 1; 3i 5=27

h2; 3; 1i 5=27

h3; 1; 2i 4=27

h3; 2; 1i 4=27

Although these probabilities sum to1, none are equal to1=6.

Solution to Exercise 5.3-4
This solution is also posted publicly

PERMUTE-BY-CYCLIC choosesoffset as a random integer in the range1 �
offset � n, and then it performs a cyclic rotation of the array. That is,
BŒ..i C offset� 1/ modn/ C 1� D AŒi� for i D 1; 2; : : : ; n. (The subtraction
and addition of1 in the index calculation is due to the1-origin indexing. If we
had used0-origin indexing instead, the index calculation would havesimplied to
BŒ.i C offset/ modn� D AŒi� for i D 0; 1; : : : ; n � 1.)

Thus, onceoffsetis determined, so is the entire permutation. Since each value of
offsetoccurs with probability1=n, each elementAŒi� has a probability of ending
up in positionBŒj � with probability1=n.

This procedure does not produce a uniform random permutation, however, since
it can produce onlyn different permutations. Thus,n permutations occur with
probability1=n, and the remainingnŠ � n permutations occur with probability0.

Solution to Exercise 5.3-7

Since each recursive call reducesm by 1 and makes only one call to RANDOM,
it’s easy to see that there are a total ofm calls to RANDOM. Moreover, since each
recursive call adds exactly one element to the set, it’s easyto see that the resulting
setS contains exactlym elements.

Because the elements of setS are chosen independently of each other, it suffices
to show that each of then values appears inS with probability m=n. We use an
inductive proof. The inductive hypothesis is that a call to RANDOM-SUBSET.m; n/

returns a setS of m elements, each appearing with probabilitym=n. The base
cases are form D 0 andm D 1. Whenm D 0, the returned set is empty, and so
it contains each element with probability0. Whenm D 1, the returned set has one
element, and it is equally likely to be any number inf1; 2; 3; : : : ; ng.
For the inductive step, we assume that the call RANDOM-SUBSET.m � 1; n � 1/

returns a setS 0 of m�1 elements in which each value inf1; 2; 3; : : : ; n � 1g occurs
with probability .m � 1/=.n � 1/. After the linei D RANDOM.1; n/, i is equally
likely to be any value inf1; 2; 3; : : : ; ng. We consider separately the probabilities

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-15

that S containsj < n and thatS containsn. Let Rj be the event that the call
RANDOM.1; n/ returnsj , so that PrfRj g D 1=n.

Forj < n, the event thatj 2 S is the union of two disjoint events:

� j 2 S 0, and
� j 62 S 0 andRj (these events are independent),

Thus,

Prfj 2 Sg
D Prfj 2 S 0g C Prfj 62 S 0 andRj g (the events are disjoint)

D m � 1

n � 1
C
�

1� m � 1

n � 1

�

� 1
n

(by the inductive hypothesis)

D m � 1

n � 1
C
�

n � 1

n � 1
� m � 1

n � 1

�

� 1
n

D m � 1

n � 1
� n

n
C n �m

n � 1
� 1

n

D .m� 1/nC .n �m/

.n � 1/n

D mn � nC n �m

.n � 1/n

D m.n� 1/

.n � 1/n

D m

n
:

The event thatn 2 S is also the union of two disjoint events:

� Rn, and
� Rj andj 2 S 0 for somej < n (these events are independent).

Thus,

Prfn 2 Sg
D PrfRng C PrfRj andj 2 S 0 for somej < ng (the events are disjoint)

D 1

n
C n � 1

n
� m � 1

n � 1
(by the inductive hypothesis)

D 1

n
� n � 1

n � 1
C n � 1

n
� m � 1

n � 1

D n � 1C nm � n �mC 1

n.n � 1/

D nm �m

n.n � 1/

D m.n � 1/

n.n � 1/

D m

n
:

5-16 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Solution to Exercise 5.4-6

First we determine the expected number of empty bins. We define a random vari-
ableX to be the number of empty bins, so that we want to compute EŒX�. Next, for
i D 1; 2; : : : ; n, we define the indicator random variableYi D I fbin i is emptyg.
Thus,

X D
n
X

iD1

Yi ;

and so

E ŒX� D E

"
n
X

iD1

Yi

#

D
n
X

iD1

E ŒYi � (by linearity of expectation)

D
n
X

iD1

Prfbin i is emptyg (by Lemma 5.1) .

Let us focus on a specific bin, say bini . We view a toss as a success if it misses
bin i and as a failure if it lands in bini . We haven independent Bernoulli trials,
each with probability of success1 � 1=n. In order for bini to be empty, we need
n successes inn trials. Using a binomial distribution, therefore, we have that

Prfbin i is emptyg D

n

n

!
�

1� 1

n

�n �
1

n

�0

D
�

1 � 1

n

�n

:

Thus,

E ŒX� D
n
X

iD1

�

1 � 1

n

�n

D n

�

1� 1

n

�n

:

By equation (3.14), asn approaches1, the quantity.1 � 1=n/n approaches1=e,
and so EŒX� approachesn=e.

Now we determine the expected number of bins with exactly oneball. We re-
defineX to be number of bins with exactly one ball, and we redefineYi to be
I fbin i gets exactly one ballg. As before, we find that

E ŒX� D
n
X

iD1

Prfbin i gets exactly one ballg :

Again focusing on bini , we need exactlyn�1 successes inn independent Bernoulli
trials, and so

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-17

Prfbin i gets exactly one ballg D

n

n � 1

!
�

1 � 1

n

�n�1 �
1

n

�1

D n �
�

1 � 1

n

�n�1
1

n

D
�

1� 1

n

�n�1

;

and so

E ŒX� D
n
X

iD1

�

1� 1

n

�n�1

D n

�

1 � 1

n

�n�1

:

Because

n

�

1 � 1

n

�n�1

D
n
�

1 � 1
n

�n

1 � 1
n

;

asn approaches1, we find that EŒX� approaches

n=e

1� 1=n
D n2

e.n� 1/
:

Solution to Problem 5-1

a. To determine the expected value represented by the counter after n INCREMENT

operations, we define some random variables:

� For j D 1; 2; : : : ; n, let Xj denote the increase in the value represented by
the counter due to thej th INCREMENT operation.

� Let Vn be the value represented by the counter aftern INCREMENT opera-
tions.

ThenVn D X1 C X2 C � � � C Xn. We want to compute EŒVn�. By linearity of
expectation,

E ŒVn� D E ŒX1 CX2 C � � � CXn� D E ŒX1�C E ŒX2�C � � � C E ŒXn� :

We shall show that EŒXj � D 1 for j D 1; 2; : : : ; n, which will prove that
E ŒVn� D n.

We actually show that EŒXj � D 1 in two ways, the second more rigorous than
the first:

1. Suppose that at the start of thej th INCREMENT operation, the counter holds
the valuei , which representsni . If the counter increases due to this INCRE-
MENT operation, then the value it represents increases byniC1 � ni . The
counter increases with probability1=.niC1 � ni/, and so

5-18 Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

E ŒXj � D .0 � Prfcounter does not increaseg/
C ..niC1 � ni / � Prfcounter increasesg/

D
�

0 �
�

1� 1

niC1 � ni

��

C
�

.niC1 � ni / �
1

niC1 � ni

�

D 1 ;

and so EŒXj � D 1 regardless of the value held by the counter.
2. Let Cj be the random variable denoting the value held in the counterat the

start of thej th INCREMENT operation. Since we can ignore values ofCj

greater than2b � 1, we use a formula for conditional expectation:

E ŒXj � D E ŒE ŒXj j Cj ��

D
2b�1
X

iD0

E ŒXj j Cj D i � � PrfCj D ig :

To compute EŒXj j Cj D i �, we note that

� PrfXj D 0 j Cj D ig D 1� 1=.niC1 � ni/,
� PrfXj D niC1 � ni j Cj D ig D 1=.niC1 � ni /, and
� PrfXj D k j Cj D ig D 0 for all otherk.

Thus,

E ŒXj j Cj D i � D
X

k

k � PrfXj D k j Cj D ig

D
�

0 �
�

1 � 1

niC1 � ni

��

C
�

.niC1 � ni/ �
1

niC1 � ni

�

D 1 :

Therefore, noting that

2b�1
X

iD0

PrfCj D ig D 1 ;

we have

E ŒXj � D
2b�1
X

iD0

1 � PrfCj D ig

D 1 :

Why is the second way more rigorous than the first? Both ways condition on the
value held in the counter, but only the second way incorporates the conditioning
into the expression for EŒXj �.

b. Defining Vn andXj as in part (a), we want to compute VarŒVn�, whereni D
100i . TheXj are pairwise independent, and so by equation (C.29), VarŒVn� D
Var ŒX1�C Var ŒX2�C � � � C Var ŒXn�.

Sinceni D 100i , we see thatniC1�ni D 100.iC1/�100i D 100. Therefore,
with probability 99=100, the increase in the value represented by the counter
due to thej th INCREMENT operation is0, and with probability1=100, the

Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-19

value represented increases by100. Thus, by equation (C.27),

Var ŒXj � D E
�

X2
j

�

� E2 ŒXj �

D
��

02 � 99

100

�

C
�

1002 � 1

100

��

� 12

D 100 � 1

D 99 :

Summing up the variances of theXj gives VarŒVn� D 99n.

Lecture Notes for Chapter 6:
Heapsort

Chapter 6 overview

Heapsort

� O.n lg n/ worst case—like merge sort.
� Sorts in place—like insertion sort.
� Combines the best of both algorithms.

To understand heapsort, we’ll cover heaps and heap operations, and then we’ll take
a look at priority queues.

Heaps

Heap data structure

� HeapA (not garbage-collected storage) is a nearly complete binary tree.

� Height of node = # of edges on a longest simple path from the node down to
a leaf.

� Height of heapD height of rootD ‚.lg n/.

� A heap can be stored as an arrayA.

� Root of tree isAŒ1�.
� Parent ofAŒi� D AŒbi=2c�.
� Left child of AŒi� D AŒ2i�.
� Right child ofAŒi� D AŒ2i C 1�.
� Computing is fast with binary representation implementation.

[In book, havelengthandheap-sizeattributes. Here, we bypass these attributes and
use parameter values instead.]

6-2 Lecture Notes for Chapter 6: Heapsort

Example

Of a max-heap.[Arcs above and below the array on the right go between parents
and children. There is no significance to whether an arc is drawn above or below
the array.]

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

Heap property

� For max-heaps (largest element at root),max-heap property:for all nodesi ,
excluding the root,AŒPARENT.i/� � AŒi�.

� For min-heaps (smallest element at root),min-heap property:for all nodesi ,
excluding the root,AŒPARENT.i/� � AŒi�.

By induction and transitivity of�, the max-heap property guarantees that the max-
imum element of a max-heap is at the root. Similar argument for min-heaps.

The heapsort algorithm we’ll show uses max-heaps.

Note: In general, heaps can bek-ary tree instead of binary.

Maintaining the heap property

MAX -HEAPIFY is important for manipulating max-heaps. It is used to maintain
the max-heap property.

� Before MAX -HEAPIFY, AŒi� may be smaller than its children.
� Assume left and right subtrees ofi are max-heaps.
� After MAX -HEAPIFY, subtree rooted ati is a max-heap.

MAX -HEAPIFY.A; i; n/

l D LEFT.i/

r D RIGHT.i/

if l � n andAŒl� > AŒi�

largestD l

elselargestD i

if r � n andAŒr� > AŒlargest�
largestD r

if largest¤ i

exchangeAŒi� with AŒlargest�
MAX -HEAPIFY.A; largest; n/

Lecture Notes for Chapter 6: Heapsort 6-3

[Parametern replaces attributeA:heap-size.]

The way MAX -HEAPIFY works:

� CompareAŒi�, AŒLEFT.i/�, andAŒRIGHT.i/�.
� If necessary, swapAŒi� with the larger of the two children to preserve heap

property.
� Continue this process of comparing and swapping down the heap, until subtree

rooted ati is max-heap. If we hit a leaf, then the subtree rooted at the leaf is
trivially a max-heap.

Run MAX -HEAPIFY on the following heap example.

16

4 10

14 7 9

2 8 1

(a)

16

14 10

4 7 9 3

2 8 1

(b)

16

14 10

8 7 9 3

2 4 1

(c)

3

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

i

i

i

� Node 2 violates the max-heap property.
� Compare node 2 with its children, and then swap it with the larger of the two

children.
� Continue down the tree, swapping until the value is properlyplaced at the root

of a subtree that is a max-heap. In this case, the max-heap is aleaf.

Time

O.lg n/.

Analysis

[Instead of book’s formal analysis with recurrence, just come up withO.lg n/ intu-
itively.] Heap is almost-complete binary tree, hence must processO.lg n/ levels,
with constant work at each level (comparing 3 items and maybeswapping 2).

6-4 Lecture Notes for Chapter 6: Heapsort

Building a heap

The following procedure, given an unordered array, will produce a max-heap.

BUILD -MAX -HEAP.A; n/

for i D bn=2c downto 1

MAX -HEAPIFY.A; i; n/

[Parametern replaces both attributesA: lengthandA:heap-size.]

Example

Building a max-heap from the following unsorted array results in the first heap
example.

� i starts off as 5.
� MAX -HEAPIFY is applied to subtrees rooted at nodes (in order): 16, 2, 3, 1,4.

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7

16

4 1 23 16 9 10 14 8 7

16

14 10

8 9 3

2 4 1

7

A

i

2 3 4 5 6 7 8 9 101

Correctness

Loop invariant: At start of every iteration offor loop, each nodei C 1,
i C 2, . . . ,n is root of a max-heap.

Initialization: By Exercise 6.1-7, we know that each nodebn=2c C 1, bn=2c C 2,
. . . ,n is a leaf, which is the root of a trivial max-heap. Sincei D bn=2c before
the first iteration of thefor loop, the invariant is initially true.

Maintenance: Children of nodei are indexed higher thani , so by the loop invari-
ant, they are both roots of max-heaps. Correctly assuming that iC1; iC2; : : : ; n

are all roots of max-heaps, MAX -HEAPIFY makes nodei a max-heap root.
Decrementingi reestablishes the loop invariant at each iteration.

Termination: Wheni D 0, the loop terminates. By the loop invariant, each node,
notably node 1, is the root of a max-heap.

Lecture Notes for Chapter 6: Heapsort 6-5

Analysis

� Simple bound: O.n/ calls to MAX -HEAPIFY, each of which takesO.lg n/

time) O.n lg n/. (Note: A good approach to analysis in general is to start by
proving easy bound, then try to tighten it.)

� Tighter analysis: Observation: Time to run MAX -HEAPIFY is linear in the
height of the node it’s run on, and most nodes have small heights. Have
�
˙

n=2hC1
�

nodes of heighth (see Exercise 6.3-3), and height of heap isblg nc
(Exercise 6.1-2).

The time required by MAX -HEAPIFY when called on a node of heighth

is O.h/, so the total cost of BUILD -MAX -HEAP is

blg nc
X

hD0

l n

2hC1

m

O.h/ D O

n

blg nc
X

hD0

h

2h

!

:

Evaluate the last summation by substitutingx D 1=2 in the formula (A.8)
�P1

kD0 kxk
�

, which yields
1
X

hD0

h

2h
D 1=2

.1 � 1=2/2

D 2 :

Thus, the running time of BUILD -MAX -HEAP is O.n/.

Building a min-heap from an unordered array can be done by calling M IN-
HEAPIFY instead of MAX -HEAPIFY, also taking linear time.

The heapsort algorithm

Given an input array, the heapsort algorithm acts as follows:

� Builds a max-heap from the array.
� Starting with the root (the maximum element), the algorithmplaces the maxi-

mum element into the correct place in the array by swapping itwith the element
in the last position in the array.

� “Discard” this last node (knowing that it is in its correct place) by decreasing the
heap size, and calling MAX -HEAPIFY on the new (possibly incorrectly-placed)
root.

� Repeat this “discarding” process until only one node (the smallest element)
remains, and therefore is in the correct place in the array.

HEAPSORT.A; n/

BUILD -MAX -HEAP.A; n/

for i D n downto 2
exchangeAŒ1� with AŒi�

MAX -HEAPIFY.A; 1; i � 1/

[Parametern replacesA: length, and parameter valuei � 1 in MAX -HEAPIFY call
replaces decrementing ofA:heap-size.]

6-6 Lecture Notes for Chapter 6: Heapsort

Example

Sort an example heap on the board.[Nodes with heavy outline are no longer in the
heap.]

(a) (b)

(c) (d)

(e)

1 2 3 4 7

2

1 3

4 7

1

2 3

4 7

3

2 1

74

4

2 3

71

7

4 3

21

A

i

i

i

i

Analysis

� BUILD -MAX -HEAP: O.n/

� for loop: n � 1 times
� exchange elements:O.1/

� MAX -HEAPIFY: O.lg n/

Total time:O.n lg n/.

Though heapsort is a great algorithm, a well-implemented quicksort usually beats
it in practice.

Heap implementation of priority queue

Heaps efficiently implement priority queues. These notes will deal with max-
priority queues implemented with max-heaps. Min-priorityqueues are imple-
mented with min-heaps similarly.

A heap gives a good compromise between fast insertion but slow extraction and
vice versa. Both operations takeO.lg n/ time.

Priority queue

� Maintains a dynamic setS of elements.
� Each set element has akey—an associated value.

Lecture Notes for Chapter 6: Heapsort 6-7

� Max-priority queue supports dynamic-set operations:

� INSERT.S; x/: inserts elementx into setS .
� MAXIMUM .S/: returns element ofS with largest key.
� EXTRACT-MAX .S/: removes and returns element ofS with largest key.
� INCREASE-KEY.S; x; k/: increases value of elementx’s key tok. Assume

k � x’s current key value.

� Example max-priority queue application: schedule jobs on shared computer.
� Min-priority queue supports similar operations:

� INSERT.S; x/: inserts elementx into setS .
� M INIMUM .S/: returns element ofS with smallest key.
� EXTRACT-M IN.S/: removes and returns element ofS with smallest key.
� DECREASE-KEY.S; x; k/: decreases value of elementx’s key tok. Assume

k � x’s current key value.

� Example min-priority queue application: event-driven simulator.

Note: Actual implementations often have ahandlein each heap element that allows
access to an object in the application, and objects in the application often have a
handle (likely an array index) to access the heap element.

Will examine how to implement max-priority queue operations.

Finding the maximum element

Getting the maximum element is easy: it’s the root.

HEAP-MAXIMUM .A/

return AŒ1�

Time

‚.1/.

Extracting max element

Given the arrayA:

� Make sure heap is not empty.
� Make a copy of the maximum element (the root).
� Make the last node in the tree the new root.
� Re-heapify the heap, with one fewer node.
� Return the copy of the maximum element.

Note: Because we need to decrement the heap sizen in the following pseudocode,
assume that it is passed by reference, not by value.

[This issue does not come up in the pseudocode in the book, because it uses the
attributeA:heap-sizeinstead of passing in the heap size as a parameter.]

6-8 Lecture Notes for Chapter 6: Heapsort

HEAP-EXTRACT-MAX .A; n/

if n < 1

error “heap underflow”
maxD AŒ1�

AŒ1� D AŒn�

n D n � 1

MAX -HEAPIFY.A; 1; n/ // remakes heap
return max

Analysis

Constant-time assignments plus time for MAX -HEAPIFY.

Time

O.lg n/.

Example

Run HEAP-EXTRACT-MAX on first heap example.

� Take 16 out of node 1.
� Move 1 from node 10 to node 1.
� Erase node 10.
� MAX -HEAPIFY from the root to preserve max-heap property.
� Note that successive extractions will remove items in reverse sorted order.

Increasing key value

Given setS , elementx, and new key valuek:

� Make surek � x’s current key.
� Updatex’s key value tok.
� Traverse the tree upward comparingx to its parent and swapping keys if neces-

sary, untilx’s key is smaller than its parent’s key.

HEAP-INCREASE-KEY.A; i; key/

if key< AŒi�

error “new key is smaller than current key”
AŒi� D key
while i > 1 andAŒPARENT.i/� < AŒi�

exchangeAŒi� with AŒPARENT.i/�

i D PARENT.i/

Analysis

Upward path from nodei has lengthO.lg n/ in ann-element heap.

Lecture Notes for Chapter 6: Heapsort 6-9

Time

O.lg n/.

Example

Increase key of node 9 in first heap example to have value 15. Exchange keys of
nodes 4 and 9, then of nodes 2 and 4.

Inserting into the heap

Given a keyk to insert into the heap:

� Increment the heap size.
� Insert a new node in the last position in the heap, with key�1.
� Increase the�1 key tok using the HEAP-INCREASE-KEY procedure defined

above.

Note: Again, the parametern is passed by reference, not by value.

MAX -HEAP-INSERT.A; key; n/

n D nC 1

AŒn� D �1
HEAP-INCREASE-KEY.A; n; key/

Analysis

Constant time assignmentsC time for HEAP-INCREASE-KEY.

Time

O.lg n/.

Min-priority queue operations are implemented similarly with min-heaps.

Solutions for Chapter 6:
Heapsort

Solution to Exercise 6.1-1
This solution is also posted publicly

Since a heap is an almost-complete binary tree (complete at all levels except pos-
sibly the lowest), it has at most2hC1 � 1 elements (if it is complete) and at least
2h�1C1 D 2h elements (if the lowest level has just 1 element and the otherlevels
are complete).

Solution to Exercise 6.1-2
This solution is also posted publicly

Given ann-element heap of heighth, we know from Exercise 6.1-1 that

2h � n � 2hC1 � 1 < 2hC1 :

Thus,h � lg n < hC 1. Sinceh is an integer,h D blg nc (by definition ofb c).

Solution to Exercise 6.1-3

Assume the claim is false—i.e., that there is a subtree whoseroot is not the largest
element in the subtree. Then the maximum element is somewhere else in the sub-
tree, possibly even at more than one location. Letm be the index at which the
maximum appears (the lowest such index if the maximum appears more than once).
Since the maximum is not at the root of the subtree, nodem has a parent. Since
the parent of a node has a lower index than the node, andm was chosen to be the
smallest index of the maximum value,AŒPARENT.m/� < AŒm�. But by the max-
heap property, we must haveAŒPARENT.m/� � AŒm�. So our assumption is false,
and the claim is true.

Solutions for Chapter 6: Heapsort 6-11

Solution to Exercise 6.2-6
This solution is also posted publicly

If you put a value at the root that is less than every value in the left and right
subtrees, then MAX -HEAPIFY will be called recursively until a leaf is reached. To
make the recursive calls traverse the longest path to a leaf,choose values that make
MAX -HEAPIFY always recurse on the left child. It follows the left branch when
the left child is greater than or equal to the right child, so putting 0 at the root
and 1 at all the other nodes, for example, will accomplish that. With such values,
MAX -HEAPIFY will be calledh times (whereh is the heap height, which is the
number of edges in the longest path from the root to a leaf), soits running time
will be ‚.h/ (since each call does‚.1/ work), which is‚.lg n/. Since we have
a case in which MAX -HEAPIFY’s running time is‚.lg n/, its worst-case running
time is�.lg n/.

Solution to Exercise 6.3-3

Let H be the height of the heap.

Two subtleties to beware of:

� Be careful not to confuse the height of a node (longest distance from a leaf)
with its depth (distance from the root).

� If the heap is not a complete binary tree (bottom level is not full), then the nodes
at a given level (depth) don’t all have the same height. For example, although all
nodes at depthH have height 0, nodes at depthH � 1 can have either height 0
or height 1.

For a complete binary tree, it’s easy to show that there are
˙

n=2hC1
�

nodes of
heighth. But the proof for an incomplete tree is tricky and is not derived from the
proof for a complete tree.

Proof By induction onh.

Basis:Show that it’s true forh D 0 (i.e., that # of leaves�
˙

n=2hC1
�

D dn=2e).
In fact, we’ll show that the # of leavesD dn=2e.
The tree leaves (nodes at height 0) are at depthsH andH � 1. They consist of

� all nodes at depthH , and
� the nodes at depthH � 1 that are not parents of depth-H nodes.

Let x be the number of nodes at depthH—that is, the number of nodes in the
bottom (possibly incomplete) level.

Note thatn � x is odd, because then � x nodes above the bottom level form a
complete binary tree, and a complete binary tree has an odd number of nodes (1
less than a power of 2). Thus ifn is odd,x is even, and ifn is even,x is odd.

6-12 Solutions for Chapter 6: Heapsort

To prove the base case, we must consider separately the case in which n is even
(x is odd) and the case in whichn is odd (x is even). Here are two ways to do
this: The first requires more cleverness, and the second requires more algebraic
manipulation.

1. First method of proving the base case:

� If n is odd, thenx is even, so all nodes have siblings—i.e., all internal
nodes have 2 children. Thus (see Exercise B.5-3), # of internal nodesD
of leaves� 1.
So,n D # of nodesD # of leavesC# of internal nodesD 2 �# of leaves�1.
Thus, # of leavesD .nC1/=2 D dn=2e. (The latter equality holds becausen

is odd.)
� If n is even, thenx is odd, and some leaf doesn’t have a sibling. If we gave

it a sibling, we would haven C 1 nodes, wheren C 1 is odd, so the case
we analyzed above would apply. Observe that we would also increase the
number of leaves by 1, since we added a node to a parent that already had
a child. By the odd-node case above, # of leavesC 1 D d.nC 1/=2e D
dn=2e C 1. (The latter equality holds becausen is even.)

In either case, # of leavesD dn=2e.
2. Second method of proving the base case:

Note that at any depthd < H there are2d nodes, because all such tree levels
are complete.

� If x is even, there arex=2 nodes at depthH � 1 that are parents of depthH
nodes, hence2H�1�x=2 nodes at depthH �1 that are not parents of depth-
H nodes. Thus,

total # of height-0 nodesD x C 2H�1 � x=2

D 2H�1 C x=2

D .2H C x/=2

D
˙

.2H C x � 1/=2
�

(becausex is even)

D dn=2e :

(n D 2H Cx�1 because the complete tree down to depthH �1 has2H �1

nodes and depthH hasx nodes.)
� If x is odd, by an argument similar to the even case, we see that

of height-0 nodesD x C 2H�1 � .x C 1/=2

D 2H�1 C .x � 1/=2

D .2H C x � 1/=2

D n=2

D dn=2e (becausex odd) n even):

Inductive step: Show that if it’s true for heighth � 1, it’s true forh.

Let nh be the number of nodes at heighth in then-node treeT .

Solutions for Chapter 6: Heapsort 6-13

Consider the treeT 0 formed by removing the leaves ofT . It hasn0 D n�n0 nodes.
We know from the base case thatn0 D dn=2e, son0 D n � n0 D n � dn=2e D
bn=2c.
Note that the nodes at heighth in T would be at heighth � 1 if the leaves of the
tree were removed—that is, they are at heighth� 1 in T 0. Lettingn0

h�1
denote the

number of nodes at heighth� 1 in T 0, we have

nh D n0
h�1 :

By induction, we can boundn0
h�1

:

nh D n0
h�1 �

˙

n0=2h
�

D
˙

bn=2c =2h
�

�
˙

.n=2/=2h
�

D
˙

n=2hC1
�

:

Alternative solution

An alternative solution relies on four facts:

1. Every nodenot on the unique simple path from the last leaf to the root is the
root of a complete binary subtree.

2. A node that is the root of a complete binary subtree and has height h is the
ancestor of2h leaves.

3. By Exercise 6.1-7, ann-element heap hasdn=2e leaves.

4. For nonnegative realsa andb, we havedae � b � dabe.
The proof is by contradiction. Assume that ann-element heap contains at least
˙

n=2hC1
�

C 1 nodes of heighth. Exactly one node of heighth is on the unique
simple path from the last leaf to the root, and the subtree rooted at this node has
at least one leaf (that being the last leaf). All other nodes of height h, of which
the heap contains at least

˙

n=2hC1
�

, are the roots of complete binary subtrees, and
each such node is the root of a subtree with2h leaves. Moreover, each subtree
whose root is at heighth is disjoint. Therefore, the number of leaves in the entire
heap is at least
l n

2hC1

m

� 2h C 1 �
l n

2hC1
� 2h

m

C 1

D
ln

2

m

C 1 ;

which contradicts the property that ann-element heap hasdn=2e leaves.

6-14 Solutions for Chapter 6: Heapsort

Solution to Exercise 6.4-1
This solution is also posted publicly

(b) (c)

(d) (e) (f)

(g) (h) (i)

2 4 5 7 8 13 17 20 25

20

4

2 5

7 8 13 17

25

2

4 5

7 8 13 17

2520

5

4 2

171387

20 25

7

4 5

171382

20 25

13

58

2 7 4 17

2520

8

7 5

171342

20 25

17

13 5

2478

2520

20

13 17

2478

255

A

i
i

i i i

i

i i

(a)

25

13 20

21778

45

Solutions for Chapter 6: Heapsort 6-15

Solution to Exercise 6.5-2
This solution is also posted publicly

22

22

81 81

8

1 10

i

8

1 -∞

15

13 9

5 12 8 7

4 0 6

(a)

15

13 9

5 12 8 7

4 0 6

(b)

15

13 9

0

12 10 7

4

5

6

(c)

i

15

5

10

0

12 9 7

4

13

6

(d)

i

Solution to Exercise 6.5-6

Change the procedure to the following:

HEAP-INCREASE-KEY.A; i; key/

if key< AŒi�

error “new key is smaller than current key”
AŒi� D key
while i > 1 andAŒPARENT.i/� < AŒi�

AŒi � D AŒPARENT.i/�

i D PARENT.i/

AŒi � D key

Solution to Problem 6-1
This solution is also posted publicly

a. The procedures BUILD -MAX -HEAP and BUILD -MAX -HEAP0 do not always
create the same heap when run on the same input array. Consider the following
counterexample.

6-16 Solutions for Chapter 6: Heapsort

Input arrayA:

1 2 3A

BUILD -MAX -HEAP.A/:

1

32

3

12

3 2 1A

BUILD -MAX -HEAP0.A/:

1

-∞

2

-∞1

3

21

3 1 2A

b. An upper bound ofO.n lg n/ time follows immediately from there beingn� 1

calls to MAX -HEAP-INSERT, each takingO.lg n/ time. For a lower bound
of �.n lg n/, consider the case in which the input array is given in strictly in-
creasing order. Each call to MAX -HEAP-INSERT causes HEAP-INCREASE-
KEY to go all the way up to the root. Since the depth of nodei is blg ic, the
total time is

n
X

iD1

‚.blg ic/ �
n
X

iDdn=2e
‚.blg dn=2ec/

�
n
X

iDdn=2e
‚.blg.n=2/c/

D
n
X

iDdn=2e
‚.blg n � 1c/

� n=2 �‚.lg n/

D �.n lg n/ :

In the worst case, therefore, BUILD -MAX -HEAP0 requires‚.n lg n/ time to
build ann-element heap.

Solution to Problem 6-2

a. We can represent ad -ary heap in a1-dimensional array as follows. The root
resides inAŒ1�, its d children reside in order inAŒ2� throughAŒd C 1�, their
children reside in order inAŒd C 2� throughAŒd 2 C d C 1�, and so on. The
following two procedures map a node with indexi to its parent and to itsj th
child (for 1 � j � d), respectively.

D-ARY-PARENT.i/

return b.i � 2/=d C 1c

D-ARY-CHILD .i; j /

return d.i � 1/C j C 1

Solutions for Chapter 6: Heapsort 6-17

To convince yourself that these procedures really work, verify that

D-ARY-PARENT.D-ARY-CHILD .i; j // D i ;

for any1 � j � d . Notice that the binary heap procedures are a special case
of the above procedures whend D 2.

b. Since each node hasd children, the height of ad -ary heap withn nodes is
‚.logd n/ D ‚.lg n= lg d/.

c. The procedure HEAP-EXTRACT-MAX given in the text for binary heaps works
fine ford -ary heaps too. The change needed to supportd -ary heaps is in MAX -
HEAPIFY, which must compare the argument node to alld children instead of
just 2 children. The running time of HEAP-EXTRACT-MAX is still the running
time for MAX -HEAPIFY, but that now takes worst-case time proportional to the
product of the height of the heap by the number of children examined at each
node (at mostd), namely‚.d logd n/ D ‚.d lg n= lg d/.

d. The procedure MAX -HEAP-INSERT given in the text for binary heaps works
fine ford -ary heaps too, assuming that HEAP-INCREASE-KEY works ford -ary
heaps. The worst-case running time is still‚.h/, whereh is the height of the
heap. (Since only parent pointers are followed, the number of children a node
has is irrelevant.) For ad -ary heap, this is‚.logd n/ D ‚.lg n= lg d/.

e. The HEAP-INCREASE-KEY procedure with two small changes works ford -ary
heaps. First, because the problem specifies that the new key is given by the
parameterk, change instances of the variablekeyto k. Second, change calls of
PARENT to calls ofD-ARY-PARENT from part (a).

In the worst case, the entire height of the tree must be traversed, so the worst-
case running time is‚.h/ D ‚.logd n/ D ‚.lg n= lg d/.

Lecture Notes for Chapter 7:
Quicksort

Chapter 7 overview

[The treatment in the second and third editions differs fromthat of the first edition.
We use a different partitioning method—known as “Lomuto partitioning”—in the
second and third editions, rather than the “Hoare partitioning” used in the first edi-
tion. Using Lomuto partitioning helps simplify the analysis, which uses indicator
random variables in the second edition.]

Quicksort

� Worst-case running time:‚.n2/.
� Expected running time:‚.n lg n/.
� Constants hidden in‚.n lg n/ are small.
� Sorts in place.

Description of quicksort

Quicksort is based on the three-step process of divide-and-conquer.

� To sort the subarrayAŒp : : r�:

Divide: PartitionAŒp : : r�, into two (possibly empty) subarraysAŒp : : q � 1�

andAŒqC 1 : : r�, such that each element in the first subarrayAŒp : : q� 1� is
� AŒq� andAŒq� is� each element in the second subarrayAŒq C 1 : : r�.

Conquer: Sort the two subarrays by recursive calls to QUICKSORT.
Combine: No work is needed to combine the subarrays, because they are sorted

in place.

� Perform the divide step by a procedure PARTITION, which returns the indexq
that marks the position separating the subarrays.

7-2 Lecture Notes for Chapter 7: Quicksort

QUICKSORT.A; p; r/

if p < r

q D PARTITION.A; p; r/

QUICKSORT.A; p; q � 1/

QUICKSORT.A; q C 1; r/

Initial call is QUICKSORT.A; 1; n/.

Partitioning

Partition subarrayAŒp : : r� by the following procedure:

PARTITION.A; p; r/

x D AŒr�

i D p � 1

for j D p to r � 1

if AŒj � � x

i D i C 1

exchangeAŒi� with AŒj �

exchangeAŒi C 1� with AŒr�

return i C 1

� PARTITION always selects the last elementAŒr� in the subarrayAŒp : : r� as the
pivot—the element around which to partition.

� As the procedure executes, the array is partitioned into four regions, some of
which may be empty:

Loop invariant:

1. All entries inAŒp : : i � are� pivot.

2. All entries inAŒi C 1 : : j � 1� are> pivot.

3. AŒr� D pivot.

It’s not needed as part of the loop invariant, but the fourth region isAŒj : : r�1�,
whose entries have not yet been examined, and so we don’t knowhow they
compare to the pivot.

Example

On an8-element subarray.

Lecture Notes for Chapter 7: Quicksort 7-3

8 1 6 4 0 3 9 5

p,j ri

8 1 6 4 0 3 9 5

p rj

1 8 6 4 0 3 9 5

p,i rj

1 8 6 4 0 3 9 5

p,i rj

1 864 0 3 9 5

p rji

1 8 64 0 3 9 5

p rji

1 3 64 0 8 9 5

p rji

1 3 64 0 8 9 5

p ri

1 654 0 8 93

p ri

i

A[r]: pivot
A[j .. r–1]: not yet examined
A[i+1 .. j–1]: known to be > pivot
A[p .. i]: known to be ≤ pivot

[The indexj disappears because it is no longer needed once thefor loop is exited.]

Correctness

Use the loop invariant to prove correctness of PARTITION:

Initialization: Before the loop starts, all the conditions of the loop invariant are
satisfied, becauser is the pivot and the subarraysAŒp : : i � andAŒiC 1 : : j � 1�

are empty.

Maintenance: While the loop is running, ifAŒj � � pivot, thenAŒj � andAŒi C 1�

are swapped and theni andj are incremented. IfAŒj � > pivot, then increment
only j .

Termination: When the loop terminates,j D r , so all elements inA are parti-
tioned into one of the three cases:AŒp : : i � � pivot, AŒi C 1 : : r � 1� > pivot,
andAŒr� D pivot.

The last two lines of PARTITION move the pivot element from the end of the array
to between the two subarrays. This is done by swapping the pivot and the first
element of the second subarray, i.e., by swappingAŒi C 1� andAŒr�.

Time for partitioning

‚.n/ to partition ann-element subarray.

7-4 Lecture Notes for Chapter 7: Quicksort

Performance of quicksort

The running time of quicksort depends on the partitioning ofthe subarrays:
� If the subarrays are balanced, then quicksort can run as fastas mergesort.
� If they are unbalanced, then quicksort can run as slowly as insertion sort.

Worst case

� Occurs when the subarrays are completely unbalanced.
� Have 0 elements in one subarray andn � 1 elements in the other subarray.
� Get the recurrence

T .n/ D T .n � 1/C T .0/C‚.n/

D T .n � 1/C‚.n/

D ‚.n2/ :

� Same running time as insertion sort.
� In fact, the worst-case running time occurs when quicksort takes a sorted array

as input, but insertion sort runs inO.n/ time in this case.

Best case

� Occurs when the subarrays are completely balanced every time.
� Each subarray has� n=2 elements.
� Get the recurrence

T .n/ D 2T .n=2/C‚.n/

D ‚.n lg n/ :

Balanced partitioning

� Quicksort’s average running time is much closer to the best case than to the
worst case.

� Imagine that PARTITION always produces a 9-to-1 split.
� Get the recurrence

T .n/ � T .9n=10/C T .n=10/C‚.n/

D O.n lg n/ :

� Intuition: look at the recursion tree.
� It’s like the one forT .n/ D T .n=3/C T .2n=3/CO.n/ in Section 4.4.
� Except that here the constants are different; we get log10 n full levels and

log10=9 n levels that are nonempty.
� As long as it’s a constant, the base of the log doesn’t matter in asymptotic

notation.
� Any split of constant proportionality will yield a recursion tree of depth

‚.lg n/.

Lecture Notes for Chapter 7: Quicksort 7-5

Intuition for the average case

� Splits in the recursion tree will not always be constant.
� There will usually be a mix of good and bad splits throughout the recursion

tree.
� To see that this doesn’t affect the asymptotic running time of quicksort, assume

that levels alternate between best-case and worst-case splits.

n

0 n–1

n

(n–1)/2 (n–1)/2

Θ(n) Θ(n)

(n–1)/2(n–1)/2 – 1

� The extra level in the left-hand figure only adds to the constant hidden in the
‚-notation.

� There are still the same number of subarrays to sort, and onlytwice as much
work was done to get to that point.

� Both figures result inO.n lg n/ time, though the constant for the figure on the
left is higher than that of the figure on the right.

Randomized version of quicksort

� We have assumed that all input permutations are equally likely.
� This is not always true.
� To correct this, we add randomization to quicksort.
� We could randomly permute the input array.
� Instead, we userandom sampling, or picking one element at random.
� Don’t always useAŒr� as the pivot. Instead, randomly pick an element from the

subarray that is being sorted.

RANDOMIZED-PARTITION .A; p; r/

i D RANDOM.p; r/

exchangeAŒr� with AŒi�

return PARTITION.A; p; r/

Randomly selecting the pivot element will, on average, cause the split of the input
array to be reasonably well balanced.

RANDOMIZED-QUICKSORT.A; p; r/

if p < r

q D RANDOMIZED-PARTITION .A; p; r/

RANDOMIZED-QUICKSORT.A; p; q � 1/

RANDOMIZED-QUICKSORT.A; q C 1; r/

7-6 Lecture Notes for Chapter 7: Quicksort

Randomization of quicksort stops any specific type of array from causing worst-
case behavior. For example, an already-sorted array causesworst-case behavior in
non-randomized QUICKSORT, but not in RANDOMIZED-QUICKSORT.

Analysis of quicksort

We will analyze

� the worst-case running time of QUICKSORT and RANDOMIZED-QUICKSORT

(the same), and
� the expected (average-case) running time of RANDOMIZED-QUICKSORT.

Worst-case analysis

We will prove that a worst-case split at every level producesa worst-case running
time ofO.n2/.

� Recurrence for the worst-case running time of QUICKSORT:

T .n/ D max
0�q�n�1

.T .q/C T .n � q � 1//C‚.n/ :

� Because PARTITION produces two subproblems, totaling sizen � 1, q ranges
from 0 ton � 1.

� Guess:T .n/ � cn2, for somec.
� Substituting our guess into the above recurrence:

T .n/ � max
0�q�n�1

.cq2 C c.n � q � 1/2/C‚.n/

D c � max
0�q�n�1

.q2 C .n � q � 1/2/C‚.n/ :

� The maximum value of.q2C .n� q � 1/2/ occurs whenq is either0 or n� 1.
(Second derivative with respect toq is positive.) Therefore,

max
0�q�n�1

.q2 C .n � q � 1/2/ � .n � 1/2

D n2 � 2nC 1 :

� And thus,

T .n/ � cn2 � c.2n � 1/C‚.n/

� cn2 if c.2n � 1/ � ‚.n/ :

� Pick c so thatc.2n � 1/ dominates‚.n/.
� Therefore, the worst-case running time of quicksort isO.n2/.
� Can also show that the recurrence’s solution is�.n2/. Thus, the worst-case

running time is‚.n2/.

Lecture Notes for Chapter 7: Quicksort 7-7

Average-case analysis

� The dominant cost of the algorithm is partitioning.
� PARTITION removes the pivot element from future consideration each time.
� Thus, PARTITION is called at mostn times.
� QUICKSORT recurses on the partitions.
� The amount of work that each call to PARTITION does is a constant plus the

number of comparisons that are performed in itsfor loop.
� Let X D the total number of comparisons performed in all calls to PARTITION.
� Therefore, the total work done over the entire execution isO.nCX/.

We will now compute a bound on the overall number of comparisons.

For ease of analysis:

� Rename the elements ofA as ´1; ´2; : : : ; ´n, with ´i being thei th smallest
element.

� Define the setZij D f´i ; ´iC1; : : : ; j́ g to be the set of elements between´i

and j́ , inclusive.

Each pair of elements is compared at most once, because elements are compared
only to the pivot element, and then the pivot element is neverin any later call to
PARTITION.

Let Xij D I f´i is compared tó j g.
(Considering whetheŕi is compared tó j at any time during the entire quicksort
algorithm, not just during one call of PARTITION.)

Since each pair is compared at most once, the total number of comparisons per-
formed by the algorithm is

X D
n�1
X

iD1

n
X

j DiC1

Xij :

Take expectations of both sides, use Lemma 5.1 and linearityof expectation:

E ŒX� D E

"
n�1
X

iD1

n
X

j DiC1

Xij

#

D
n�1
X

iD1

n
X

j DiC1

E ŒXij �

D
n�1
X

iD1

n
X

j DiC1

Prf´i is compared tó j g :

Now all we have to do is find the probability that two elements are compared.

� Think about when two elements arenot compared.

� For example, numbers in separate partitions will not be compared.
� In the previous example,h8; 1; 6; 4; 0; 3; 9; 5i and the pivot is 5, so that none

of the setf1; 4; 0; 3g will ever be compared to any of the setf8; 6; 9g.

7-8 Lecture Notes for Chapter 7: Quicksort

� Once a pivotx is chosen such that́i < x < j́ , then´i and j́ will never be
compared at any later time.

� If either ´i or j́ is chosen before any other element ofZij , then it will be
compared to all the elements ofZij , except itself.

� The probability that́ i is compared tó j is the probability that eitheŕi or j́

is the first element chosen.
� There arej�iC1 elements, and pivots are chosen randomly and independently.

Thus, the probability that any particular one of them is the first one chosen is
1=.j � i C 1/.

Therefore,

Prf´i is compared tó j g D Prf´i or j́ is the first pivot chosen fromZij g
D Prf´i is the first pivot chosen fromZij g

CPrf j́ is the first pivot chosen fromZij g

D 1

j � i C 1
C 1

j � i C 1

D 2

j � i C 1
:

[The second line follows because the two events are mutuallyexclusive.]

Substituting into the equation for EŒX�:

E ŒX� D
n�1
X

iD1

n
X

j DiC1

2

j � i C 1
:

Evaluate by using a change in variables (k D j � i) and the bound on the harmonic
series in equation (A.7):

E ŒX� D
n�1
X

iD1

n
X

j DiC1

2

j � i C 1

D
n�1
X

iD1

n�i
X

kD1

2

k C 1

<

n�1
X

iD1

n
X

kD1

2

k

D
n�1
X

iD1

O.lg n/

D O.n lg n/ :

So the expected running time of quicksort, using RANDOMIZED-PARTITION, is
O.n lg n/.

Solutions for Chapter 7:
Quicksort

Solution to Exercise 7.2-3
This solution is also posted publicly

PARTITION does a “worst-case partitioning” when the elements are in decreasing
order. It reduces the size of the subarray under consideration by only1 at each step,
which we’ve seen has running time‚.n2/.

In particular, PARTITION, given a subarrayAŒp : : r� of distinct elements in de-
creasing order, produces an empty partition inAŒp : : q � 1�, puts the pivot (orig-
inally in AŒr�) into AŒp�, and produces a partitionAŒp C 1 : : r� with only one
fewer element thanAŒp : : r�. The recurrence for QUICKSORT becomesT .n/ D
T .n � 1/C‚.n/, which has the solutionT .n/ D ‚.n2/.

Solution to Exercise 7.2-5
This solution is also posted publicly

The minimum depth follows a path that always takes the smaller part of the parti-
tion—i.e., that multiplies the number of elements by˛. One iteration reduces the
number of elements fromn to ˛n, andi iterations reduces the number of elements
to ˛in. At a leaf, there is just one remaining element, and so at a minimum-depth
leaf of depthm, we have˛mn D 1. Thus, ˛m D 1=n. Taking logs, we get
m lg ˛ D � lg n, or m D � lg n= lg ˛.

Similarly, maximum depth corresponds to always taking the larger part of the par-
tition, i.e., keeping a fraction1 � ˛ of the elements each time. The maximum
depthM is reached when there is one element left, that is, when.1 � ˛/M n D 1.
Thus,M D � lg n= lg.1 � ˛/.

All these equations are approximate because we are ignoringfloors and ceilings.

7-10 Solutions for Chapter 7: Quicksort

Solution to Exercise 7.3-1

We may be interested in the worst-case performance, but in that case, the random-
ization is irrelevant: it won’t improve the worst case. Whatrandomization can do
is make the chance of encountering a worst-case scenario small.

Solution to Exercise 7.4-2

To show that quicksort’s best-case running time is�.n lg n/, we use a technique
similar to the one used in Section 7.4.1 to show that its worst-case running time
is O.n2/.

Let T .n/ be the best-case time for the procedure QUICKSORT on an input of sizen.
We have the recurrence

T .n/ D min
1�q�n�1

.T .q/C T .n � q � 1//C‚.n/ :

We guess thatT .n/ � cn lg n for some constantc. Substituting this guess into the
recurrence, we obtain
T .n/ � min

1�q�n�1
.cq lg q C c.n � q � 1/ lg.n � q � 1//C‚.n/

D c � min
1�q�n�1

.q lg q C .n � q � 1/ lg.n � q � 1//C‚.n/ :

As we’ll show below, the expressionq lg q C .n� q � 1/ lg.n� q � 1/ achieves a
minimum over the range1 � q � n�1 whenq D n�q�1, orq D .n�1/=2, since
the first derivative of the expression with respect toq is 0 whenq D .n� 1/=2 and
the second derivative of the expression is positive. (It doesn’t matter thatq is not
an integer whenn is even, since we’re just trying to determine the minimum value
of a function, knowing that when we constrainq to integer values, the function’s
value will be no lower.)

Choosingq D .n � 1/=2 gives us the bound
min

1�q�n�1
.q lg q C .n � q � 1/ lg.n � q � 1/

� n � 1

2
lg

n � 1

2
C
�

n � n � 1

2
� 1

�

lg

�

n � n � 1

2
� 1

�

D .n � 1/ lg
n � 1

2
:

Continuing with our bounding ofT .n/, we obtain, forn � 2,

T .n/ � c.n � 1/ lg
n � 1

2
C‚.n/

D c.n � 1/ lg.n � 1/ � c.n� 1/C‚.n/

D cn lg.n � 1/ � c lg.n � 1/ � c.n � 1/C‚.n/

� cn lg.n=2/ � c lg.n � 1/ � c.n � 1/C‚.n/ (sincen � 2)

D cn lg n � cn � c lg.n � 1/ � cnC c C‚.n/

D cn lg n � .2cnC c lg.n � 1/ � c/C‚.n/

� cn lg n ;

Solutions for Chapter 7: Quicksort 7-11

since we can pick the constantc small enough so that the‚.n/ term dominates the
quantity2cn C c lg.n � 1/ � c. Thus, the best-case running time of quicksort is
�.n lg n/.

Letting f .q/ D q lg q C .n � q � 1/ lg.n � q � 1/, we now show how to find the
minimum value of this function in the range1 � q � n � 1. We need to find the
value ofq for which the derivative off with respect toq is 0. We rewrite this
function as

f .q/ D q ln q C .n � q � 1/ ln.n � q � 1/

ln 2
;

and so

f 0.q/ D d

dq

�
q ln q C .n � q � 1/ ln.n � q � 1/

ln 2

�

D ln q C 1 � ln.n � q � 1/ � 1

ln 2

D ln q � ln.n � q � 1/

ln 2
:

The derivativef 0.q/ is 0 whenq D n � q � 1, or whenq D .n � 1/=2. To verify
thatq D .n � 1/=2 is indeed a minimum (not a maximum or an inflection point),
we need to check that the second derivative off is positive atq D .n � 1/=2:

f 00.q/ D d

dq

�
ln q � ln.n � q � 1/

ln 2

�

D 1

ln 2

�
1

q
C 1

n � q � 1

�

f 00
�

n � 1

2

�

D 1

ln 2

�
2

n � 1
C 2

n � 1

�

D 1

ln 2
� 4

n � 1
> 0 (sincen � 2) :

Solution to Problem 7-2

a. If all elements are equal, then when PARTITION returns,q D r and all elements
in AŒp : : q�1� are equal. We get the recurrenceT .n/ D T .n�1/CT .0/C‚.n/

for the running time, and soT .n/ D ‚.n2/.

7-12 Solutions for Chapter 7: Quicksort

b. The PARTITION 0 procedure:

PARTITION 0.A; p; r/

x D AŒp�

i D h D p

for j D p C 1 to r

// Invariant:AŒp : : i � 1� < x, AŒi : : h� D x,
AŒhC 1 : : j � 1� > x, AŒj : : r� unknown.

if AŒj � < x

y D AŒj �

AŒj � D AŒhC 1�

AŒhC 1� D AŒi�

AŒi � D y

i D i C 1

h D hC 1

elseifAŒj � == x

exchangeAŒhC 1� with AŒj �

h D hC 1

return .i; h/

c. RANDOMIZED-PARTITION 0 is the same as RANDOMIZED-PARTITION, but
with the call to PARTITION replaced by a call to PARTITION 0.

QUICKSORT0.A; p; r/

if p < r

.q; t/ D RANDOMIZED-PARTITION 0.A; p; r/

QUICKSORT0.A; p; q � 1/

QUICKSORT0.A; t C 1; r/

d. Putting elements equal to the pivot in the same partition as the pivot can only
help us, because we do not recurse on elements equal to the pivot. Thus, the
subproblem sizes with QUICKSORT0, even with equal elements, are no larger
than the subproblem sizes with QUICKSORT when all elements are distinct.

Solution to Problem 7-4

a. QUICKSORT0 does exactly what QUICKSORT does; hence it sorts correctly.

QUICKSORT and QUICKSORT0 do the same partitioning, and then each calls
itself with argumentsA; p; q � 1. QUICKSORT then calls itself again, with
argumentsA; q C 1; r . QUICKSORT0 instead setsp D q C 1 and performs
another iteration of itswhile loop. This executes the same operations as calling
itself with A; q C 1; r , because in both cases, the first and third arguments (A

andr) have the same values as before, andp has the old value ofq C 1.

b. The stack depth of QUICKSORT0 will be ‚.n/ on ann-element input array if
there are‚.n/ recursive calls to QUICKSORT0. This happens if every call to
PARTITION.A; p; r/ returnsq D r . The sequence of recursive calls in this
scenario is

Solutions for Chapter 7: Quicksort 7-13

QUICKSORT0.A; 1; n/ ;

QUICKSORT0.A; 1; n � 1/ ;

QUICKSORT0.A; 1; n � 2/ ;
:::

QUICKSORT0.A; 1; 1/ :

Any array that is already sorted in increasing order will cause QUICKSORT0 to
behave this way.

c. The problem demonstrated by the scenario in part (b) is that each invocation of
QUICKSORT0 calls QUICKSORT0 again with almost the same range. To avoid
such behavior, we must change QUICKSORT0 so that the recursive call is on a
smaller interval of the array. The following variation of QUICKSORT0 checks
which of the two subarrays returned from PARTITION is smaller and recurses
on the smaller subarray, which is at most half the size of the current array. Since
the array size is reduced by at least half on each recursive call, the number of
recursive calls, and hence the stack depth, is‚.lg n/ in the worst case. Note
that this method works no matter how partitioning is performed (as long as
the PARTITION procedure has the same functionality as the procedure givenin
Section 7.1).

QUICKSORT00.A; p; r/

while p < r

// Partition and sort the small subarray first.
q D PARTITION.A; p; r/

if q � p < r � q

QUICKSORT00.A; p; q � 1/

p D q C 1

elseQUICKSORT00.A; q C 1; r/

r D q � 1

The expected running time is not affected, because exactly the same work is
done as before: the same partitions are produced, and the same subarrays are
sorted.

Lecture Notes for Chapter 8:
Sorting in Linear Time

Chapter 8 overview

How fast can we sort?

We will prove a lower bound, then beat it by playing a different game.

Comparison sorting

� The only operation that may be used to gain order informationabout a sequence
is comparison of pairs of elements.

� All sorts seen so far are comparison sorts: insertion sort, selection sort, merge
sort, quicksort, heapsort, treesort.

Lower bounds for sorting

Lower bounds

� �.n/ to examine all the input.
� All sorts seen so far are�.n lg n/.
� We’ll show that�.n lg n/ is a lower bound for comparison sorts.

Decision tree

� Abstraction of any comparison sort.
� Represents comparisons made by

� a specific sorting algorithm
� on inputs of a given size.

� Abstracts away everything else: control and data movement.
� We’re countingonly comparisons.

8-2 Lecture Notes for Chapter 8: Sorting in Linear Time

For insertion sort on 3 elements:

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >

〈2,3,1〉

A[1] ≤ A[2] A[1] > A[2] (swap in array)

A[1] ≤ A[2]
A[2] > A[3]

A[1] > A[2]
A[1] > A[3]

A[1] ≤ A[2] ≤ A[3]

compare A[1] to A[2]

[Each internal node is labeled by indices of array elementsfrom their original
positions. Each leaf is labeled by the permutation of orders that the algorithm
determines.]

How many leaves on the decision tree? There are� nŠ leaves, because every
permutation appears at least once.

For any comparison sort,

� 1 tree for eachn.
� View the tree as if the algorithm splits in two at each node, based on the infor-

mation it has determined up to that point.
� The tree models all possible execution traces.

What is the length of the longest path from root to leaf?

� Depends on the algorithm
� Insertion sort:‚.n2/

� Merge sort:‚.n lg n/

Lemma
Any binary tree of heighth has� 2h leaves.

In other words:

� l D # of leaves,
� h D height,
� Thenl � 2h.

(We’ll prove this lemma later.)

Why is this useful?

Theorem
Any decision tree that sortsn elements has height�.n lg n/.

Lecture Notes for Chapter 8: Sorting in Linear Time 8-3

Proof

� l � nŠ

� By lemma,nŠ � l � 2h or 2h � nŠ

� Take logs:h � lg.nŠ/

� Use Stirling’s approximation:nŠ > .n=e/n (by equation (3.17))

h � lg.n=e/n

D n lg.n=e/

D n lg n � n lg e

D �.n lg n/ : (theorem)

Now to prove the lemma:

Proof By induction onh.

Basis:h D 0. Tree is just one node, which is a leaf.2h D 1.

Inductive step: Assume true for heightD h � 1. Extend tree of heighth � 1

by making as many new leaves as possible. Each leaf becomes parent to two new
leaves.

of leaves for heighth D 2 � (# of leaves for heighth � 1)

D 2 � 2h�1 (ind. hypothesis)

D 2h : (lemma)

Corollary
Heapsort and merge sort are asymptotically optimal comparison sorts.

Sorting in linear time

Non-comparison sorts.

Counting sort

Depends on akey assumption: numbers to be sorted are integers inf0; 1; : : : ; kg.

Input: AŒ1 : : n�, whereAŒj � 2 f0; 1; : : : ; kg for j D 1; 2; : : : ; n. Array A and
valuesn andk are given as parameters.

Output: BŒ1 : : n�, sorted.B is assumed to be already allocated and is given as a
parameter.

Auxiliary storage: C Œ0 : : k�

8-4 Lecture Notes for Chapter 8: Sorting in Linear Time

COUNTING-SORT.A; B; n; k/

let C Œ0 : : k� be a new array
for i D 0 to k

C Œi � D 0

for j D 1 to n

C ŒAŒj �� D C ŒAŒj ��C 1

for i D 1 to k

C Œi � D C Œi�C C Œi � 1�

for j D n downto 1
BŒC ŒAŒj ��� D AŒj �

C ŒAŒj �� D C ŒAŒj ��� 1

Do an example forA D 21; 51; 31; 01; 22; 32; 02; 33

Counting sort isstable(keys with same value appear in same order in output as
they did in input) because of how the last loop works.

Analysis

‚.nC k/, which is‚.n/ if k D O.n/.

How big ak is practical?

� Good for sorting 32-bit values? No.
� 16-bit? Probably not.
� 8-bit? Maybe, depending onn.
� 4-bit? Probably (unlessn is really small).

Counting sort will be used in radix sort.

Radix sort

How IBM made its money. Punch card readers for census tabulation in early
1900’s. Card sorters, worked on one column at a time. It’s thealgorithm for
using the machine that extends the technique to multi-column sorting. The human
operator was part of the algorithm!

Key idea: Sort leastsignificant digits first.

To sortd digits:

RADIX -SORT.A; d/

for i D 1 to d

use a stable sort to sort arrayA on digit i

Lecture Notes for Chapter 8: Sorting in Linear Time 8-5

Example

326
453
608
835
751
435
704
690

326

453

608

835

751

435

704

690

326

453

608

835

751
435

704

690

326

453
608

835
751

435

704
690

sorted

Correctness
� Induction on number of passes (i in pseudocode).
� Assume digits1; 2; : : : ; i � 1 are sorted.
� Show that a stable sort on digiti leaves digits1; : : : ; i sorted:

� If 2 digits in positioni are different, ordering by positioni is correct, and
positions1; : : : ; i � 1 are irrelevant.

� If 2 digits in position i are equal, numbers are already in the right order
(by inductive hypothesis). The stable sort on digiti leaves them in the right
order.

This argument shows why it’s so important to use a stable sortfor intermediate
sort.

Analysis

Assume that we use counting sort as the intermediate sort.

� ‚.nC k/ per pass (digits in range0; : : : ; k)
� d passes
� ‚.d.nC k// total
� If k D O.n/, timeD ‚.dn/.

How to break each key into digits?

� n words.
� b bits/word.
� Break intor-bit digits. Haved D db=re.
� Use counting sort,k D 2r � 1.

Example: 32-bit words, 8-bit digits.b D 32, r D 8, d D d32=8e D 4,
k D 28 � 1 D 255.

� TimeD ‚(b
r

.nC 2r/).

How to chooser? Balanceb=r and n C 2r . Choosingr � lg n gives us
‚
�

b
lg n

.nC n/
�

D ‚.bn= lg n/.

8-6 Lecture Notes for Chapter 8: Sorting in Linear Time

� If we chooser < lg n, thenb=r > b= lg n, andnC 2r term doesn’t improve.
� If we chooser > lg n, thenn C 2r term gets big. Example:r D 2 lg n)

2r D 22 lg n D .2lg n/2 D n2.

So, to sort216 32-bit numbers, user D lg 216 D 16 bits. db=re D 2 passes.

Compare radix sort to merge sort and quicksort:

� 1 million .220/ 32-bit integers.
� Radix sort:d32=20e D 2 passes.
� Merge sort/quicksort: lgn D 20 passes.
� Remember, though, that each radix sort “pass” is really 2 passes—one to take

census, and one to move data.

How does radix sort violate the ground rules for a comparisonsort?

� Using counting sort allows us to gain information about keysby means other
than directly comparing 2 keys.

� Used keys as array indices.

Bucket sort

Assumes the input is generated by a random process that distributes elements uni-
formly over Œ0; 1/.

Idea
� Divide Œ0; 1/ into n equal-sizedbuckets.
� Distribute then input values into the buckets.
� Sort each bucket.
� Then go through buckets in order, listing elements in each one.

Input: AŒ1 : : n�, where0 � AŒi� < 1 for all i .

Auxiliary array: BŒ0 : : n � 1� of linked lists, each list initially empty.

BUCKET-SORT.A; n/

let BŒ0 : : n � 1� be a new array
for i D 1 to n � 1

makeBŒi� an empty list
for i D 1 to n

insertAŒi� into list BŒbn �AŒi�c�
for i D 0 to n � 1

sort listBŒi� with insertion sort
concatenate listsBŒ0�; BŒ1�; : : : ; BŒn � 1� together in order
return the concatenated lists

Lecture Notes for Chapter 8: Sorting in Linear Time 8-7

Correctness

ConsiderAŒi�, AŒj �. Assume without loss of generality thatAŒi� � AŒj �. Then
bn � AŒi�c � bn � AŒj �c. SoAŒi� is placed into the same bucket asAŒj � or into a
bucket with a lower index.

� If same bucket, insertion sort fixes up.
� If earlier bucket, concatenation of lists fixes up.

Analysis
� Relies on no bucket getting too many values.
� All lines of algorithm except insertion sorting take‚.n/ altogether.
� Intuitively, if each bucket gets a constant number of elements, it takesO.1/

time to sort each bucket) O.n/ sort time for all buckets.
� We “expect” each bucket to have few elements, since the average is 1 element

per bucket.
� But we need to do a careful analysis.

Define a random variable:

� ni D the number of elements placed in bucketBŒi�.

Because insertion sort runs in quadratic time, bucket sort time is

T .n/ D ‚.n/C
n�1
X

iD0

O.n2
i / :

Take expectations of both sides:

E ŒT .n/� D E

"

‚.n/C
n�1
X

iD0

O.n2
i /

#

D ‚.n/C
n�1
X

iD0

E
�

O.n2
i /
�

(linearity of expectation)

D ‚.n/C
n�1
X

iD0

O.E
�

n2
i

�

/ (E ŒaX� D aE ŒX�)

Claim
E Œn2

i � D 2 � .1=n/ for i D 0; : : : ; n � 1.

Proof of claim

Define indicator random variables:

� Xij D I fAŒj � falls in bucketig
� PrfAŒj � falls in bucketig D 1=n

� ni D
n
X

j D1

Xij

8-8 Lecture Notes for Chapter 8: Sorting in Linear Time

Then

E
�

n2
i

�

D E

"
n
X

j D1

Xij

!2#

D E

"
n
X

j D1

X2
ij C 2

n�1
X

j D1

n
X

kDj C1

Xij Xik

#

D
n
X

j D1

E
�

X2
ij

�

C 2

n�1
X

j D1

n
X

kDj C1

E ŒXij Xik� (linearity of expectation)

E
�

X2
ij

�

D 02 � PrfAŒj � doesn’t fall in bucketig C 12 � PrfAŒj � falls in bucketig

D 0 �
�

1 � 1

n

�

C 1 � 1
n

D 1

n

E ŒXij Xik� for j ¤ k: Sincej ¤ k, Xij andXik are independent random variables

) E ŒXij Xik� D E ŒXij � E ŒXik�

D 1

n
� 1

n

D 1

n2

Therefore:

E
�

n2
i

�

D
n
X

j D1

1

n
C 2

n�1
X

j D1

n
X

kDj C1

1

n2

D n � 1
n
C 2

n

2

!

1

n2

D 1C 2 � n.n � 1/

2
� 1

n2

D 1C n � 1

n

D 1C 1� 1

n

D 2� 1

n
(claim)

Therefore:

E ŒT .n/� D ‚.n/C
n�1
X

iD0

O.2 � 1=n/

D ‚.n/CO.n/

D ‚.n/

� Again, not a comparison sort. Used a function of key values toindex into an
array.

Lecture Notes for Chapter 8: Sorting in Linear Time 8-9

� This is aprobabilistic analysis—we used probability to analyze an algorithm
whose running time depends on the distribution of inputs.

� Different from arandomized algorithm, where we use randomization toimpose
a distribution.

� With bucket sort, if the input isn’t drawn from a uniform distribution onŒ0; 1/,
all bets are off (performance-wise, but the algorithm is still correct).

Solutions for Chapter 8:
Sorting in Linear Time

Solution to Exercise 8.1-3
This solution is also posted publicly

If the sort runs in linear time form input permutations, then the heighth of the
portion of the decision tree consisting of them corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-
sible form D nŠ=2, nŠ=n, or nŠ=2n.

We have2h � m, which gives ush � lg m. For all the possiblem’s given here,
lg m D �.n lg n/, henceh D �.n lg n/.

In particular,

lg
nŠ

2
D lg nŠ � 1 � n lg n � n lg e � 1 ;

lg
nŠ

n
D lg nŠ � lg n � n lg n � n lg e � lg n ;

lg
nŠ

2n
D lg nŠ � n � n lg n � n lg e � n :

Solution to Exercise 8.1-4

Let S be a sequence ofn elements divided inton=k subsequences each of lengthk

where all of the elements in any subsequence are larger than all of the elements
of a preceding subsequence and smaller than all of the elements of a succeeding
subsequence.

Claim
Any comparison-based sorting algorithm to sorts must take�.n lg k/ time in the
worst case.

Proof First notice that, as pointed out in the hint, we cannot provethe lower
bound by multiplying together the lower bounds for sorting each subsequence.
That would only prove that there is no faster algorithmthat sorts the subsequences

Solutions for Chapter 8: Sorting in Linear Time 8-11

independently. This was not what we are asked to prove; we cannot introduceany
extra assumptions.

Now, consider the decision tree of heighth for any comparison sort forS . Since the
elements of each subsequence can be in any order, any of thekŠ permutations cor-
respond to the final sorted order of a subsequence. And, sincethere aren=k such
subsequences, each of which can be in any order, there are.kŠ/n=k permutations
of S that could correspond to the sorting of some input order. Thus, any decision
tree for sortingS must have at least.kŠ/n=k leaves. Since a binary tree of heighth

has no more than2h leaves, we must have2h � .kŠ/n=k or h � lg..kŠ/n=k/. We
therefore obtain

h � lg..kŠ/n=k

D .n=k/ lg.kŠ/

� .n=k/ lg..k=2/k=2/

D .n=2/ lg.k=2/ :

The third line comes fromkŠ having itsk=2 largest terms being at leastk=2 each.
(We implicitly assume here thatk is even. We could adjust with floors and ceilings
if k were odd.)

Since there exists at least one path in any decision tree for sortingS that has length
at least.n=2/ lg.k=2/, the worst-case running time of any comparison-based sort-
ing algorithm forS is �.n lg k/.

Solution to Exercise 8.2-3
This solution is also posted publicly

[The following solution also answers Exercise 8.2-2.]

Notice that the correctness argument in the text does not depend on the order in
which A is processed. The algorithm is correct no matter what order is used!

But the modified algorithm is not stable. As before, in the final for loop an element
equal to one taken fromA earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrrayB. The original algorithm was stable because
an element taken fromA later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken fromA later started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements withvalue k in positions
C Œk � 1�C 1 throughC Œk�, but in the reverse order of their appearance inA.

Solution to Exercise 8.2-4

Compute theC array as is done in counting sort. The number of integers in the
rangeŒa : : b� is C Œb� � C Œa � 1�, where we interpretC Œ�1� as0.

8-12 Solutions for Chapter 8: Sorting in Linear Time

Solution to Exercise 8.3-2

Insertion sort is stable. When insertingAŒj � into the sorted sequenceAŒ1 : : : j �1�,
we do it the following way: compareAŒj � to AŒi�, starting withi D j � 1 and
going down toi D 1. Continue at long asAŒj � < AŒi�.
Merge sort as defined is stable, because when two elements compared are equal, the
tie is broken by taking the element from arrayL which keeps them in the original
order.
Heapsort and quicksort are not stable.
One scheme that makes a sorting algorithm stable is to store the index of each
element (the element’s place in the original ordering) withthe element. When
comparing two elements, compare them by their values and break ties by their
indices.
Additional space requirements: Forn elements, their indices are1 : : : n. Each can
be written in lgn bits, so together they takeO.n lg n/ additional space.
Additional time requirements: The worst case is when all elements are equal. The
asymptotic time does not change because we add a constant amount of work to
each comparison.

Solution to Exercise 8.3-3
This solution is also posted publicly

Basis: If d D 1, there’s only one digit, so sorting on that digit sorts the array.
Inductive step: Assuming that radix sort works ford � 1 digits, we’ll show that it
works ford digits.
Radix sort sorts separately on each digit, starting from digit 1. Thus, radix sort of
d digits, which sorts on digits1; : : : ; d is equivalent to radix sort of the low-order
d � 1 digits followed by a sort on digitd . By our induction hypothesis, the sort of
the low-orderd � 1 digits works, so just before the sort on digitd , the elements
are in order according to their low-orderd � 1 digits.
The sort on digitd will order the elements by theird th digit. Consider two ele-
ments,a andb, with d th digitsad andbd respectively.
� If ad < bd , the sort will puta beforeb, which is correct, sincea < b regardless

of the low-order digits.
� If ad > bd , the sort will puta afterb, which is correct, sincea > b regardless

of the low-order digits.
� If ad D bd , the sort will leavea andb in the same order they were in, because

it is stable. But that order is already correct, since the correct order ofa andb

is determined by the low-orderd � 1 digits when theird th digits are equal, and
the elements are already sorted by their low-orderd � 1 digits.

If the intermediate sort were not stable, it might rearrangeelements whosed th
digits were equal—elements thatwere in the right order after the sort on their
lower-order digits.

Solutions for Chapter 8: Sorting in Linear Time 8-13

Solution to Exercise 8.3-4
This solution is also posted publicly

Treat the numbers as3-digit numbers in radixn. Each digit ranges from0 to n� 1.
Sort these3-digit numbers with radix sort.

There are3 calls to counting sort, each taking‚.nC n/ D ‚.n/ time, so that the
total time is‚.n/.

Solution to Exercise 8.4-2

The worst-case running time for the bucket-sort algorithm occurs when the assump-
tion of uniformly distributed input does not hold. If, for example, all the input ends
up in the first bucket, then in the insertion sort phase it needs to sort all the input,
which takesO.n2/ time.

A simple change that will preserve the linear expected running time and make the
worst-case running timeO.n lg n/ is to use a worst-caseO.n lg n/-time algorithm,
such as merge sort, instead of insertion sort when sorting the buckets.

Solution to Problem 8-1
This solution is also posted publicly

a. For a comparison algorithmA to sort, no two input permutations can reach the
same leaf of the decision tree, so there must be at leastnŠ leaves reached inTA,
one for each possible input permutation. SinceA is a deterministic algorithm, it
must always reach the same leaf when given a particular permutation as input,
so at mostnŠ leaves are reached (one for each permutation). Therefore exactly
nŠ leaves are reached, one for each input permutation.

ThesenŠ leaves will each have probability1=nŠ, since each of thenŠ possible
permutations is the input with the probability1=nŠ. Any remaining leaves will
have probability0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of thisproblem that paths
leading only to0-probability leaves aren’t in the tree, since they cannot affect
the running time of the sort. That is, we can assume thatTA consists of only the
nŠ leaves labeled1=nŠ and their ancestors.

b. If k > 1, then the root ofT is not a leaf. This implies that all ofT ’s leaves
are leaves inLT andRT . Since every leaf at depthh in LT or RT has depth
hC 1 in T , D.T / must be the sum ofD.LT /, D.RT /, andk, the total number
of leaves. To prove this last assertion, letdT .x/ D depth of nodex in treeT .
Then,

8-14 Solutions for Chapter 8: Sorting in Linear Time

D.T / D
X

x2leaves.T /

dT .x/

D
X

x2leaves.LT /

dT .x/C
X

x2leaves.RT /

dT .x/

D
X

x2leaves.LT /

.dLT .x/C 1/C
X

x2leaves.RT /

.dRT .x/C 1/

D
X

x2leaves.LT /

dLT .x/C
X

x2leaves.RT /

dRT .x/C
X

x2leaves.T /

1

D D.LT /CD.RT /C k :

c. To show thatd.k/ D min1�i�k�1 fd.i/C d.k � i/C kg we will show sepa-
rately that

d.k/ � min
1�i�k�1

fd.i/C d.k � i/C kg

and

d.k/ � min
1�i�k�1

fd.i/C d.k � i/C kg :

� To show thatd.k/ � min1�i�k�1 fd.i/C d.k � i/C kg, we need only show
thatd.k/ � d.i/C d.k � i/C k, for i D 1; 2; : : : ; k � 1. For anyi from 1

to k � 1 we can find treesRT with i leaves andLT with k � i leaves such
thatD.RT / D d.i/ andD.LT / D d.k� i/. ConstructT such thatRT and
LT are the right and left subtrees ofT ’s root respectively. Then
d.k/ � D.T / (by definition ofd as minD.T / value)

D D.RT /CD.LT /C k (by part (b))

D d.i/C d.k � i/C k (by choice ofRT andLT) .
� To show thatd.k/ � min1�i�k�1 fd.i/C d.k � i/C kg, we need only show

thatd.k/ � d.i/C d.k � i/C k, for somei in f1; 2; : : : ; k � 1g. Take the
treeT with k leaves such thatD.T / D d.k/, let RT andLT beT ’s right
and left subtree, respecitvely, and leti be the number of leaves inRT . Then
k � i is the number of leaves inLT and
d.k/ D D.T / (by choice ofT)

D D.RT /CD.LT /C k (by part (b))

� d.i/C d.k � i/C k (by defintion ofd as minD.T / value) .

Neitheri nork � i can be0 (and hence1 � i � k � 1), since if one of these
were0, eitherRT or LT would contain allk leaves ofT , and thatk-leaf
subtree would have aD equal toD.T / � k (by part (b)), contradicting the
choice ofT as thek-leaf tree with the minimumD.

d. Let fk.i/ D i lg i C .k � i/ lg.k � i/. To find the value ofi that minimizesfk,
find thei for which the derivative offk with respect toi is 0:

f 0
k.i/ D d

di

�
i ln i C .k � i/ ln.k � i/

ln 2

�

D ln i C 1 � ln.k � i/ � 1

ln 2

D ln i � ln.k � i/

ln 2

Solutions for Chapter 8: Sorting in Linear Time 8-15

is 0 at i D k=2. To verify this is indeed a minimum (not a maximum), check
that the second derivative offk is positive ati D k=2:

f 00
k .i/ D d

di

�
ln i � ln.k � i/

ln 2

�

D 1

ln 2

�
1

i
C 1

k � i

�

:

f 00
k .k=2/ D 1

ln 2

�
2

k
C 2

k

�

D 1

ln 2
� 4

k
> 0 sincek > 1 .

Now we use substitution to proved.k/ D �.k lg k/. The base case of the
induction is satisfied becaused.1/ � 0 D c � 1 � lg 1 for any constantc. For
the inductive step we assume thatd.i/ � ci lg i for 1 � i � k � 1, wherec is
some constant to be determined.

d.k/ D min
1�i�k�1

fd.i/C d.k � i/C kg

� min
1�i�k�1

fc.i lg i C .k � i/ lg.k � i//C kg

D min
1�i�k�1

fcfk.i/C kg

D c

�
k

2
lg

k

2

�

k � k

2

�

lg

�

k � k

2

��

C k

D ck lg

�
k

2

�

C k

D c.k lg k � k/C k

D ck lg k C .k � ck/

� ck lg k if c � 1 ;

and sod.k/ D �.k lg k/.

e. Using the result of part (d) and the fact thatTA (as modified in our solution to
part (a)) hasnŠ leaves, we can conclude that

D.TA/ � d.nŠ/ D �.nŠ lg.nŠ// :

D.TA/ is the sum of the decision-tree path lengths for sorting all input per-
mutations, and the path lengths are proportional to the run time. Since thenŠ

permutations have equal probability1=nŠ, the expected time to sortn random
elements (1 input permutation) is the total time for all permutations divided
by nŠ:

�.nŠ lg.nŠ//

nŠ
D �.lg.nŠ// D �.n lg n/ :

f. We will show how to modify a randomized decision tree (algorithm) to define a
deterministic decision tree (algorithm) that is at least asgood as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree
with the smallest average number of comparisons on a path to aleaf). Delete all

8-16 Solutions for Chapter 8: Sorting in Linear Time

the other children of the randomized node and splice out the randomized node
itself.

The deterministic algorithm corresponding to this modifiedtree still works, be-
cause the randomized algorithm worked no matter which path was taken from
each randomized node.

The average number of comparisons for the modified algorithmis no larger
than the average number for the original randomized tree, since we discarded
the higher-average subtrees in each case. In particular, each time we splice out
a randomized node, we leave the overall average less than or equal to what it
was, because

� the same set of input permutations reaches the modified subtree as before, but
those inputs are handled in less than or equal to average timethan before, and

� the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much time on average as the
corresponding deterministic one. (We’ve shown that the expected running time
for a deterministic comparison sort is�.n lg n/, hence the expected time for a
randomized comparison sort is also�.n lg n/.)

Solution to Problem 8-3

a. The usual, unadorned radix sort algorithm will not solve this problem in the
required time bound. The number of passes,d , would have to be the number
of digits in the largest integer. Suppose that there arem integers; we always
havem � n. In the worst case, we would have one integer withn=2 digits and
n=2 integers with one digit each. We assume that the range of a single digit is
constant. Therefore, we would haved D n=2 andm D n=2 C 1, and so the
running time would be‚.dm/ D ‚.n2/.

Let us assume without loss of generality that all the integers are positive and
have no leading zeros. (If there are negative integers or 0, deal with the positive
numbers, negative numbers, and 0 separately.) Under this assumption, we can
observe that integers with more digits are always greater than integers with
fewer digits. Thus, we can first sort the integers by number ofdigits (using
counting sort), and then use radix sort to sort each group of integers with the
same length. Noting that each integer has between 1 andn digits, letmi be the
number of integers withi digits, for i D 1; 2; : : : ; n. Since there aren digits
altogether, we have

Pn

iD1 i �mi D n.

It takesO.n/ time to compute how many digits all the integers have and, once
the numbers of digits have been computed, it takesO.m C n/ D O.n/ time
to group the integers by number of digits. To sort the group with mi digits by
radix sort takes‚.i �mi/ time. The time to sort all groups, therefore, is

n
X

iD1

‚.i �mi / D ‚

n
X

iD1

i �mi

!

D ‚.n/ :

Solutions for Chapter 8: Sorting in Linear Time 8-17

b. One way to solve this problem is by a radix sort from right to left. Since the
strings have varying lengths, however, we have to pad out allstrings that are
shorter than the longest string. The padding is on the right end of the string,
and it’s with a special character that is lexicographicallyless than any other
character (e.g., in C, the character’\0’ with ASCII value 0). Of course, we
don’t have to actually change any string; if we want to know thej th character of
a string whose length isk, then ifj > k, thej th character is the pad character.

Unfortunately, this scheme does not always run in the required time bound.
Suppose that there arem strings and that the longest string hasd characters.
In the worst case, one string hasn=2 characters and, before padding,n=2

strings have one character each. As in part (a), we would haved D n=2 and
m D n=2C 1. We still have to examine the pad characters in each pass of radix
sort, even if we don’t actually create them in the strings. Assuming that the
range of a single character is constant, the running time of radix sort would be
‚.dm/ D ‚.n2/.

To solve the problem inO.n/ time, we use the property that, if the first letter
of string x is lexicographically less that the first letter of stringy, thenx is
lexicographically less thany, regardless of the lengths of the two strings. We
take advantage of this property by sorting the strings on thefirst letter, using
counting sort. We take an empty string as a special case and put it first. We
gather together all strings with the same first letter as a group. Then we recurse,
within each group, based on each string with the first letter removed.

The correctness of this algorithm is straightforward. Analyzing the running
time is a bit trickier. Let us count the number of times that each string is sorted
by a call of counting sort. Suppose that thei th string,si , has lengthli . Then
si is sorted by at mostli C 1 counting sorts. (The “C1” is because it may have
to be sorted as an empty string at some point; for example,ab anda end up in
the same group in the first pass and are then ordered based onb and the empty
string in the second pass. The stringa is sorted its length, 1, time plus one more
time.) A call of counting sort ont strings takes‚.t/ time (remembering that
the number of different characters on which we are sorting isa constant.) Thus,
the total time for all calls of counting sort is

O

m
X

iD1

.li C 1/

!

D O

m
X

iD1

li Cm

!

D O.nCm/

D O.n/ ;

where the second line follows from
Pm

iD1 li D n, and the last line is because
m � n.

Solution to Problem 8-4

a. Compare each red jug with each blue jug. Since there aren red jugs andn blue
jugs, that will take‚.n2/ comparisons in the worst case.

8-18 Solutions for Chapter 8: Sorting in Linear Time

b. To solve the problem, an algorithm has to perform a series of comparisons
until it has enough information to determine the matching. We can view the
computation of the algorithm in terms of a decision tree. Every internal node
is labeled with two jugs (one red, one blue) which we compare,and has three
outgoing edges (red jug smaller, same size, or larger than the blue jug). The
leaves are labeled with a unique matching of jugs.

The height of the decision tree is equal to the worst-case number of comparisons
the algorithm has to make to determine the matching. To boundthat size, let us
first compute the number of possible matchings forn red andn blue jugs.

If we label the red jugs from1 to n and we also label the blue jugs from1
to n before starting the comparisons, every outcome of the algorithm can be
represented as a set

f.i; �.i// W 1 � i � n and� is a permutation onf1; : : : ; ngg ;

which contains the pairs of red jugs (first component) and blue jugs (second
component) that are matched up. Since every permutation� corresponds to a
different outcome, there must be exactlynŠ different results.

Now we can bound the heighth of our decision tree. Every tree with a branch-
ing factor of 3 (every inner node has at most three children) has at most3h

leaves. Since the decison tree must have at leastnŠ children, it follows that

3h � nŠ � .n=e/n) h � n log3 n � n log3 e D �.n lg n/ :

So any algorithm solving the problem must use�.n lg n/ comparisons.

c. Assume that the red jugs are labeled with numbers1; 2; : : : ; n and so are the
blue jugs. The numbers are arbitrary and do not correspond tothe volumes of
jugs, but are just used to refer to the jugs in the algorithm description. Moreover,
the output of the algorithm will consist ofn distinct pairs.i; j /, where the red
jug i and the blue jugj have the same volume.

The procedure MATCH-JUGS takes as input two sets representing jugs to be
matched:R � f1; : : : ; ng, representing red jugs, andB � f1; : : : ; ng, rep-
resenting blue jugs. We will call the procedure only with inputs that can be
matched; one necessary condition is thatjRj D jBj.

Solutions for Chapter 8: Sorting in Linear Time 8-19

MATCH-JUGS.R; B/

if jRj == 0 // sets are empty
return

if jRj == 1 // sets contain just one jug each
let R D frg andB D fbg
output “.r; b/”
return

elser D a randomly chosen jug inR
comparer to every jug ofB
B< D the set of jugs inB that are smaller thanr
B> D the set of jugs inB that are larger thanr
b D the one jug inB with the same size asr
compareb to every jug ofR � frg
R< D the set of jugs inR that are smaller thanb
R> D the set of jugs inR that are larger thanb
output “.r; b/”
MATCH-JUGS.R<; B</

MATCH-JUGS.R>; B>/

Correctness can be seen as follows (remember thatjRj D jBj in each call).
Once we pickr randomly fromR, there will be a matching among the jugs in
volume smaller thanr (which are in the setsR< andB<), and likewise between
the jugs larger thanr (which are inR> andB>). Termination is also easy to see:
sincejR<j C jR>j < jRj in every recursive step, the size of the first parameter
reduces with every recursive call. It eventually must reach0 or 1, in which case
the recursion terminates.

What about the running time? The analysis of the expected number of com-
parisons is similar to that of the quicksort algorithm in Section 7.4.2. Let us
order the jugs asr1; : : : ; rn andb1; : : : ; bn whereri < riC1 andbi < biC1 for
i D 1; : : : ; n, andri D bi . Our analysis uses indicator random variables

Xij D I fred jugri is compared to blue jugbj g :

As in quicksort, a given pairri andbj is compared at most once. When we
compareri to every jug inB, jug ri will not be put in eitherR< or R>. When
we comparebi to every jug inR � frig, jug bi is not put into eitherB< or B>.
The total number of comparisons is

X D
n�1
X

iD1

n
X

j DiC1

Xij :

To calculate the expected value ofX , we follow the quicksort analysis to arrive
at

E ŒX� D
n�1
X

iD1

n
X

j DiC1

Prfri is compared tobj g :

As in the quicksort analysis, once we choose a jugrk such thatri < rk < bj ,
we will put ri in R< andbj in R>, and sori andbj will never be compared

8-20 Solutions for Chapter 8: Sorting in Linear Time

again. Let us denoteRij D fri ; : : : ; rj g. Then jugsri andbj will be compared
if and only if the first jug inRij to be chosen is eitherri or rj .

Still following the quicksort analysis, until a jug fromRij is chosen, the entire
setRij is together. Any jug inRij is equally likely to be first one chosen. Since
jRij j D j � i C 1, the probability of any given jug being the first one chosen
in Rij is1=.j�iC1/. The remainder of the analysis is the same as the quicksort
analysis, and we arrive at the solution ofO.n lg n/ comparisons.

Just like in quicksort, in the worst case we always choose thelargest (or small-
est) jug to partition the sets, which reduces the set sizes byonly 1. The running
time then obeys the recurrenceT .n/ D T .n � 1/ C ‚.n/, and the number of
comparisons we make in the worst case isT .n/ D ‚.n2/.

Solution to Problem 8-7

a. AŒq� must go the wrong place, because it goes whereAŒp� should go. Since
AŒp� is the smallest value in arrayA that goes to the wrong array location,AŒp�

must be smaller thanAŒq�.

b. From how we have defined the arrayB, we have that ifAŒi� � AŒj � then
BŒi� � BŒj �. Therefore, algorithm X performs the same sequence of exchanges
on arrayB as it does on arrayA. The output produced on arrayA is of the
form : : : AŒq� : : : AŒp� : : :, and so the output produced on arrayB is of the form
: : : BŒq� : : : BŒp� : : :, or : : : 1 : : : 0 : : :. Hence algorithm X fails to sort arrayB
correctly.

c. The even steps perform fixed permutations. The odd steps sorteach column
by some sorting algorithm, which might not be an oblivious compare-exchange
algorithm. But the result of sorting each column would be thesame as if we did
use an oblivious compare-exchange algorithm.

d. After step 1, each column has 0s on top and 1s on the bottom, with at most one
transition between 0s and 1s, and it is a0! 1 transition. (As we read the array
in column-major order, all1! 0 transitions occur between adjacent columns.)
After step 2, therefore, each consecutive group ofr=s rows, read in row-major
order, has at most one transition, and again it is a0! 1 transition. All1 ! 0

transitions occur at the end of a group ofr=s rows. Since there ares groups
of r=s rows, there are at mosts dirty rows, and the rest of the rows are clean.
Step 3 moves the 0s to the top rows and the 1s to the bottom rows.Thes dirty
rows are somewhere in the middle.

e. The dirty area after step 3 is at mosts rows high ands columns wide, and so its
area is at mosts2. Step 4 turns the clean 0s in the top rows into a clean area on
the left, the clean 1s in the bottom rows into a clean area on the right, and the
dirty area of sizes2 is between the two clean areas.

f. First, we argue that if the dirty area after step 4 has size at most r=2, then
steps 5–8 complete the sorting. If the dirty area has size at most r=2 (half a
column), then it either resides entirely in one column or it resides in the bottom

Solutions for Chapter 8: Sorting in Linear Time 8-21

half of one column and the top half of the next column. In the former case,
step 5 sorts the column containing the dirty area, and steps 6–8 maintain that
the array is sorted. In the latter case, step 5 cannot increase the size of the dirty
area, step 6 moves the entire dirty area into the same column,step 7 sorts it, and
step 8 moves it back.

Second, we argue that the dirty area after step 4 has size at most r=2. But that
follows immediately from the requirement thatr � 2s2 and the property that
after step 4, the dirty area has size at mosts2.

g. If s does not divider , then after step 2, we can see up tos 0! 1 transitions and
s � 1 1 ! 0 transitions in the rows. After step 3, we would have up to2s � 1

dirty rows, for a dirty area size of at most2s2�s. To push the correctness proof
through, we need2s2 � s � r=2, or r � 4s2 � 2s.

h. We can reduce the number of transitions in the rows after step2 back down to
at mosts by sorting every other column in reverse order in step 1. Now if we
have a transition (either1 ! 0 or 0 ! 1) between columns after step 1, then
either one of the columns had all 1s or the other had all 0s, in which case we
would not have a transition within one of the columns.

Lecture Notes for Chapter 9:
Medians and Order Statistics

Chapter 9 overview

� i th order statisticis thei th smallest element of a set ofn elements.
� Theminimum is the first order statistic (i D 1).
� Themaximum is thenth order statistic (i D n).
� A medianis the “halfway point” of the set.
� Whenn is odd, the median is unique, ati D .nC 1/=2.
� Whenn is even, there are two medians:

� The lower median, at i D n=2, and
� Theupper median, at i D n=2C 1.
� We mean lower median when we use the phrase “the median.”

Theselection problem:

Input: A setA of n distinct numbers and a numberi , with 1 � i � n.

Output: The elementx 2 A that is larger than exactlyi � 1 other elements inA.
In other words, thei th smallest element ofA.

We can easily solve the selection problem inO.n lg n/ time:

� Sort the numbers using anO.n lg n/-time algorithm, such as heapsort or merge
sort.

� Then return thei th element in the sorted array.

There are faster algorithms, however.

� First, we’ll look at the problem of selecting the minimum andmaximum of a
set of elements.

� Then, we’ll look at a simple general selection algorithm with a time bound of
O.n/ in the average case.

� Finally, we’ll look at a more complicated general selectionalgorithm with a
time bound ofO.n/ in the worst case.

9-2 Lecture Notes for Chapter 9: Medians and Order Statistics

Minimum and maximum

We can easily obtain an upper bound ofn�1 comparisons for finding the minimum
of a set ofn elements.
� Examine each element in turn and keep track of the smallest one.
� This is the best we can do, because each element, except the minimum, must be

compared to a smaller element at least once.

The following pseudocode finds the minimum element in arrayAŒ1 : : n�:

M INIMUM .A; n/

min D AŒ1�

for i D 2 to n

if min > AŒi�

minD AŒi�

return min

The maximum can be found in exactly the same way by replacing the> with < in
the above algorithm.

Simultaneous minimum and maximum

Some applications need both the minimum and maximum of a set of elements.
� For example, a graphics program may need to scale a set of.x; y/ data to fit

onto a rectangular display. To do so, the program must first find the minimum
and maximum of each coordinate.

A simple algorithm to find the minimum and maximum is to find each one indepen-
dently. There will ben � 1 comparisons for the minimum andn � 1 comparisons
for the maximum, for a total of2n� 2 comparisons. This will result in‚.n/ time.

In fact, at most3 bn=2c comparisons suffice to find both the minimum and maxi-
mum:
� Maintain the minimum and maximum of elements seen so far.
� Don’t compare each element to the minimum and maximum separately.
� Process elements in pairs.
� Compare the elements of a pair to each other.
� Then compare the larger element to the maximum so far, and compare the

smaller element to the minimum so far.

This leads to only3 comparisons for every2 elements.

Setting up the initial values for the min and max depends on whethern is odd or
even.

� If n is even, compare the first two elements and assign the larger to max and the
smaller to min. Then process the rest of the elements in pairs.

� If n is odd, set both min and max to the first element. Then process the rest of
the elements in pairs.

Lecture Notes for Chapter 9: Medians and Order Statistics 9-3

Analysis of the total number of comparisons

� If n is even, we do 1 initial comparison and then3.n�2/=2 more comparisons.

of comparisons D 3.n � 2/

2
C 1

D 3n � 6

2
C 1

D 3n

2
� 3C 1

D 3n

2
� 2 :

� If n is odd, we do3.n � 1/=2 D 3 bn=2c comparisons.

In either case, the maximum number of comparisons is� 3 bn=2c.

Selection in expected linear time

Selection of thei th smallest element of the arrayA can be done in‚.n/ time.

The function RANDOMIZED-SELECT uses RANDOMIZED-PARTITION from the
quicksort algorithm in Chapter 7. RANDOMIZED-SELECT differs from quicksort
because it recurses on one side of the partition only.

RANDOMIZED-SELECT.A; p; r; i/

if p == r

return AŒp�

q D RANDOMIZED-PARTITION .A; p; r/

k D q � p C 1

if i == k // pivot value is the answer
return AŒq�

elseif i < k

return RANDOMIZED-SELECT.A; p; q � 1; i/

else returnRANDOMIZED-SELECT.A; q C 1; r; i � k/

After the call to RANDOMIZED-PARTITION, the array is partitioned into two sub-
arraysAŒp : : q � 1� andAŒq C 1 : : r�, along with apivot elementAŒq�.

� The elements of subarrayAŒp : : q � 1� are all� AŒq�.
� The elements of subarrayAŒq C 1 : : r� are all> AŒq�.
� The pivot element is thekth element of the subarrayAŒp : : r�, wherek D

q � p C 1.
� If the pivot element is thei th smallest element (i.e.,i D k), returnAŒq�.
� Otherwise, recurse on the subarray containing thei th smallest element.

� If i < k, this subarray isAŒp : : q�1�, and we want thei th smallest element.
� If i > k, this subarray isAŒq C 1 : : r� and, since there arek elements in

AŒp : : r� that precedeAŒq C 1 : : r�, we want the.i � k/th smallest element
of this subarray.

9-4 Lecture Notes for Chapter 9: Medians and Order Statistics

Analysis

Worst-case running time

‚.n2/, because we could be extremely unlucky and always recurse ona subarray
that is only 1 element smaller than the previous subarray.

Expected running time

RANDOMIZED-SELECT works well on average. Because it is randomized, no par-
ticular input brings out the worst-case behavior consistently.

The running time of RANDOMIZED-SELECT is a random variable that we denote
by T .n/. We obtain an upper bound on EŒT .n/� as follows:

� RANDOMIZED-PARTITION is equally likely to return any element ofA as the
pivot.

� For eachk such that1 � k � n, the subarrayAŒp : : q� hask elements (all�
pivot) with probability1=n. [Note that we’re now considering a subarray that
includes the pivot, along with elements less than the pivot.]

� Fork D 1; 2; : : : ; n, define indicator random variable

Xk D I fsubarrayAŒp : : q� has exactlyk elementsg :

� Since PrfsubarrayAŒp : : q� has exactlyk elementsg D 1=n, Lemma 5.1 says
that EŒXk� D 1=n.

� When we call RANDOMIZED-SELECT, we don’t know if it will terminate im-
mediately with the correct answer, recurse onAŒp : : q � 1�, or recurse on
AŒqC 1 : : r�. It depends on whether thei th smallest element is less than, equal
to, or greater than the pivot elementAŒq�.

� To obtain an upper bound, we assume thatT .n/ is monotonically increasing
and that thei th smallest element is always in the larger subarray.

� For a given call of RANDOMIZED-SELECT, Xk D 1 for exactly one value ofk,
andXk D 0 for all otherk.

� WhenXk D 1, the two subarrays have sizesk � 1 andn � k.
� For a subproblem of sizen, RANDOMIZED-PARTITION takesO.n/ time. [Ac-

tually, it takes‚.n/ time, butO.n/ suffices, since we’re obtaining only an upper
bound on the expected running time.]

� Therefore, we have the recurrence

T .n/ �
n
X

kD1

Xk � .T .max.k � 1; n � k//CO.n//

D
n
X

kD1

Xk � T .max.k � 1; n � k//CO.n/ :

� Taking expected values gives

E ŒT .n/�

� E

"
n
X

kD1

Xk � T .max.k � 1; n � k//CO.n/

#

Lecture Notes for Chapter 9: Medians and Order Statistics 9-5

D
n
X

kD1

E ŒXk � T .max.k � 1; n � k//�CO.n/ (linearity of expectation)

D
n
X

kD1

E ŒXk� � E ŒT .max.k � 1; n � k//�CO.n/ (equation (C.24))

D
n
X

kD1

1

n
� E ŒT .max.k � 1; n � k//�CO.n/ :

� We rely onXk andT .max.k � 1; n � k// being independent random variables
in order to apply equation (C.24).

� Looking at the expression max.k � 1; n � k/, we have

max.k � 1; n � k/ D
(

k � 1 if k > dn=2e ;

n � k if k � dn=2e :

� If n is even, each term fromT .dn=2e/ up toT .n � 1/ appears exactly twice
in the summation.

� If n is odd, these terms appear twice andT .bn=2c/ appears once.

� Either way,

E ŒT .n/� � 2

n

n�1
X

kDbn=2c
E ŒT .k/�CO.n/ :

� Solve this recurrence by substitution:

� Guess thatT .n/ � cn for some constantc that satisfies the initial conditions
of the recurrence.

� Assume thatT .n/ D O.1/ for n < some constant. We’ll pick this constant
later.

� Also pick a constanta such that the function described by theO.n/ term is
bounded from above byan for all n > 0.

� Using this guess and constantsc anda, we have

E ŒT .n/� � 2

n

n�1
X

kDbn=2c
ck C an

D 2c

n

n�1
X

kD1

k �
bn=2c�1
X

kD1

k

!

C an

D 2c

n

�
.n � 1/n

2
� .bn=2c � 1/ bn=2c

2

�

C an

� 2c

n

�
.n � 1/n

2
� .n=2� 2/.n=2 � 1/

2

�

C an

D 2c

n

�
n2 � n

2
� n2=4 � 3n=2C 2

2

�

C an

D c

n

�
3n2

4
C n

2
� 2

�

C an

9-6 Lecture Notes for Chapter 9: Medians and Order Statistics

D c

�
3n

4
C 1

2
� 2

n

�

C an

� 3cn

4
C c

2
C an

D cn�
�cn

4
� c

2
� an

�

:

� To complete this proof, we choosec such that

cn=4 � c=2 � an � 0

cn=4 � an � c=2

n.c=4� a/ � c=2

n � c=2

c=4 � a

n � 2c

c � 4a
:

� Thus, as long as we assume thatT .n/ D O.1/ for n < 2c=.c�4a/, we have
E ŒT .n/� D O.n/.

Therefore, we can determine any order statistic in linear time on average.

Selection in worst-case linear time

We can find thei th smallest element inO.n/ time in the worst case. We’ll describe
a procedure SELECT that does so.

SELECT recursively partitions the input array.

� Idea: Guarantee a good split when the array is partitioned.
� Will use the deterministic procedure PARTITION, but with a small modifica-

tion. Instead of assuming that the last element of the subarray is the pivot, the
modified PARTITION procedure is told which element to use as the pivot.

SELECT works on an array ofn > 1 elements. It executes the following steps:

1. Divide then elements into groups of5. Getdn=5e groups:bn=5c groups with
exactly5 elements and, if5 does not dividen, one group with the remaining
n mod5 elements.

2. Find the median of each of thedn=5e groups:

� Run insertion sort on each group. TakesO.1/ time per group since each
group has� 5 elements.

� Then just pick the median from each group, inO.1/ time.

3. Find the medianx of the dn=5e medians by a recursive call to SELECT. (If
dn=5e is even, then follow our convention and find the lower median.)

4. Using the modified version of PARTITION that takes the pivot element as input,
partition the input array aroundx. Let x be thekth element of the array after
partitioning, so that there arek�1 elements on the low side of the partition and
n � k elements on the high side.

Lecture Notes for Chapter 9: Medians and Order Statistics 9-7

5. Now there are three possibilities:

� If i D k, just returnx.
� If i < k, return thei th smallest element on the low side of the partition by

making a recursive call to SELECT.
� If i > k, return the.i�k/th smallest element on the high side of the partition

by making a recursive call to SELECT.

Analysis

Start by getting a lower bound on the number of elements that are greater than the
partitioning elementx:

x

[Each group is a column. Each white circle is the median of a group, as found
in step 2. Arrows go from larger elements to smaller elements, based on what we
know after step 4. Elements in the region on the lower right are known to be greater
thanx.]

� At least half of the medians found in step 2 are� x.
� Look at the groups containing these medians that are� x. All of them con-

tribute 3 elements that are> x (the median of the group and the2 elements
in the group greater than the group’s median), except for2 of the groups: the
group containingx (which has only2 elements> x) and the group with< 5

elements.

� Forget about these2 groups. That leaves�
�

1

2

ln

5

m�

� 2 groups with3 ele-

ments known to be> x.
� Thus, we know that at least

3

��
1

2

ln

5

m�

� 2

�

� 3n

10
� 6

elements are> x.

Symmetrically, the number of elements that are< x is at least3n=10 � 6.

Therefore, when we call SELECT recursively in step 5, it’s on� 7n=10 C 6 ele-
ments.

Develop a recurrence for the worst-case running time of SELECT:

� Steps 1, 2, and 4 each takeO.n/ time:

9-8 Lecture Notes for Chapter 9: Medians and Order Statistics

� Step 1: making groups of 5 elements takesO.n/ time.
� Step 2: sortingdn=5e groups inO.1/ time each.
� Step 4: partitioning then-element array aroundx takesO.n/ time.

� Step 3 takes timeT .dn=5e/.
� Step 5 takes time� T .7n=10 C 6/, assuming thatT .n/ is monotonically in-

creasing.
� Assume thatT .n/ D O.1/ for small enoughn. We’ll usen < 140 as “small

enough.” Why 140? We’ll see why later.
� Thus, we get the recurrence

T .n/ �
(

O.1/ if n < 140 ;

T .dn=5e/C T .7n=10C 6/CO.n/ if n � 140 :

Solve this recurrence by substitution:

� Inductive hypothesis:T .n/ � cn for some constantc and alln > 0.
� Assume thatc is large enough thatT .n/ � cn for all n < 140. So we are

concerned only with the casen � 140.
� Pick a constanta such that the function described by theO.n/ term in the

recurrence is� an for all n > 0.
� Substitute the inductive hypothesis in the right-hand sideof the recurrence:

T .n/ � c dn=5e C c.7n=10C 6/C an

� cn=5C c C 7cn=10C 6c C an

D 9cn=10C 7c C an

D cnC .�cn=10C 7c C an/ :

� This last quantity is� cn if

�cn=10C 7c C an � 0

cn=10 � 7c � an

cn � 70c � 10an

c.n � 70/ � 10an

c � 10a.n=.n � 70// :

� Because we assumed thatn � 140, we haven=.n � 70/ � 2.
� Thus,20a � 10a.n=.n�70//, so choosingc � 20a givesc � 10a.n=.n�70//,

which in turn gives us the condition we need to show thatT .n/ � cn.
� We conclude thatT .n/ D O.n/, so that SELECT runs in linear time in all cases.
� Why 140? We could have used any integer strictly greater than70.

� Observe that forn > 70, the fractionn=.n � 70/ decreases asn increases.
� We pickedn � 140 so that the fraction would be� 2, which is an easy

constant to work with.
� We could have picked, say,n � 71, so that for alln � 71, the fraction would

be� 71=.71 � 70/ D 71. Then we would have had20a � 710a, so we’d
have needed to choosec � 710a.

Lecture Notes for Chapter 9: Medians and Order Statistics 9-9

Notice that SELECT and RANDOMIZED-SELECT determine information about the
relative order of elements only by comparing elements.

� Sorting requires�.n lg n/ time in the comparison model.
� Sorting algorithms that run in linear time need to make assumptions about their

input.
� Linear-timeselectionalgorithms do not require any assumptions about their

input.
� Linear-time selection algorithms solve the selection problem without sorting

and therefore are not subject to the�.n lg n/ lower bound.

Solutions for Chapter 9:
Medians and Order Statistics

Solution to Exercise 9.1-1

The smallest ofn numbers can be found withn � 1 comparisons by conducting a
tournament as follows: Compare all the numbers in pairs. Only the smaller of each
pair could possibly be the smallest of alln, so the problem has been reduced to that
of finding the smallest ofdn=2e numbers. Compare those numbers in pairs, and so
on, until there’s just one number left, which is the answer.

To see that this algorithm does exactlyn� 1 comparisons, notice that each number
except the smallest loses exactly once. To show this more formally, draw a binary
tree of the comparisons the algorithm does. Then numbers are the leaves, and each
number that came out smaller in a comparison is the parent of the two numbers that
were compared. Each non-leaf node of the tree represents a comparison, and there
are n � 1 internal nodes in ann-leaf full binary tree (see Exercise (B.5-3)), so
exactlyn � 1 comparisons are made.

In the search for the smallest number, the second smallest number must have come
out smallest in every comparison made with it until it was eventually compared
with the smallest. So the second smallest is among the elements that were com-
pared with the smallest during the tournament. To find it, conduct another tourna-
ment (as above) to find the smallest of these numbers. At mostdlg ne (the height
of the tree of comparisons) elements were compared with the smallest, so finding
the smallest of these takesdlg ne � 1 comparisons in the worst case.

The total number of comparisons made in the two tournaments was

n � 1C dlg ne � 1 D nC dlg ne � 2

in the worst case.

Solution to Exercise 9.3-1
This solution is also posted publicly

For groups of 7, the algorithm still works in linear time. Thenumber of elements
greater thanx (and similarly, the number less thanx) is at least

4

��
1

2

ln

7

m�

� 2

�

� 2n

7
� 8 ;

Solutions for Chapter 9: Medians and Order Statistics 9-11

and the recurrence becomes

T .n/ � T .dn=7e/C T .5n=7C 8/CO.n/ ;

which can be shown to beO.n/ by substitution, as for the groups of 5 case in the
text.

For groups of 3, however, the algorithm no longer works in linear time. The number
of elements greater thanx, and the number of elements less thanx, is at least

2

��
1

2

ln

3

m�

� 2

�

� n

3
� 4 ;

and the recurrence becomes

T .n/ � T .dn=3e/C T .2n=3C 4/CO.n/ ;

which does not have a linear solution.

We can prove that the worst-case time for groups of 3 is�.n lg n/. We do so by
deriving a recurrence for a particular case that takes�.n lg n/ time.

In counting up the number of elements greater thanx (and similarly, the num-

ber less thanx), consider the particular case in which there are exactly
l

1
2

l
n
3

mm

groups with medians� x and in which the “leftover” group does contribute 2
elements greater thanx. Then the number of elements greater thanx is exactly

2
�l

1
2

l
n
3

mm

� 1
�

C 1 (the�1 discountsx’s group, as usual, and theC1 is con-

tributed byx’s group)D 2 dn=6e � 1, and the recursive step for elements� x has
n � .2 dn=6e � 1/ � n � .2.n=6 C 1/ � 1/ D 2n=3 � 1 elements. Observe also
that theO.n/ term in the recurrence is really‚.n/, since the partitioning in step 4
takes‚.n/ (not justO.n/) time. Thus, we get the recurrence

T .n/ � T .dn=3e/C T .2n=3 � 1/C‚.n/ � T .n=3/C T .2n=3 � 1/C‚.n/ ;

from which you can show thatT .n/ � cn lg n by substitution. You can also see
thatT .n/ is nonlinear by noticing that each level of the recursion tree sums ton.

[In fact, any odd group size� 5 works in linear time.]

Solution to Exercise 9.3-3
This solution is also posted publicly

A modification to quicksort that allows it to run inO.n lg n/ time in the worst case
uses the deterministic PARTITION algorithm that was modified to take an element
to partition around as an input parameter.

SELECT takes an arrayA, the boundsp andr of the subarray inA, and the ranki
of an order statistic, and in time linear in the size of the subarrayAŒp : : r� it returns
thei th smallest element inAŒp : : r�.

9-12 Solutions for Chapter 9: Medians and Order Statistics

BEST-CASE-QUICKSORT.A; p; r/

if p < r

i D b.r � p C 1/=2c
x D SELECT.A; p; r; i/

q D PARTITION.x/

BEST-CASE-QUICKSORT.A; p; q � 1/

BEST-CASE-QUICKSORT.A; q C 1; r/

For an n-element array, the largest subarray that BEST-CASE-QUICKSORT re-
curses on hasn=2 elements. This situation occurs whenn D r � p C 1 is even;
then the subarrayAŒq C 1 : : r� hasn=2 elements, and the subarrayAŒp : : q � 1�

hasn=2 � 1 elements.

Because BEST-CASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for the worst-case running time is
T .n/ � 2T .n=2/C‚.n/ D O.n lg n/.

Solution to Exercise 9.3-5
This solution is also posted publicly

We assume that are given a procedure MEDIAN that takes as parameters an ar-
rayA and subarray indicesp andr , and returns the value of the median element of
AŒp : : r� in O.n/ time in the worst case.

Given MEDIAN, here is a linear-time algorithm SELECT0 for finding thei th small-
est element inAŒp : : r�. This algorithm uses the deterministic PARTITION algo-
rithm that was modified to take an element to partition aroundas an input parame-
ter.

SELECT0.A; p; r; i/

if p == r

return AŒp�

x D MEDIAN.A; p; r/

q D PARTITION.x/

k D q � p C 1

if i == k

return AŒq�

elseif i < k

return SELECT0.A; p; q � 1; i/

else returnSELECT0.A; q C 1; r; i � k/

Becausex is the median ofAŒp : : r�, each of the subarraysAŒp : : q � 1� and
AŒq C 1 : : r� has at most half the number of elements ofAŒp : : r�. The recurrence
for the worst-case running time of SELECT0 is T .n/ � T .n=2/CO.n/ D O.n/.

Solutions for Chapter 9: Medians and Order Statistics 9-13

Solution to Exercise 9.3-8

Let’s start out by supposing that the median (the lower median, since we know we
have an even number of elements) is inX . Let’s call the median valuem, and let’s
suppose that it’s inXŒk�. Thenk elements ofX are less than or equal tom and
n�k elements ofX are greater than or equal tom. We know that in the two arrays
combined, there must ben elements less than or equal tom andn elements greater
than or equal tom, and so there must ben � k elements ofY that are less than or
equal tom andn � .n � k/ D k elements ofY that are greater than or equal tom.

Thus, we can check thatXŒk� is the lower median by checking whetherY Œn�k� �
XŒk� � Y Œn � k C 1�. A boundary case occurs fork D n. Thenn � k D 0, and
there is no array entryY Œ0�; we only need to check thatXŒn� � Y Œ1�.

Now, if the median is inX but is not inXŒk�, then the above condition will not
hold. If the median is inXŒk0�, wherek0 < k, thenXŒk� is above the median, and
Y Œn � k C 1� < XŒk�. Conversely, if the median is inXŒk00�, wherek00 > k, then
XŒk� is below the median, andXŒk� < Y Œn � k�.

Thus, we can use a binary search to determine whether there isanXŒk� such that
eitherk < n andY Œn�k� � XŒk� � Y Œn�kC1� ork D n andXŒk� � Y Œn�kC1�;
if we find such anXŒk�, then it is the median. Otherwise, we know that the median
is in Y , and we use a binary search to find aY Œk� such that eitherk < n and
XŒn � k� � Y Œk� � XŒn � k C 1� or k D n andY Œk� � XŒn � k C 1�; such a
Y Œk� is the median. Since each binary search takesO.lg n/ time, we spend a total
of O.lg n/ time.

Here’s how we write the algorithm in pseudocode:

TWO-ARRAY-MEDIAN .X; Y /

n D X: length // n also equalsY: length
medianD FIND-MEDIAN.X; Y; n; 1; n/

if median== NOT-FOUND

medianD FIND-MEDIAN.Y; X; n; 1; n/

return median

FIND-MEDIAN.A; B; n; low; high/

if low > high
return NOT-FOUND

elsek D b.lowC high/=2c
if k == n andAŒn� � BŒ1�

return AŒn�

elseifk < n andBŒn � k� � AŒk� � BŒn � k C 1�

return AŒk�

elseifAŒk� > BŒn � k C 1�

return FIND-MEDIAN .A; B; n; low; k � 1/

else return FIND-MEDIAN .A; B; n; k C 1; high/

9-14 Solutions for Chapter 9: Medians and Order Statistics

Solution to Exercise 9.3-9

In order to find the optimal placement for Professor Olay’s pipeline, we need only
find the median(s) of they-coordinates of his oil wells, as the following proof
explains.

Claim
The optimaly-coordinate for Professor Olay’s east-west oil pipeline isas follows:

� If n is even, then on either the oil well whosey-coordinate is the lower median
or the one whosey-coordinate is the upper median, or anywhere between them.

� If n is odd, then on the oil well whosey-coordinate is the median.

Proof We examine various cases. In each case, we will start out withthe pipeline
at a particulary-coordinate and see what happens when we move it. We’ll denote
by s the sum of the north-south spurs with the pipeline at the starting location,
ands0 will denote the sum after moving the pipeline.

We start with the case in whichn is even. Let us start with the pipeline somewhere
on or between the two oil wells whosey-coordinates are the lower and upper me-
dians. If we move the pipeline by a vertical distanced without crossing either of
the median wells, thenn=2 of the wells becomed farther from the pipeline and
n=2 becomed closer, and sos0 D s C dn=2� dn=2 D s; thus, all locations on or
between the two medians are equally good.

Now suppose that the pipeline goes through the oil well whosey-coordinate is the
upper median. What happens when we increase they-coordinate of the pipeline
by d > 0 units, so that it moves above the oil well that achieves the upper median?
All oil wells whosey-coordinates are at or below the upper median becomed units
farther from the pipeline, and there are at leastn=2 C 1 such oil wells (the upper
median, and every well at or below the lower median). There are at mostn=2 � 1

oil wells whosey-coordinates are above the upper median, and each of these oil
wells becomes at mostd units closer to the pipeline when it moves up. Thus, we
have a lower bound ons0 of s0 � s C d.n=2 C 1/ � d.n=2 � 1/ D s C 2d > s.
We conclude that moving the pipeline up from the oil well at the upper median
increases the total spur length. A symmetric argument showsthat if we start with
the pipeline going through the oil well whosey-coordinate is the lower median and
move it down, then the total spur length increases.

We see, therefore, that whenn is even, an optimal placement of the pipeline is
anywhere on or between the two medians.

Now we consider the case whenn is odd. We start with the pipeline going through
the oil well whosey-coordinate is the median, and we consider what happens when
we move it up byd > 0 units. All oil wells at or below the median becomed units
farther from the pipeline, and there are at least.nC 1/=2 such wells (the one at the
median and the.n � 1/=2 at or below the median. There are at most.n � 1/=2 oil
wells above the median, and each of these becomes at mostd units closer to the
pipeline. We get a lower bound ons0 of s0 � s C d.n C 1/=2 � d.n � 1/=2 D
s C d > s, and we conclude that moving the pipeline up from the oil wellat the

Solutions for Chapter 9: Medians and Order Statistics 9-15

median increases the total spur length. A symmetric argument shows that moving
the pipeline down from the median also increases the total spur length, and so the
optimal placement of the pipeline is on the median. (claim)

Since we know we are looking for the median, we can use the linear-time median-
finding algorithm.

Solution to Problem 9-1
This solution is also posted publicly

We assume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which take‚.n lg n/ worst-case
time. (Don’t use quicksort or insertion sort, which can take‚.n2/ time.) Put
the i largest elements (directly accessible in the sorted array)into the output
array, taking‚.i/ time.

Total worst-case running time:‚.n lg nC i/ D ‚.n lg n/ (becausei � n).

b. Implement the priority queue as a heap. Build the heap using BUILD -HEAP,
which takes‚.n/ time, then call HEAP-EXTRACT-MAX i times to get thei
largest elements, in‚.i lg n/ worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extraction time is‚.i lg n/

because

� i extractions from a heap withO.n/ elements takesi � O.lg n/ D O.i lg n/

time, and
� half of thei extractions are from a heap with� n=2 elements, so thosei=2

extractions take.i=2/�.lg.n=2// D �.i lg n/ time in the worst case.

Total worst-case running time:‚.nC i lg n/.

c. Use the SELECT algorithm of Section 9.3 to find thei th largest number in‚.n/

time. Partition around that number in‚.n/ time. Sort thei largest numbers in
‚.i lg i/ worst-case time (with merge sort or heapsort).

Total worst-case running time:‚.nC i lg i/.

Note that method (c) is always asymptotically at least as good as the other two
methods, and that method (b) is asymptotically at least as good as (a). (Com-
paring (c) to (b) is easy, but it is less obvious how to compare(c) and (b) to (a).
(c) and (b) are asymptotically at least as good as (a) becausen, i lg i , andi lg n are
all O.n lg n/. The sum of two things that areO.n lg n/ is alsoO.n lg n/.)

9-16 Solutions for Chapter 9: Medians and Order Statistics

Solution to Problem 9-2

a. The medianx of the elementsx1; x2; : : : ; xn, is an elementx D xk satisfy-
ing jfxi W 1 � i � n andxi < xgj � n=2 andjfxi W 1 � i � n andxi > xgj �
n=2. If each elementxi is assigned a weightwi D 1=n, then we get
X

xi <x

wi D
X

xi <x

1

n

D 1

n
�
X

xi <x

1

D 1

n
� jfxi W 1 � i � n andxi < xgj

� 1

n
� n

2

D 1

2
;

and
X

xi >x

wi D
X

xi >x

1

n

D 1

n
�
X

xi >x

1

D 1

n
� jfxi W 1 � i � n andxi > xgj

� 1

n
� n

2

D 1

2
;

which proves thatx is also the weighted median ofx1; x2; : : : ; xn with weights
wi D 1=n, for i D 1; 2; : : : ; n.

b. We first sort then elements into increasing order byxi values. Then we scan
the array of sortedxi ’s, starting with the smallest element and accumulating
weights as we scan, until the total exceeds1=2. The last element, sayxk, whose
weight caused the total to exceed1=2, is the weighted median. Notice that the
total weight of all elements smaller thanxk is less than1=2, becausexk was
the first element that caused the total weight to exceed1=2. Similarly, the total
weight of all elements larger thanxk is also less than1=2, because the total
weight of all the other elements exceeds1=2.

The sorting phase can be done inO.n lg n/ worst-case time (using merge sort
or heapsort), and the scanning phase takesO.n/ time. The total running time
in the worst case, therefore, isO.n lg n/.

c. We find the weighted median in‚.n/ worst-case time using the‚.n/ worst-
case median algorithm in Section 9.3. (Although the first paragraph of the
section only claims anO.n/ upper bound, it is easy to see that the more precise

Solutions for Chapter 9: Medians and Order Statistics 9-17

running time of‚.n/ applies as well, since steps 1, 2, and 4 of SELECT actually
take‚.n/ time.)

The weighted-median algorithm works as follows. Ifn � 2, we just return
the brute-force solution. Otherwise, we proceed as follows. We find the actual
medianxk of then elements and then partition around it. We then compute the
total weights of the two halves. If the weights of the two halves are each strictly
less than1=2, then the weighted median isxk. Otherwise, the weighted median
should be in the half with total weight exceeding1=2. The total weight of the
“light” half is lumped into the weight ofxk, and the search continues within the
half that weighs more than1=2. Here’s pseudocode, which takes as input a set
X D fx1; x2; : : : ; xng:

WEIGHTED-MEDIAN .X/

if n == 1

return x1

elseifn == 2

if w1 � w2

return x1

else return x2

elsefind the medianxk of X D fx1; x2; : : : ; xng
partition the setX aroundxk

computeWL D
P

xi <xk
wi andWG D

P

xi >xk
wi

if WL < 1=2 andWG < 1=2

return xk

elseifWL > 1=2

wk D wk CWG

X 0 D fxi 2 X W xi � xkg
return WEIGHTED-MEDIAN .X 0/

elsewk D wk CWL

X 0 D fxi 2 X W xi � xkg
return WEIGHTED-MEDIAN .X 0/

The recurrence for the worst-case running time of WEIGHTED-MEDIAN is
T .n/ D T .n=2C1/C‚.n/, since there is at most one recursive call on half the
number of elements, plus the median elementxk, and all the work preceding the
recursive call takes‚.n/ time. The solution of the recurrence isT .n/ D ‚.n/.

d. Let then points be denoted by their coordinatesx1; x2; : : : ; xn, let the corre-
sponding weights bew1; w2; : : : ; wn, and letx D xk be the weighted median.
For any pointp, let f .p/ DPn

iD1 wi jp � xi j; we want to find a pointp such
thatf .p/ is minimum. Lety be any point (real number) other thanx. We show
the optimality of the weighted medianx by showing thatf .y/�f .x/ � 0. We
examine separately the cases in whichy > x andx > y. For anyx andy, we
have

9-18 Solutions for Chapter 9: Medians and Order Statistics

f .y/� f .x/ D
n
X

iD1

wi jy � xi j �
n
X

iD1

wi jx � xi j

D
n
X

iD1

wi.jy � xi j � jx � xi j/ :

Wheny > x, we bound the quantityjy � xi j � jx � xi j from below by exam-
ining three cases:

1. x < y � xi : Here, jx � yj C jy � xi j D jx � xi j and jx � yj D y � x,
which imply thatjy � xi j � jx � xi j D � jx � yj D x � y.

2. x < xi � y: Here,jy � xi j � 0 and jxi � xj � y � x, which imply that
jy � xi j � jx � xi j � �.y � x/ D x � y.

3. xi � x < y: Here, jx � xi j C jy � xj D jy � xi j and jy � xj D y � x,
which imply thatjy � xi j � jx � xi j D jy � xj D y � x.

Separating out the first two cases, in whichx < xi , from the third case, in
which x � xi , we get

f .y/� f .x/ D
n
X

iD1

wi.jy � xi j � jx � xi j/

�
X

x<xi

wi.x � y/C
X

x�xi

wi.y � x/

D .y � x/

X

x�xi

wi �
X

x<xi

wi

!

:

The property that
P

xi <x wi < 1=2 implies that
P

x�xi
wi � 1=2. This fact,

combined withy � x > 0 and
P

x<xi
wi � 1=2, yields thatf .y/� f .x/ � 0.

Whenx > y, we again bound the quantityjy � xi j � jx � xi j from below by
examining three cases:

1. xi � y < x: Here, jy � xi j C jx � yj D jx � xi j and jx � yj D x � y,
which imply thatjy � xi j � jx � xi j D � jx � yj D y � x.

2. y � xi < x: Here,jy � xi j � 0 and jx � xi j � x � y, which imply that
jy � xi j � jx � xi j � �.x � y/ D y � x.

3. y < x � xi . Here,jx � yj C jx � xi j D jy � xi j and jx � yj D x � y,
which imply thatjy � xi j � jx � xi j D jx � yj D x � y.

Separating out the first two cases, in whichx > xi , from the third case, in
which x � xi , we get

f .y/� f .x/ D
n
X

iD1

wi.jy � xi j � jx � xi j/

�
X

x>xi

wi.y � x/C
X

x�xi

wi.x � y/

D .x � y/

X

x�xi

wi �
X

x>xi

wi

!

:

The property that
P

xi >x wi � 1=2 implies that
P

x�xi
wi > 1=2. This fact,

combined withx � y > 0 and
P

x>xi
wi < 1=2, yields thatf .y/� f .x/ > 0.

Solutions for Chapter 9: Medians and Order Statistics 9-19

e. We are givenn 2-dimensional pointsp1; p2; : : : ; pn, where eachpi is a pair of
real numberspi D .xi ; yi /, and positive weightsw1; w2; : : : ; wn. The goal is
to find a pointp D .x; y/ that minimizes the sum

f .x; y/ D
n
X

iD1

wi .jx � xi j C jy � yi j/ :

We can express the cost function of the two variables,f .x; y/, as the sum of
two functions of one variable each:f .x; y/ D g.x/ C h.y/, whereg.x/ D
Pn

iD1 wi jx � xi j, andh.y/ D Pn

iD1 wi jy � yi j. The goal of finding a point
p D .x; y/ that minimizes the value off .x; y/ can be achieved by treating
each dimension independently, becauseg does not depend ony andh does not
depend onx. Thus,
min
x;y

f .x; y/ D min
x;y

.g.x/C h.y//

D min
x

�

min
y

.g.x/C h.y//
�

D min
x

�

g.x/Cmin
y

h.y/
�

D min
x

g.x/Cmin
y

h.y/ :

Consequently, finding the best location in 2 dimensions can be done by finding
the weighted medianxk of the x-coordinates and then finding the weighted
medianyj of the y-coordinates. The point.xk; yj / is an optimal solution for
the 2-dimensional post-office location problem.

Solution to Problem 9-3

a. Our algorithm relies on a particular property of SELECT: that not only does it
return thei th smallest element, but that it also partitions the input array so that
the first i positions contain thei smallest elements (though not necessarily in
sorted order). To see that SELECT has this property, observe that there are only
two ways in which returns a value: whenn D 1, and when immediately after
partitioning in step 4, it finds that there are exactlyi elements on the low side
of the partition.

Taking the hint from the book, here is our modified algorithm to select thei th
smallest element ofn elements. Whenever it is called withi � n=2, it just calls
SELECT and returns its result; in this case,Ui .n/ D T .n/.

When i < n=2, our modified algorithm works as follows. Assume that the
input is in a subarrayAŒp C 1 : : p C n�, and letm D bn=2c. In the initial call,
p D 1.

1. Divide the input as follows. Ifn is even, divide the input into two parts:
AŒp C 1 : : p Cm� andAŒp CmC 1 : : p C n�. If n is odd, divide the input
into three parts:AŒpC1 : : pCm�, AŒpCmC1 : : pCn�1�, andAŒpCn�

as a leftover piece.
2. CompareAŒpC i � andAŒpC iCm� for i D 1; 2; : : : ; m, putting the smaller

of the the two elements intoAŒp C i Cm� and the larger intoAŒp C i �.

9-20 Solutions for Chapter 9: Medians and Order Statistics

3. Recursively find thei th smallest element inAŒp C m C 1 : : p C n�, but
with an additional action performed by the partitioning procedure: whenever
it exchangesAŒj � and AŒk� (wherep C m C 1 � j; k � p C 2m), it
also exchangesAŒj � m� andAŒk � m�. The idea is that after recursively
finding the i th smallest element inAŒp C m C 1 : : p C n�, the subarray
AŒp CmC 1 : : pCmC i � contains thei smallest elements that had been in
AŒpCmC1 : : pCn� and the subarrayAŒpC1 : : pC i � contains their larger
counterparts, as found in step 1. Thei th smallest element ofAŒpC1 : : pCn�

must be either one of thei smallest, as placed intoAŒpCmC1 : : pCmCi �,
or it must be one of the larger counterparts, as placed intoAŒpC 1 : : pC i �.

4. Collect the subarraysAŒpC 1 : : pC i � andAŒpCmC 1 : : pCmC i � into
a single arrayBŒ1 : : 2i �, call SELECT to find thei th smallest element ofB,
and return the result of this call to SELECT.

The number of comparisons in each step is as follows:

1. No comparisons.
2. m D bn=2c comparisons.
3. Since we recurse onAŒp CmC 1 : : p C n�, which hasdn=2e elements, the

number of comparisons isUi .dn=2e/.
4. Since we call SELECT on an array with2i elements, the number of compar-

isons isT .2i/.

Thus, wheni < n=2, the total number of comparisons isbn=2cCUi .dn=2e/C
T .2i/.

b. We show by substitution that ifi < n=2, thenUi.n/ D nCO.T .2i/ lg.n=i//.
In particular, we show thatUi.n/ � n C cT .2i/ lg.n=i/ � d.lg lg n/T .2i/ D
nC cT .2i/ lg n � cT .2i/ lg i � d.lg lg n/T .2i/ for some positive constantc,
some positive constantd to be chosen later, andn � 4. We have

Ui.n/ D bn=2c C Ui .dn=2e/C T .2i/

� bn=2c C dn=2e C cT .2i/ lg dn=2e � cT .2i/ lg i

� d.lg lg dn=2e/T .2i/

D nC cT .2i/ lg dn=2e � cT .2i/ lg i � d.lg lg dn=2e/T .2i/

� nC cT .2i/ lg.n=2C 1/ � cT .2i/ lg i � d.lg lg.n=2//T .2i/

D nC cT .2i/ lg.n=2C 1/ � cT .2i/ lg i � d.lg.lg n � 1//T .2i/

� nC cT .2i/ lg n � cT .2i/ lg i � d.lg lg n/T .2i/

if cT .2i/ lg.n=2C 1/�d.lg.lg n� 1//T .2i/ � cT .2i/ lg n�d.lg lg n/T .2i/.
Simple algebraic manipulations gives the following sequence of equivalent con-
ditions:

cT .2i/ lg.n=2C 1/ � d.lg.lg n � 1//T .2i/ � cT .2i/ lg n � d.lg lg n/T .2i/

c lg.n=2C 1/ � d.lg.lg n � 1// � c lg n � d.lg lg n/

c.lg.n=2C 1/ � lg n/ � d.lg.lg n � 1/ � lg lg n/

c

�

lg
n=2C 1

n

�

� d lg
lg n � 1

lg n

c

�

lg

�
1

2
C 1

n

��

� d lg
lg n � 1

lg n

Solutions for Chapter 9: Medians and Order Statistics 9-21

Observe that1=2C1=n decreases asn increases, but.lg n�1/= lg n increases as
n increases. Whenn D 4, we have1=2C1=n D 3=4 and.lg n�1/= lg n D 1=2.
Thus, we just need to choosed such thatc lg.3=4/ � d lg.1=2/ or, equivalently,
c lg.3=4/ � �d . Multiplying both sides by�1, we getd � �c lg.3=4/ D
c lg.4=3/. Thus, any value ofd that is at mostc lg.4=3/ suffices.

c. When i is a constant,T .2i/ D O.1/ and lg.n=i/ D lg n � lg i D O.lg n/.
Thus, wheni is a constant less thann=2, we have that

Ui .n/ D nCO.T .2i/ lg.n=i//

D nCO.O.1/ �O.lg n//

D nCO.lg n/ :

d. Suppose thati D n=k for k � 2. Theni � n=2. If k > 2, theni < n=2, and
we have

Ui .n/ D nCO.T .2i/ lg.n=i//

D nCO.T .2n=k/ lg.n=.n=k//

D nCO.T .2n=k/ lg k/ :

If k D 2, thenn D 2i and lgk D 1. We have

Ui .n/ D T .n/

D nC .T .n/ � n/

� nC .T .2i/ � n/

D nC .T .2n=k/ � n/

D nC .T .2n=k/ lg k � n/

D nCO.T .2n=k/ lg k/ :

Solution to Problem 9-4

a. As in the quicksort analysis, elements´i and j́ will not be compared with
each other if any element inf´iC1; ´iC2; : : : ; j́ �1g is chosen as a pivot element
before eitheŕ i or j́ , becausé i and j́ would then lie in separate partitions.
There can be another reason that´i and j́ might not be compared, however.
Suppose thatk < i , so that´k < ´i , and suppose further that the element
chosen as the pivot iśl , wherek � l < i . In this case, becausek � l ,
the recursion won’t consider elements indexed higher thanl . Therefore, the
recursion will never look at́ i or j́ , and they will never be compared with each
other. Similarly, ifj < k and the pivot element́l is such thatj < l � k, then
the recursion won’t consider elements indexed less thanl , and agaiń i and j́

will never be compared with each other. The final case is wheni � k � j

(but disallowingi D j), so that́ i � ´k � j́ ; in this case, we have the same
analysis as for quicksort:́i and j́ are compared with each other only if one of
them is chosen as the pivot element.

Getting back to the case in whichk < i , it is again true that́ i and j́ are
compared with each other only if one of them is chosen as the pivot element.
As we know, they won’t be compared with each other if the pivotelement is

9-22 Solutions for Chapter 9: Medians and Order Statistics

between them, and we argued above that they won’t be comparedwith each
other if the pivot element iśl for l < i . Similarly, whenj < k, elementś i

and j́ are compared with each other only if one of them is chosen as the pivot
element.

Now we need to compute the probability that´i and j́ are compared with
each other. LetZijk be the set of elements that includes´i ; : : : ; j́ , along with
´k; : : : ; ´i�1 if k < i or j́ C1; : : : ; ´k if j < k. In other words,

Zijk D

�
f´i ; ´iC1; : : : ; j́ g if i � k � j ;

f´k ; ´kC1; : : : ; j́ g if k < i ;

f´i ; ´iC1; : : : ; ´kg if j < k :

With this definition ofZijk , we have that

jZijkj D max.j � i C 1; j � k C 1; k � i C 1/ :

As in the quicksort analysis, we observe that until an element from Zijk is
chosen as the pivot, the whole setZijk is together in the same partition, and so
each element ofZijk is equally likely to be the first one chosen as the pivot.

Letting C be the event that́i is compared with́ j when finding´k sometime
during the execution of the algorithm, we have that

E ŒXijk � D PrfC g
D Prf´i or j́ is the first pivot chosen fromZijkg
D Prf´i is the first pivot chosen fromZijkg

C Prf j́ is the first pivot chosen fromZijkg

D 1

jZijk j
C 1

jZijk j

D 2

max.j � i C 1; j � k C 1; k � i C 1/
:

b. Adding up all the possible pairs that might be compared gives

Xk D
n�1
X

iD1

n
X

j DiC1

Xijk ;

and so, by linearity of expectation, we have

E ŒXk� D E

"
n�1
X

iD1

n
X

j DiC1

Xijk

#

D
n�1
X

iD1

n
X

j DiC1

E ŒXijk�

D
n�1
X

iD1

n
X

j DiC1

2

max.j � i C 1; j � k C 1; k � i C 1/
:

We break this sum into the same three cases as before:i � k � j , k < i , and
j < k. With k fixed, we varyi andj . We get an inequality because we cannot

Solutions for Chapter 9: Medians and Order Statistics 9-23

havei D k D j , but our summation will allow it:

E ŒXk� � 2

k
X

iD1

n
X

j Dk

1

j � i C 1
C

n
X

j DkC1

j �1
X

iDkC1

1

j � k C 1

C
k�2
X

iD1

k�1
X

j DiC1

1

k � i C 1

!

D 2

k
X

iD1

n
X

j Dk

1

j � i C 1
C

n
X

j DkC1

j � k � 1

j � k C 1
C

k�2
X

iD1

k � i � 1

k � i C 1

!

:

c. First, let’s focus on the latter two summations. Each one sums fractions that are
strictly less than1. The middle summation hasn � k terms, and the right-hand
summation hask�2 terms, and so the latter two summations sum to less thann.

Now we look at the first summation. Letm D j � i . There is only one way
for m to equal0: if i D k D j . There are only two ways form to equal1: if
i D k�1 andj D k, or if i D k andj D kC1. There are only three ways for
m to equal2: if i D k � 2 andj D k, if i D k � 1 andj D k C 1, or if i D k

andj D k C 2. Continuing on, we see that there are at mostmC 1 ways for
j � i to equalm. Sincej � i � n � 1, we can rewrite the first summation as

n�1
X

mD0

mC 1

mC 1
D n :

Thus, we have

E ŒXk� < 2.nC n/

D 4n :

d. To show that RANDOMIZED-SELECT runs in expected timeO.n/, we adapt
Lemma 7.1 for RANDOMIZED-SELECT. The adaptation is trivial: just re-
place the variableX in the lemma statement by the random variableXk that
we just analyzed. Thus, the expected running time of RANDOMIZED-SELECT

is O.nCXk/ D O.n/.

Lecture Notes for Chapter 11:
Hash Tables

Chapter 11 overview

Many applications require a dynamic set that supports only thedictionary opera-
tions INSERT, SEARCH, and DELETE. Example: a symbol table in a compiler.

A hash table is effective for implementing a dictionary.

� The expected time to search for an element in a hash table isO.1/, under some
reasonable assumptions.

� Worst-case search time is‚.n/, however.

A hash table is a generalization of an ordinary array.

� With an ordinary array, we store the element whose key isk in positionk of the
array.

� Given a keyk, we find the element whose key isk by just looking in thekth
position of the array. This is calleddirect addressing.

� Direct addressing is applicable when we can afford to allocate an array with
one position for every possible key.

We use a hash table when we do not want to (or cannot) allocate an array with one
position per possible key.

� Use a hash table when the number of keys actually stored is small relative to
the number of possible keys.

� A hash table is an array, but it typically uses a size proportional to the number
of keys to be stored (rather than the number of possible keys).

� Given a keyk, don’t just usek as the index into the array.
� Instead, compute a function ofk, and use that value to index into the array. We

call this function ahash function.

Issues that we’ll explore in hash tables:

� How to compute hash functions. We’ll look at the multiplication and division
methods.

� What to do when the hash function maps multiple keys to the same table entry.
We’ll look at chaining and open addressing.

11-2 Lecture Notes for Chapter 11: Hash Tables

Direct-address tables

Scenario
� Maintain a dynamic set.
� Each element has a key drawn from a universeU D f0; 1; : : : ; m � 1g wherem

isn’t too large.
� No two elements have the same key.

Represent by adirect-address table, or array,T Œ0 : : : m � 1�:

� Eachslot, or position, corresponds to a key inU .
� If there’s an elementx with keyk, thenT Œk� contains a pointer tox.
� Otherwise,T Œk� is empty, represented byNIL .

T

U
(universe of keys)

K
(actual
keys)

 2
3

5
8

1

9
4

0
7

6 2

3

5

8

key satellite data

2

0

1

3

4

5

6

7

8

9

Dictionary operations are trivial and takeO.1/ time each:

DIRECT-ADDRESS-SEARCH.T; k/

return T Œk�

DIRECT-ADDRESS-INSERT.T; x/

T ŒkeyŒx�� D x

DIRECT-ADDRESS-DELETE.T; x/

T ŒkeyŒx�� D NIL

Hash tables

The problem with direct addressing is if the universeU is large, storing a table of
sizejU j may be impractical or impossible.

Often, the setK of keys actually stored is small, compared toU , so that most of
the space allocated forT is wasted.

Lecture Notes for Chapter 11: Hash Tables 11-3

� WhenK is much smaller thanU , a hash table requires much less space than a
direct-address table.

� Can reduce storage requirements to‚.jKj/.
� Can still getO.1/ search time, but in theaverage case, not theworst case.

Idea

Instead of storing an element with keyk in slot k, use a functionh and store the
element in sloth.k/.

� We callh ahash function.
� h W U ! f0; 1; : : : ; m � 1g, so thath.k/ is a legal slot number inT .
� We say thatk hashesto sloth.k/.

Collisions

When two or more keys hash to the same slot.

� Can happen when there are more possible keys than slots (jU j > m).
� For a given setK of keys withjKj � m, may or may not happen. Definitely

happens ifjKj > m.
� Therefore, must be prepared to handle collisions in all cases.
� Use two methods: chaining and open addressing.
� Chaining is usually better than open addressing. We’ll examine both.

Collision resolution by chaining

Put all elements that hash to the same slot into a linked list.

T

U
(universe of keys)

K
(actual
keys)

k1

k2 k3

k4 k5

k6

k7

k8

k1

k2

k3

k4

k5

k6

k7

k8

[This figure shows singly linked lists. If we want to delete elements, it’s better to
use doubly linked lists.]

� Slot j contains a pointer to the head of the list of all stored elements that hash
to j [or to the sentinel if using a circular, doubly linked list with a sentinel],

� If there are no such elements, slotj containsNIL .

11-4 Lecture Notes for Chapter 11: Hash Tables

How to implement dictionary operations with chaining:

� Insertion:

CHAINED-HASH-INSERT.T; x/

insertx at the head of listT Œh.keyŒx�/�

� Worst-case running time isO.1/.
� Assumes that the element being inserted isn’t already in thelist.
� It would take an additional search to check if it was already inserted.

� Search:

CHAINED-HASH-SEARCH.T; k/

search for an element with keyk in list T Œh.k/�

Running time is proportional to the length of the list of elements in sloth.k/.

� Deletion:

CHAINED-HASH-DELETE.T; x/

deletex from the listT Œh.keyŒx�/�

� Given pointerx to the element to delete, so no search is needed to find this
element.

� Worst-case running time isO.1/ time if the lists are doubly linked.
� If the lists are singly linked, then deletion takes as long assearching, be-

cause we must findx’s predecessor in its list in order to correctly update
nextpointers.

Analysis of hashing with chaining

Given a key, how long does it take to find an element with that key, or to determine
that there is no element with that key?

� Analysis is in terms of theload factor˛ D n=m:

� n D # of elements in the table.
� m D # of slots in the tableD # of (possibly empty) linked lists.
� Load factor is average number of elements per linked list.
� Can havę < 1, ˛ D 1, or ˛ > 1.

� Worst case is when alln keys hash to the same slot) get a single list of lengthn
) worst-case time to search is‚.n/, plus time to compute hash function.

� Average case depends on how well the hash function distributes the keys among
the slots.

We focus on average-case performance of hashing with chaining.

� Assumesimple uniform hashing: any given element is equally likely to hash
into any of them slots.

Lecture Notes for Chapter 11: Hash Tables 11-5

� For j D 0; 1; : : : ; m � 1, denote the length of listT Œj � by nj . Then
n D n0 C n1 C � � � C nm�1.

� Average value ofnj is EŒnj � D ˛ D n=m.
� Assume that we can compute the hash function inO.1/ time, so that the time

required to search for the element with keyk depends on the lengthnh.k/ of the
list T Œh.k/�.

We consider two cases:

� If the hash table contains no element with keyk, then the search is unsuccessful.
� If the hash table does contain an element with keyk, then the search is success-

ful.

[In the theorem statements that follow, we omit the assumptions that we’re resolv-
ing collisions by chaining and that simple uniform hashing applies.]

Unsuccessful search

Theorem
An unsuccessful search takes expected time‚.1C ˛/.

Proof Simple uniform hashing) any key not already in the table is equally likely
to hash to any of them slots.

To search unsuccessfully for any keyk, need to search to the end of the listT Œh.k/�.
This list has expected length EŒnh.k/� D ˛. Therefore, the expected number of
elements examined in an unsuccessful search is˛.

Adding in the time to compute the hash function, the total time required is
‚.1C ˛/.

Successful search
� The expected time for a successful search is also‚.1C ˛/.
� The circumstances are slightly different from an unsuccessful search.
� The probability that each list is searched is proportional to the number of ele-

ments it contains.

Theorem
A successful search takes expected time‚.1C ˛/.

Proof Assume that the elementx being searched for is equally likely to be any of
then elements stored in the table.

The number of elements examined during a successful search for x is 1 more than
the number of elements that appear beforex in x’s list. These are the elements
insertedafter x was inserted (because we insert at the head of the list).

So we need to find the average, over then elementsx in the table, of how many
elements were inserted intox’s list afterx was inserted.

For i D 1; 2; : : : ; n, let xi be the i th element inserted into the table, and let
ki D keyŒxi �.

11-6 Lecture Notes for Chapter 11: Hash Tables

For all i andj , define indicator random variableXij D I fh.ki / D h.kj /g.
Simple uniform hashing) Prfh.ki / D h.kj /g D 1=m) E ŒXij � D 1=m (by
Lemma 5.1).

Expected number of elements examined in a successful searchis

E

"

1

n

n
X

iD1

1C
n
X

j DiC1

Xij

!#

D 1

n

n
X

iD1

1C
n
X

j DiC1

E ŒXij �

!

(linearity of expectation)

D 1

n

n
X

iD1

1C
n
X

j DiC1

1

m

!

D 1C 1

nm

n
X

iD1

.n � i/

D 1C 1

nm

n
X

iD1

n �
n
X

iD1

i

!

D 1C 1

nm

�

n2 � n.nC 1/

2

�

(equation (A.1))

D 1C n � 1

2m

D 1C ˛

2
� ˛

2n
:

Adding in the time for computing the hash function, we get that the expected total
time for a successful search is‚.2C ˛=2� ˛=2n/ D ‚.1C ˛/.

Alternative analysis, using indicator random variables even more

For each slotl and for each pair of keyski andkj , define the indicator random
variableXijl D I fthe search is forxi , h.ki / D l , andh.kj / D lg. Xijl D 1 when
keyski andkj collide at slotl and when we are searching forxi .

Simple uniform hashing) Prfh.ki / D lg D 1=m and Prfh.kj / D lg D 1=m.
Also have Prfthe search is forxig D 1=n. These events are all independent)
PrfXijl D 1g D 1=nm2) E ŒXijl � D 1=nm2 (by Lemma 5.1).

Define, for each elementxj , the indicator random variable

Yj D I fxj appears in a list prior to the element being searched forg :

Yj D 1 if and only if there is some slotl that has both elementsxi andxj in its list,
and alsoi < j (so thatxi appears afterxj in the list). Therefore,

Yj D
j �1
X

iD1

m�1
X

lD0

Xijl :

Lecture Notes for Chapter 11: Hash Tables 11-7

One final random variable:Z, which counts how many elements appear in the list
prior to the element being searched for:Z DPn

j D1 Yj . We must count the element
being searched for as well as all those preceding it in its list) compute EŒZ C 1�:

E ŒZ C 1� D E

"

1C
n
X

j D1

Yj

#

D 1C E

"
n
X

j D1

j �1
X

iD1

m�1
X

lD0

Xijl

#

(linearity of expectation)

D 1C
n
X

j D1

j �1
X

iD1

m�1
X

lD0

E ŒXijl � (linearity of expectation)

D 1C
n
X

j D1

j �1
X

iD1

m�1
X

lD0

1

nm2

D 1C

n

2

!

�m � 1

nm2

D 1C n.n � 1/

2
� 1

nm

D 1C n � 1

2m

D 1C n

2m
� 1

2m

D 1C ˛

2
� ˛

2n
:

Adding in the time for computing the hash function, we get that the expected total
time for a successful search is‚.2C ˛=2 � ˛=2n/ D ‚.1C ˛/.

Interpretation

If n D O.m/, then˛ D n=m D O.m/=m D O.1/, which means that searching
takes constant time on average.

Since insertion takesO.1/ worst-case time and deletion takesO.1/ worst-case
time when the lists are doubly linked, all dictionary operations takeO.1/ time on
average.

Hash functions

We discuss some issues regarding hash-function design and present schemes for
hash function creation.

What makes a good hash function?

� Ideally, the hash function satisfies the assumption of simple uniform hashing.

11-8 Lecture Notes for Chapter 11: Hash Tables

� In practice, it’s not possible to satisfy this assumption, since we don’t know in
advance the probability distribution that keys are drawn from, and the keys may
not be drawn independently.

� Often use heuristics, based on the domain of the keys, to create a hash function
that performs well.

Keys as natural numbers

� Hash functions assume that the keys are natural numbers.
� When they’re not, have to interpret them as natural numbers.
� Example: Interpret a character string as an integer expressed in someradix

notation. Suppose the string isCLRS:

� ASCII values:C D 67, L D 76, R D 82, S D 83.
� There are 128 basic ASCII values.
� So interpretCLRS as.67 � 1283/C .76 � 1282/C .82 � 1281/C .83 � 1280/ D

141,764,947.

Division method

h.k/ D k modm :

Example: m D 20 andk D 91) h.k/ D 11.

Advantage: Fast, since requires just one division operation.

Disadvantage:Have to avoid certain values ofm:

� Powers of2 are bad. Ifm D 2p for integerp, then h.k/ is just the least
significantp bits ofk.

� If k is a character string interpreted in radix2p (as inCLRS example), then
m D 2p � 1 is bad: permuting characters in a string does not change its hash
value (Exercise 11.3-3).

Good choice form: A prime not too close to an exact power of2.

Multiplication method

1. Choose constantA in the range0 < A < 1.

2. Multiply key k by A.

3. Extract the fractional part ofkA.

4. Multiply the fractional part bym.

5. Take the floor of the result.

Put another way,h.k/ D bm .k A mod1/c, wherek A mod1 D kA � bkAc D
fractional part ofkA.

Disadvantage:Slower than division method.

Advantage: Value ofm is not critical.

Lecture Notes for Chapter 11: Hash Tables 11-9

(Relatively) easy implementation:

� Choosem D 2p for some integerp.
� Let the word size of the machine bew bits.
� Assume thatk fits into a single word. (k takesw bits.)
� Let s be an integer in the range0 < s < 2w . (s takesw bits.)
� RestrictA to be of the forms=2w .

×

binary point

s D A � 2w

w bits

k

r0r1

h.k/

extractp bits

� Multiply k by s.
� Since we’re multiplying twow-bit words, the result is2w bits,r12wCr0, where

r1 is the high-order word of the product andr0 is the low-order word.
� r1 holds the integer part ofkA (bkAc) andr0 holds the fractional part ofkA

(k A mod1 D kA � bkAc). Think of the “binary point” (analog of decimal
point, but for binary representation) as being betweenr1 andr0. Since we don’t
care about the integer part ofkA, we can forget aboutr1 and just user0.

� Since we wantbm .k A mod1/c, we could get that value by shiftingr0 to the
left by p D lg m bits and then taking thep bits that were shifted to the left of
the binary point.

� We don’t need to shift. Thep bits that would have been shifted to the left of
the binary point are thep most significant bits ofr0. So we can just take these
bits after having formedr0 by multiplying k by s.

� Example: m D 8 (implies p D 3), w D 5, k D 21. Must have0 < s < 25;
chooses D 13) A D 13=32.

� Using just the formula to computeh.k/: kA D 21 � 13=32 D 273=32 D 817
32

) k A mod1 D 17=32) m .k A mod1/ D 8 � 17=32 D 17=4 D 41
4
)

bm .k A mod1/c D 4, so thath.k/ D 4.
� Using the implementation:ks D 21 � 13 D 273 D 8 � 25 C 17) r1 D 8,

r0 D 17. Written in w D 5 bits, r0 D 10001. Take thep D 3 most signifi-
cant bits ofr0, get100 in binary, or4 in decimal, so thath.k/ D 4.

How to chooseA:

� The multiplication method works with any legal value ofA.
� But it works better with some values than with others, depending on the keys

being hashed.
� Knuth suggests usingA � .

p
5 � 1/=2.

11-10 Lecture Notes for Chapter 11: Hash Tables

Universal hashing

[We just touch on universal hashing in these notes. See the book for a full treat-
ment.]

Suppose that a malicious adversary, who gets to choose the keys to be hashed, has
seen your hashing program and knows the hash function in advance. Then he could
choose keys that all hash to the same slot, giving worst-casebehavior.

One way to defeat the adversary is to use a different hash function each time. You
choose one at random at the beginning of your program. Unlessthe adversary
knows how you’ll be randomly choosing which hash function touse, he cannot
intentionally defeat you.

Just because we choose a hash function randomly, that doesn’t mean it’s a good
hash function. What we want is to randomly choose a single hash function from a
set of good candidates.

Consider a finite collectionH of hash functions that map a universeU of keys into
the rangef0; 1; : : : ; m � 1g. H is universalif for each pair of keysk; l 2 U , where
k ¤ l , the number of hash functionsh 2 H for which h.k/ D h.l/ is� jH j =m.

Put another way,H is universal if, with a hash functionh chosen randomly
from H , the probability of a collision between two different keys is no more than
than1=m chance of just choosing two slots randomly and independently.

Why are universal hash functions good?

� They give good hashing behavior:

Theorem
Using chaining and universal hashing on keyk:

� If k is not in the table, the expected length EŒnh.k/� of the list thatk hashes
to is� ˛.

� If k is in the table, the expected length EŒnh.k/� of the list that holdsk is
� 1C ˛.

Corollary
Using chaining and universal hashing, the expected time foreach SEARCH op-
eration isO.1/.

� They are easy to design.

[See book for details of behavior and design of a universal class of hash functions.]

Open addressing

An alternative to chaining for handling collisions.

Lecture Notes for Chapter 11: Hash Tables 11-11

Idea
� Store all keys in the hash table itself.
� Each slot contains either a key orNIL .
� To search for keyk:

� Computeh.k/ and examine sloth.k/. Examining a slot is known as aprobe.
� If slot h.k/ contains keyk, the search is successful. If this slot containsNIL ,

the search is unsuccessful.
� There’s a third possibility: sloth.k/ contains a key that is notk. We compute

the index of some other slot, based onk and on which probe (count from0:
0th, 1st, 2nd, etc.) we’re on.

� Keep probing until we either find keyk (successful search) or we find a slot
holdingNIL (unsuccessful search).

� We need the sequence of slots probed to be a permutation of theslot numbers
h0; 1; : : : ; m � 1i (so that we examine all slots if we have to, and so that we
don’t examine any slot more than once).

� Thus, the hash function ish W U � f0; 1; : : : ; m � 1g
„ ƒ‚ …

probe number

! f0; 1; : : : ; m � 1g
„ ƒ‚ …

slot number

.

� The requirement that the sequence of slots be a permutation of h0; 1; : : : ;

m � 1i is equivalent to requiring that theprobe sequencehh.k; 0/; h.k; 1/;

: : : ; h.k; m � 1/i be a permutation ofh0; 1; : : : ; m � 1i.
� To insert, act as though we’re searching, and insert at the first NIL slot we find.

Pseudocode for searching

HASH-SEARCH.T; k/

i D 0

repeat
j D h.k; i/

if T Œj � == k

return j

i D i C 1

until T Œj � == NIL or i D m

return NIL

HASH-SEARCH returns the index of a slot containing keyk, or NIL if the search is
unsuccessful.

11-12 Lecture Notes for Chapter 11: Hash Tables

Pseudocode for insertion

HASH-INSERT.T; k/

i D 0

repeat
j D h.k; i/

if T Œj � == NIL

T Œj � D k

return j

elsei D i C 1

until i == m

error “hash table overflow”

HASH-INSERT returns the number of the slot that gets keyk, or it flags a “hash
table overflow” error if there is no empty slot in which to put key k.

Deletion

Cannot just putNIL into the slot containing the key we want to delete.

� Suppose we want to delete keyk in slot j .
� And suppose that sometime after inserting keyk, we were inserting keyk0, and

during this insertion we had probed slotj (which contained keyk).
� And suppose we then deleted keyk by storingNIL into slotj .
� And then we search for keyk0.
� During the search, we would probe slotj beforeprobing the slot into which

key k0 was eventually stored.
� Thus, the search would be unsuccessful, even though keyk0 is in the table.

Solution: Use a special valueDELETED instead ofNIL when marking a slot as
empty during deletion.

� Search should treatDELETED as though the slot holds a key that does not match
the one being searched for.

� Insertion should treatDELETED as though the slot were empty, so that it can be
reused.

The disadvantage of usingDELETED is that now search time is no longer dependent
on the load factor̨ .

How to compute probe sequences

The ideal situation isuniform hashing: each key is equally likely to have any of
themŠ permutations ofh0; 1; : : : ; m � 1i as its probe sequence. (This generalizes
simple uniform hashing for a hash function that produces a whole probe sequence
rather than just a single number.)

It’s hard to implement true uniform hashing, so we approximate it with techniques
that at least guarantee that the probe sequence is a permutation of h0; 1; : : : ;m�1i.
None of these techniques can produce allmŠ probe sequences. They will make use
of auxiliary hash functions, which mapU ! f0; 1; : : : ; m � 1g.

Lecture Notes for Chapter 11: Hash Tables 11-13

Linear probing

Given auxiliary hash functionh0, the probe sequence starts at sloth0.k/ and con-
tinues sequentially through the table, wrapping after slotm � 1 to slot0.

Given keyk and probe numberi (0 � i < m), h.k; i/ D .h0.k/C i/ modm.

The initial probe determines the entire sequence) only m possible sequences.

Linear probing suffers fromprimary clustering: long runs of occupied sequences
build up. And long runs tend to get longer, since an empty slotpreceded byi full
slots gets filled next with probability.i C 1/=m. Result is that the average search
and insertion times increase.

Quadratic probing

As in linear probing, the probe sequence starts ath0.k/. Unlike linear probing, it
jumps around in the table according to a quadratic function of the probe number:
h.k; i/ D .h0.k/C c1i C c2i2/ modm, wherec1; c2 ¤ 0 are constants.

Must constrainc1, c2, andm in order to ensure that we get a full permutation of
h0;1; : : : ;m�1i. (Problem 11-3 explores one way to implement quadratic probing.)

Can getsecondary clustering: if two distinct keys have the sameh0 value, then
they have the same probe sequence.

Double hashing

Use two auxiliary hash functions,h1 andh2. h1 gives the initial probe, andh2

gives the remaining probes:h.k; i/ D .h1.k/C ih2.k// modm.

Must haveh2.k/ be relatively prime tom (no factors in common other than1) in
order to guarantee that the probe sequence is a full permutation of h0;1; : : : ;m�1i.
� Could choosem to be a power of2 andh2 to always produce an odd number

> 1.
� Could letm be prime and have1 < h2.k/ < m.

‚.m2/ different probe sequences, since each possible combination of h1.k/

andh2.k/ gives a different probe sequence.

Analysis of open-address hashing

Assumptions
� Analysis is in terms of load factor̨ . We will assume that the table never

completely fills, so we always have0 � n < m) 0 � ˛ < 1.
� Assume uniform hashing.
� No deletion.
� In a successful search, each key is equally likely to be searched for.

Theorem
The expected number of probes in an unsuccessful search is atmost1=.1 � ˛/.

11-14 Lecture Notes for Chapter 11: Hash Tables

Proof Since the search is unsuccessful, every probe is to an occupied slot, except
for the last probe, which is to an empty slot.

Define random variableX D # of probes made in an unsuccessful search.

Define eventsAi , for i D 1; 2; : : :, to be the event that there is ani th probe and
that it’s to an occupied slot.

X � i if and only if probes1; 2; : : : ; i � 1 are made and are to occupied slots)
PrfX � ig D PrfA1 \ A2 \ � � � \ Ai�1g.
By Exercise C.2-5,

PrfA1 \ A2 \ � � � \ Ai�1g D PrfA1g � PrfA2 j A1g � PrfA3 j A1 \ A2g � � �
PrfAi�1 j A1 \ A2 \ � � � \ Ai�2g :

Claim
PrfAj j A1 \ A2 \ � � � \ Aj �1g D .n�jC1/=.m�jC1/. Boundary case:j D 1

) PrfA1g D n=m.

Proof For the boundary casej D 1, there aren stored keys andm slots, so the
probability that the first probe is to an occupied slot isn=m.

Given thatj�1 probes were made, all to occupied slots, the assumption of uniform
hashing says that the probe sequence is a permutation ofh0;1; : : : ;m�1i, which in
turn implies that the next probe is to a slot that we have not yet probed. There are
m� j C 1 slots remaining,n� j C 1 of which are occupied. Thus, the probability
that thej th probe is to an occupied slot is.n � j C 1/=.m � j C 1/. (claim)

Using this claim,

PrfX � ig D n

m
� n � 1

m � 1
� n � 2

m � 2
� � � n � i C 2

m � i C 2
„ ƒ‚ …

i � 1 factors

:

n < m) .n � j /=.m � j / � n=m for j � 0, which implies

PrfX � ig �
� n

m

�i�1

D ˛i�1 :

By equation (C.25),

E ŒX� D
1
X

iD1

PrfX � ig

�
1
X

iD1

˛i�1

D
1
X

iD0

˛i

D 1

1 � ˛
(equation (A.6)) . (theorem)

Lecture Notes for Chapter 11: Hash Tables 11-15

Interpretation

If ˛ is constant, an unsuccessful search takesO.1/ time.

� If ˛ D 0:5, then an unsuccessful search takes an average of1=.1 � 0:5/ D 2

probes.
� If ˛ D 0:9, takes an average of1=.1 � 0:9/ D 10 probes.

Corollary
The expected number of probes to insert is at most1=.1 � ˛/.

Proof Since there is no deletion, insertion uses the same probe sequence as an
unsuccessful search.

Theorem

The expected number of probes in a successful search is at most
1

˛
ln

1

1� ˛
.

Proof A successful search for keyk follows the same probe sequence as when
keyk was inserted.

By the previous corollary, ifk was the.i C 1/st key inserted, then̨ equaledi=m

at the time. Thus, the expected number of probes made in a search for k is at most
1=.1 � i=m/ D m=.m � i/.

That was assuming thatk was the.i C 1/st key inserted. We need to average over
all n keys:

1

n

n�1
X

iD0

m

m � i
D m

n

n�1
X

iD0

1

m � i

D 1

˛

m
X

kDm�nC1

1

k

� 1

˛

Z m

m�n

.1=x/ dx (by inequality (A.12))

D 1

˛
ln

m

m � n

D 1

˛
ln

1

1 � ˛
(theorem)

Solutions for Chapter 11:
Hash Tables

Solution to Exercise 11.1-4

We denote the huge array byT and, taking the hint from the book, we also have a
stack implemented by an arrayS . The size ofS equals the number of keys actually
stored, so thatS should be allocated at the dictionary’s maximum size. The stack
has an attributeS: top, so that only entriesSŒ1 : : S: top� are valid.

The idea of this scheme is that entries ofT andS validate each other. If keyk is
actually stored inT , thenT Œk� contains the index, sayj , of a valid entry inS , and
SŒj � contains the valuek. Let us call this situation, in which1 � T Œk� � S: top,
SŒT Œk�� D k, andT ŒSŒj �� D j , avalidating cycle.

Assuming that we also need to store pointers to objects in ourdirect-address table,
we can store them in an array that is parallel to eitherT or S . SinceS is smaller
thanT , we’ll use an arrayS 0, allocated to be the same size asS , for these pointers.
Thus, if the dictionary contains an objectx with key k, then there is a validating
cycle andS 0ŒT Œk�� points tox.

The operations on the dictionary work as follows:

� Initialization: Simply setS: top D 0, so that there are no valid entries in the
stack.

� SEARCH: Given keyk, we check whether we have a validating cycle, i.e.,
whether1 � T Œk� � S: top andSŒT Œk�� D k. If so, we returnS 0ŒT Œk��, and
otherwise we returnNIL .

� INSERT: To insert objectx with key k, assuming that this object is not already
in the dictionary, we incrementS: top, setSŒS: top� D k, setS 0ŒS: top� D x,
and setT Œk� D S: top.

� DELETE: To delete objectx with key k, assuming that this object is in the
dictionary, we need to break the validating cycle. The trickis to also ensure
that we don’t leave a “hole” in the stack, and we solve this problem by moving
the top entry of the stack into the position that we are vacating—and then fixing
up that entry’s validating cycle. That is, we execute the followingsequence of
assignments:

Solutions for Chapter 11: Hash Tables 11-17

SŒT Œk�� D SŒS: top�

S 0ŒT Œk�� D S 0ŒS: top�

T ŒSŒT Œk��� D T Œk�

T Œk� D 0

S: top D S: top� 1

Each of these operations—initialization, SEARCH, INSERT, and DELETE—takes
O.1/ time.

Solution to Exercise 11.2-1
This solution is also posted publicly

For each pair of keysk; l , wherek ¤ l , define the indicator random variable
Xkl D I fh.k/ D h.l/g. Since we assume simple uniform hashing, PrfXkl D 1g D
Prfh.k/ D h.l/g D 1=m, and so EŒXkl � D 1=m.

Now define the random variableY to be the total number of collisions, so that
Y D

P

k¤l Xkl . The expected number of collisions is

E ŒY � D E
�X

k¤l

Xkl

�

D
X

k¤l

E ŒXkl � (linearity of expectation)

D

n

2

!

1

m

D n.n � 1/

2
� 1

m

D n.n � 1/

2m
:

Solution to Exercise 11.2-4
This solution is also posted publicly

The flag in each slot will indicate whether the slot is free.

� A free slot is in the free list, a doubly linked list of all freeslots in the table.
The slot thus contains two pointers.

� A used slot contains an element and a pointer (possiblyNIL) to the next element
that hashes to this slot. (Of course, that pointer points to another slot in the
table.)

11-18 Solutions for Chapter 11: Hash Tables

Operations

� Insertion:

� If the element hashes to a free slot, just remove the slot fromthe free list and
store the element there (with aNIL pointer). The free list must be doubly
linked in order for this deletion to run inO.1/ time.

� If the element hashes to a used slotj , check whether the elementx already
there “belongs” there (its key also hashes to slotj).

� If so, add the new element to the chain of elements in this slot. To do
so, allocate a free slot (e.g., take the head of the free list)for the new
element and put this new slot at the head of the list pointed toby the
hashed-to slot (j).

� If not, E is part of another slot’s chain. Move it to a new slot by allo-
cating one from the free list, copying the old slot’s (j ’s) contents (ele-
mentx and pointer) to the new slot, and updating the pointer in the slot
that pointed toj to point to the new slot. Then insert the new element in
the now-empty slot as usual.
To update the pointer toj , it is necessary to find it by searching the chain
of elements starting in the slotx hashes to.

� Deletion: Let j be the slot the elementx to be deleted hashes to.

� If x is the only element inj (j doesn’t point to any other entries), just free
the slot, returning it to the head of the free list.

� If x is in j but there’s a pointer to a chain of other elements, move the first
pointed-to entry to slotj and free the slot it was in.

� If x is found by following a pointer fromj , just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed tox to point tox’s successor).

� Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expectedO.1/ times for the same reason they do with
the version in the book: The expected time to search the chains is O.1 C ˛/

regardless of where the chains are stored, and the fact that all the elements are
stored in the table means that˛ � 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from the free list would not
run inO.1/ time.

Solution to Exercise 11.2-6

We can view the hash table as if it hadm rows andL columns; each row stores
one chain. The array hasmL entries storingn keys, andmL � n empty values.
The procedure picks array positions at random until it finds akey, which it returns.
The probability of success on one draw isn=mL, so mL=n D L=˛ trials are
needed. Each trial takes timeO.1/, since the individual chain sizes are known. The
chain for the last draw needs to be scanned to find the desired element, however,
costingO.L/.

Solutions for Chapter 11: Hash Tables 11-19

Solution to Exercise 11.3-3

First, we observe that we can generate any permutation by a sequence of inter-
changes of pairs of characters. One can prove this property formally, but infor-
mally, consider that both heapsort and quicksort work by interchanging pairs of
elements and that they have to be able to produce any permutation of their input
array. Thus, it suffices to show that if stringx can be derived from stringy by
interchanging a single pair of characters, thenx andy hash to the same value.

Let us denote thei th character inx by xi , and similarly fory. The interpreta-
tion of x in radix 2p is

Pn�1

iD0 xi2
ip, and soh.x/ D

�Pn�1

iD0 xi2
ip
�

mod .2p � 1/.
Similarly, h.y/ D

�Pn�1

iD0 yi2
ip
�

mod .2p � 1/.

Suppose thatx andy are identical strings ofn characters except that the characters
in positionsa andb are interchanged:xa D yb andya D xb. Without loss of
generality, leta > b. We have

h.x/� h.y/ D

n�1
X

iD0

xi2
ip

!

mod .2p � 1/ �

n�1
X

iD0

yi2
ip

!

mod .2p � 1/ :

Since0 � h.x/; h.y/ < 2p � 1, we have that�.2p � 1/ < h.x/� h.y/ < 2p � 1.
If we show that.h.x/ � h.y// mod .2p � 1/ D 0, thenh.x/ D h.y/.

Since the sums in the hash functions are the same except for indicesa andb, we
have

.h.x/� h.y// mod .2p � 1/

D ..xa2ap C xb2bp/ � .ya2ap C yb2bp// mod .2p � 1/

D ..xa2ap C xb2bp/ � .xb2ap C xa2bp// mod .2p � 1/

D ..xa � xb/2ap � .xa � xb/2bp/ mod .2p � 1/

D ..xa � xb/.2ap � 2bp// mod .2p � 1/

D ..xa � xb/2bp.2.a�b/p � 1// mod .2p � 1/ :

By equation (A.5),

a�b�1
X

iD0

2pi D 2.a�b/p � 1

2p � 1
;

and multiplying both sides by2p �1, we get2.a�b/p �1 D
�Pa�b�1

iD0 2pi
�

.2p �1/.
Thus,

.h.x/� h.y// mod .2p � 1/

D

.xa � xb/2bp

a�b�1
X

iD0

2pi

!

.2p � 1/

!

mod .2p � 1/

D 0 ;

since one of the factors is2p � 1.

We have shown that.h.x/ � h.y// mod .2p � 1/ D 0, and soh.x/ D h.y/.

11-20 Solutions for Chapter 11: Hash Tables

Solution to Exercise 11.3-5

Let b D jBj andu D jU j. We start by showing that the total number of collisions
is minimized by a hash function that mapsu=b elements ofU to each of theb
values inB. For a given hash function, letuj be the number of elements that map
to j 2 B. We haveu D P

j 2B uj . We also have that the number of collisions for
a given value ofj 2 B is

�
uj

2

�

D uj .uj � 1/=2.

Lemma
The total number of collisions is minimized whenuj D u=b for eachj 2 B.

Proof If uj � u=b, let us callj underloaded, and if uj � u=b, let us callj
overloaded. Consider an unbalanced situation in whichuj ¤ u=b for at least
one valuej 2 B. We can think of converting a balanced situation in which all
uj equalu=b into the unbalanced situation by repeatedly moving an element that
maps to an underloaded value to map instead to an overloaded value. (If you think
of the values ofB as representing buckets, we are repeatedly moving elements
from buckets containing at mostu=b elements to buckets containing at leastu=b

elements.)

We now show that each such move increases the number of collisions, so that
all the moves together must increase the number of collisions. Suppose that
we move an element from an underloaded valuej to an overloaded valuek,
and we leave all other elements alone. Becausej is underloaded andk is
overloaded,uj � u=b � uk. Considering just the collisions for valuesj
and k, we haveuj .uj � 1/=2 C uk.uk � 1/=2 collisions before the move and
.uj � 1/.uj � 2/=2 C .uk C 1/uk=2 collisions afterward. We wish to show that
uj .uj � 1/=2 C uk.uk � 1/=2 < .uj � 1/.uj � 2/=2 C .uk C 1/uk=2. We have
the following sequence of equivalent inequalities:

uj < uk C 1

2uj < 2uk C 2

�uk < uk � 2uj C 2

u2
j � uj C u2

k � uk < u2
j � 3uj C 2C u2

k C uk

uj .uj � 1/C uk.uk � 1/ < .uj � 1/.uj � 2/C .uk C 1/uk

uj .uj � 1/=2C uk.uk � 1/=2 < .uj � 1/.uj � 2/=2C .uk C 1/uk=2 :

Thus, each move increases the number of collisions. We conclude that the number
of collisions is minimized whenuj D u=b for eachj 2 B.

By the above lemma, for any hash function, the total number ofcollisions must
be at leastb.u=b/.u=b � 1/=2. The number of pairs of distinct elements is

�
u

2

�

D
u.u� 1/=2. Thus, the number of collisions per pair of distinct elements must be at
least

Solutions for Chapter 11: Hash Tables 11-21

b.u=b/.u=b � 1/=2

u.u � 1/=2
D u=b � 1

u � 1

>
u=b � 1

u

D 1

b
� 1

u
:

Thus, the bound� on the probability of a collision for any pair of distinct elements
can be no less than1=b � 1=u D 1= jBj � 1= jU j.

Solution to Problem 11-1

a. Since we assume uniform hashing, we can use the same observation as is used
in Corollary 11.7: that inserting a key entails an unsuccessful search followed
by placing the key into the first empty slot found. As in the proof of Theo-
rem 11.6, if we letX be the random variable denoting the number of probes
in an unsuccessful search, then PrfX � ig � ˛i�1. Sincen � m=2, we have
˛ � 1=2. Letting i D k C 1, we have PrfX > kg D PrfX � k C 1g �
.1=2/.kC1/�1 D 2�k .

b. Substitutingk D 2 lg n into the statement of part (a) yields that the probability
that thei th insertion requires more thank D 2 lg n probes is at most2�2 lg n D
.2lg n/�2 D n�2 D 1=n2.

We must deal with the possibility that2 lg n is not an integer, however. Then
the event that thei th insertion requires more than2 lg n probes is the same
as the event that thei th insertion requires more thanb2 lg nc probes. Since
b2 lg nc > 2 lg n � 1, we have that the probability of this event is at most
2�b2 lg nc < 2�.2 lg n�1/ D 2=n2 D O.1=n2/.

c. Let the eventA beX > 2 lg n, and fori D 1; 2; : : : ; n, let the eventAi beXi >

2 lg n. In part (b), we showed that PrfAig D O.1=n2/ for i D 1; 2; : : : ; n.
From how we defined these events,A D A1 [A2 [� � � [An. Using Boole’s
inequality, (C.19), we have

PrfAg � PrfA1g C PrfA2g C � � � C PrfAng
� n �O.1=n2/

D O.1=n/ :

d. We use the definition of expectation and break the sum into twoparts:

11-22 Solutions for Chapter 11: Hash Tables

E ŒX� D
n
X

kD1

k � PrfX D kg

D
d2 lg ne
X

kD1

k � PrfX D kg C
n
X

kDd2 lg neC1

k � PrfX D kg

�
d2 lg ne
X

kD1

d2 lg ne � PrfX D kg C
n
X

kDd2 lg neC1

n � PrfX D kg

D d2 lg ne
d2 lg ne
X

kD1

PrfX D kg C n

n
X

kDd2 lg neC1

PrfX D kg :

Since X takes on exactly one value, we have that
Pd2 lg ne

kD1
PrfX D kg D

PrfX � d2 lg neg � 1 and
Pn

kDd2 lg neC1 PrfX D kg � PrfX > 2 lg ng D
O.1=n/, by part (c). Therefore,

E ŒX� � d2 lg ne � 1C n �O.1=n/

D d2 lg ne CO.1/

D O.lg n/ :

Solution to Problem 11-2
This solution is also posted publicly

a. A particular key is hashed to a particular slot with probability 1=n. Suppose
we select a specific set ofk keys. The probability that thesek keys are inserted
into the slot in question and that all other keys are insertedelsewhere is
�

1

n

�k �

1 � 1

n

�n�k

:

Since there are
�

n

k

�

ways to choose ourk keys, we get

Qk D
�

1

n

�k �

1� 1

n

�n�k

n

k

!

:

b. For i D 1; 2; : : : ; n, let Xi be a random variable denoting the number of keys
that hash to sloti , and letAi be the event thatXi D k, i.e., that exactlyk keys
hash to sloti . From part (a), we have PrfAg D Qk . Then,

Pk D PrfM D kg
D Pr

n�

max
1�i�n

Xi

�

D k
o

D Prfthere existsi such thatXi D k and thatXi � k for i D 1; 2; : : : ; ng
� Prfthere existsi such thatXi D kg
D PrfA1 [A2 [� � � [Ang
� PrfA1g C PrfA2g C � � � C PrfAng (by inequality (C.19))

D nQk :

Solutions for Chapter 11: Hash Tables 11-23

c. We start by showing two facts. First,1 � 1=n < 1, which implies
.1 � 1=n/n�k < 1. Second,nŠ=.n�k/Š D n�.n�1/�.n�2/ � � � .n�kC1/ < nk.
Using these facts, along with the simplificationkŠ > .k=e/k of equation (3.18),
we have

Qk D
�

1

n

�k �

1 � 1

n

�n�k
nŠ

kŠ.n � k/Š

<
nŠ

nkkŠ.n � k/Š
(.1� 1=n/n�k < 1)

<
1

kŠ
(nŠ=.n � k/Š < nk)

<
ek

kk
(kŠ > .k=e/k) .

d. Notice that whenn D 2, lg lg n D 0, so to be precise, we need to assume that
n � 3.

In part (c), we showed thatQk < ek=kk for anyk; in particular, this inequality
holds fork0. Thus, it suffices to show thatek0=k0

k0 < 1=n3 or, equivalently,
thatn3 < k0

k0=ek0 .

Taking logarithms of both sides gives an equivalent condition:

3 lg n < k0.lg k0 � lg e/

D c lg n

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/ :

Dividing both sides by lgn gives the condition

3 <
c

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/

D c

�

1C lg c � lg e

lg lg n
� lg lg lg n

lg lg n

�

:

Let x be the last expression in parentheses:

x D
�

1C lg c � lg e

lg lg n
� lg lg lg n

lg lg n

�

:

We need to show that there exists a constantc > 1 such that3 < cx.

Noting that limn!1 x D 1, we see that there existsn0 such thatx � 1=2 for all
n � n0. Thus, any constantc > 6 works forn � n0.

We handle smaller values ofn—in particular,3 � n < n0—as follows. Since
n is constrained to be an integer, there are a finite number ofn in the range
3 � n < n0. We can evaluate the expressionx for each such value ofn and
determine a value ofc for which3 < cx for all values ofn. The final value ofc
that we use is the larger of

� 6, which works for alln � n0, and
� max3�n<n0

fc W 3 < cxg, i.e., the largest value ofc that we chose for the
range3 � n < n0.

Thus, we have shown thatQk0
< 1=n3, as desired.

To see thatPk < 1=n2 for k � k0, we observe that by part (b),Pk � nQk

for all k. Choosingk D k0 givesPk0
� nQk0

< n � .1=n3/ D 1=n2. For

11-24 Solutions for Chapter 11: Hash Tables

k > k0, we will show that we can pick the constantc such thatQk < 1=n3 for
all k � k0, and thus conclude thatPk < 1=n2 for all k � k0.

To pick c as required, we letc be large enough thatk0 > 3 > e. Thene=k < 1

for all k � k0, and soek=kk decreases ask increases. Thus,
Qk < ek=kk

� ek0=kk0

< 1=n3

for k � k0.

e. The expectation ofM is

E ŒM � D
n
X

kD0

k � PrfM D kg

D
k0X

kD0

k � PrfM D kg C
n
X

kDk0C1

k � PrfM D kg

�
k0X

kD0

k0 � PrfM D kg C
n
X

kDk0C1

n � PrfM D kg

� k0

k0X

kD0

PrfM D kg C n

n
X

kDk0C1

PrfM D kg

D k0 � PrfM � k0g C n � PrfM > k0g ;

which is what we needed to show, sincek0 D c lg n= lg lg n.

To show that EŒM � D O.lg n= lg lg n/, note that PrfM � k0g � 1 and

PrfM > k0g D
n
X

kDk0C1

PrfM D kg

D
n
X

kDk0C1

Pk

<

n
X

kDk0C1

1=n2 (by part (d))

< n � .1=n2/

D 1=n :

We conclude that
E ŒM � � k0 � 1C n � .1=n/

D k0 C 1

D O.lg n= lg lg n/ :

Solution to Problem 11-3

a. From how the probe-sequence computation is specified, it is easy to see that
the probe sequence ishh.k/; h.k/ C 1; h.k/ C 1 C 2; h.k/ C 1 C 2 C 3;

Solutions for Chapter 11: Hash Tables 11-25

: : : ; h.k/C 1C 2C 3C � � � C i ; : : :i, where all the arithmetic is modulom.
Starting the probe numbers from0, thei th probe is offset (modulom) from h.k/

by

i
X

j D0

j D i.i C 1/

2
D 1

2
i2 C 1

2
i :

Thus, we can write the probe sequence as

h0.k; i/ D
�

h.k/C 1

2
i C 1

2
i2

�

modm ;

which demonstrates that this scheme is a special case of quadratic probing.

b. Let h0.k; i/ denote thei th probe of our scheme. We saw in part (a) that
h0.k; i/ D .h.k/ C i.i C 1/=2/ modm. To show that our algorithm exam-
ines every table position in the worst case, we show that for agiven key, each of
the firstm probes hashes to a distinct value. That is, for any keyk and for any
probe numbersi andj such that0 � i < j < m, we haveh0.k; i/ ¤ h0.k; j /.
We do so by showing thath0.k; i/ D h0.k; j / yields a contradiction.

Let us assume that there exists a keyk and probe numbersi andj satsifying
0 � i < j < m for which h0.k; i/ D h0.k; j /. Then

h.k/C i.i C 1/=2 � h.k/C j.j C 1/=2 .mod m/ ;

which in turn implies that

i.i C 1/=2 � j.j C 1/=2 .mod m/ ;

or

j.j C 1/=2 � i.i C 1/=2 � 0 .mod m/ :

Sincej.j C 1/=2 � i.i C 1/=2 D .j � i/.j C i C 1/=2, we have

.j � i/.j C i C 1/=2 � 0 .mod m/ :

The factorsj � i and j C i C 1 must have different parities, i.e.,j � i is
even if and only ifj C i C 1 is odd. (Work out the various cases in which
i and j are even and odd.) Since.j � i/.j C i C 1/=2 � 0 .mod m/,
we have.j � i/.j C i C 1/=2 D rm for some integerr or, equivalently,
.j � i/.j C i C 1/ D r � 2m. Using the assumption thatm is a power
of 2, let m D 2p for some nonnegative integerp, so that now we have
.j � i/.j C i C 1/ D r � 2pC1. Because exactly one of the factorsj � i

and j C i C 1 is even,2pC1 must divide one of the factors. It cannot be
j � i , sincej � i < m < 2pC1. But it also cannot bej C i C 1, since
j C i C 1 � .m� 1/C .m� 2/C 1 D 2m� 2 < 2pC1. Thus we have derived
the contradiction that2pC1 divides neither of the factorsj � i andj C i C 1.
We conclude thath0.k; i/ ¤ h0.k; j /.

Lecture Notes for Chapter 12:
Binary Search Trees

Chapter 12 overview

Search trees

� Data structures that support many dynamic-set operations.
� Can be used as both a dictionary and as a priority queue.
� Basic operations take time proportional to the height of thetree.

� For complete binary tree withn nodes: worst case‚.lg n/.
� For linear chain ofn nodes: worst case‚.n/.

� Different types of search trees include binary search trees, red-black trees (cov-
ered in Chapter 13), and B-trees (covered in Chapter 18).

We will cover binary search trees, tree walks, and operations on binary search trees.

Binary search trees

Binary search trees are an important data structure for dynamic sets.

� Accomplish many dynamic-set operations inO.h/ time, whereh D height of
tree.

� As in Section 10.4, we represent a binary tree by a linked datastructure in which
each node is an object.

� T:root points to the root of treeT .
� Each node contains the attributes

� key(and possibly other satellite data).
� left: points to left child.
� right: points to right child.
� p: points to parent.T:root:pD NIL .

12-2 Lecture Notes for Chapter 12: Binary Search Trees

� Stored keys must satisfy thebinary-search-tree property.

� If y is in left subtree ofx, theny:key� x:key.
� If y is in right subtree ofx, theny:key� x:key.

Draw sample tree.

[This is Figure 12.1(a) from the text, usingA, B, D, F , H , K in place of 2, 3, 5,
5, 7, 8, with alphabetic comparisons. It’s OK to have duplicate keys, though there
are none in this example. Show that the binary-search-tree property holds.]

A D

B

K

H

F

The binary-search-tree property allows us to print keys in abinary search tree in
order, recursively, using an algorithm called aninorder tree walk. Elements are
printed in monotonically increasing order.

How INORDER-TREE-WALK works:

� Check to make sure thatx is notNIL .
� Recursively, print the keys of the nodes inx’s left subtree.
� Printx’s key.
� Recursively, print the keys of the nodes inx’s right subtree.

INORDER-TREE-WALK .x/

if x ¤ NIL

INORDER-TREE-WALK .x: left/
print keyŒx�

INORDER-TREE-WALK .x:right/

Example

Do the inorder tree walk on the example above, getting the output ABDFHK.

Correctness

Follows by induction directly from the binary-search-treeproperty.

Time

Intuitively, the walk takes‚.n/ time for a tree withn nodes, because we visit and
print each node once.[Book has formal proof.]

Lecture Notes for Chapter 12: Binary Search Trees 12-3

Querying a binary search tree

Searching

TREE-SEARCH.x; k/

if x == NIL or k == keyŒx�

return x

if k < x:key
return TREE-SEARCH.x: left; k/

else return TREE-SEARCH.x:right; k/

Initial call is TREE-SEARCH.T:root; k/.

Example

Search for valuesD andC in the example tree from above.

Time

The algorithm recurses, visiting nodes on a downward path from the root. Thus,
running time isO.h/, whereh is the height of the tree.

[The text also gives an iterative version ofTREE-SEARCH, which is more effi-
cient on most computers. The above recursive procedure is more straightforward,
however.]

Minimum and maximum

The binary-search-tree property guarantees that

� the minimum key of a binary search tree is located at the leftmost node, and
� the maximum key of a binary search tree is located at the rightmost node.

Traverse the appropriate pointers (left or right) until NIL is reached.

TREE-M INIMUM .x/

while x: left¤ NIL

x D x: left
return x

TREE-MAXIMUM .x/

while x:right ¤ NIL

x D x:right
return x

Time

Both procedures visit nodes that form a downward path from the root to a leaf.
Both procedures run inO.h/ time, whereh is the height of the tree.

12-4 Lecture Notes for Chapter 12: Binary Search Trees

Successor and predecessor

Assuming that all keys are distinct, the successor of a nodex is the nodey such
thaty:key is the smallest key> x:key. (We can findx’s successor based entirely
on the tree structure. No key comparisons are necessary.) Ifx has the largest key
in the binary search tree, then we say thatx’s successor isNIL .

There are two cases:

1. If nodex has a non-empty right subtree, thenx’s successor is the minimum in
x’s right subtree.

2. If nodex has an empty right subtree, notice that:

� As long as we move to the left up the tree (move up through rightchildren),
we’re visiting smaller keys.

� x’s successory is the node thatx is the predecessor of (x is the maximum
in y’s left subtree).

TREE-SUCCESSOR.x/

if x:right ¤ NIL

return TREE-M INIMUM .x:right/
y D x:p
while y ¤ NIL andx == y:right

x D y

y D y:p
return y

TREE-PREDECESSORis symmetric to TREE-SUCCESSOR.

Example

2 4

3

13

7

6

17 20

18

15

9

� Find the successor of the node with key value 15. (Answer: Keyvalue 17)
� Find the successor of the node with key value 6. (Answer: Key value 7)
� Find the successor of the node with key value 4. (Answer: Key value 6)
� Find the predecessor of the node with key value 6. (Answer: Key value 4)

Time

For both the TREE-SUCCESSORand TREE-PREDECESSORprocedures, in both
cases, we visit nodes on a path down the tree or up the tree. Thus, running time is
O.h/, whereh is the height of the tree.

Lecture Notes for Chapter 12: Binary Search Trees 12-5

Insertion and deletion

Insertion and deletion allows the dynamic set represented by a binary search tree
to change. The binary-search-tree property must hold afterthe change. Insertion is
more straightforward than deletion.

Insertion

TREE-INSERT.T; ´/

y D NIL

x D T:root
while x ¤ NIL

y D x

if ´:key< x:key
x D x: left

elsex D x:right
´:p D y

if y == NIL

T:root D ´ // treeT was empty
elseif´:key< y:key

y: left D ´

elsey:right D ´

� To insert value� into the binary search tree, the procedure is given node´, with
´:keyD �, ´: left D NIL , and´:right D NIL .

� Beginning at root of the tree, trace a downward path, maintaining two pointers.

� Pointerx: traces the downward path.
� Pointery: “trailing pointer” to keep track of parent ofx.

� Traverse the tree downward by comparing the value of node atx with �, and
move to the left or right child accordingly.

� Whenx is NIL , it is at the correct position for nodé.
� Comparé ’s value withy’s value, and insert́ at eithery’s left or right, appro-

priately.

Example

Run TREE-INSERT.T; C / on the first sample binary search tree. Result:

A D

B

K

H

F

C

12-6 Lecture Notes for Chapter 12: Binary Search Trees

Time

Same as TREE-SEARCH. On a tree of heighth, procedure takesO.h/ time.

TREE-INSERTcan be used with INORDER-TREE-WALK to sort a given set of num-
bers. (See Exercise 12.3-3.)

Deletion

[Deletion from a binary search tree changed in the third edition. In the first two
editions, when the nodépassed toTREE-DELETE had two children,́ ’s succes-
sory was the node actually removed, withy’s contents copied intó. The problem
with that approach is that if there are external pointers into the binary search tree,
then a pointer toy from outside the binary search tree becomes stale. In the third
edition, the nodé passed toTREE-DELETE is always the node actually removed,
so that all external pointers to nodes other than´ remain valid.]

Conceptually, deleting nodéfrom binary search treeT has three cases:

1. If ´ has no children, just remove it.

2. If ´ has just one child, then make that child take´’s position in the tree, drag-
ging the child’s subtree along.

3. If ´ has two children, then find́’s successory and replacé by y in the tree.
y must be in´’s right subtree and have no left child. The rest of´’s original
right subtree becomesy’s new right subtree, and́’s left subtree becomesy’s
new left subtree.

This case is a little tricky because the exact sequence of steps taken depends on
whethery is ´’s right child.

The code organizes the cases a bit differently. Since it willmove subtrees around
within the binary search tree, it uses a subroutine, TRANSPLANT, to replace one
subtree as the child of its parent by another subtree.

TRANSPLANT.T; u; �/

if u:p == NIL

T:root D �

elseifu == u:p: left
u:p: left D �

elseu:p:right D �

if � ¤ NIL

�:p D u:p

TRANSPLANT.T; u; �/ replaces the subtree rooted atu by the subtree rooted at�:

� Makesu’s parent become�’s parent (unlessu is the root, in which case it makes
� the root).

� u’s parent gets� as either its left or right child, depending on whetheru was a
left or right child.

� Doesn’t update�: left or �:right, leaving that up to TRANSPLANT’s caller.

TREE-DELETE.T; ´/ has four cases when deleting node´ from binary search
treeT :

Lecture Notes for Chapter 12: Binary Search Trees 12-7

� If ´ has no left child, replacéby its right child. The right child may or may not
beNIL . (If ´’s right child isNIL , then this case handles the situation in which´

has no children.)

qq

z

NIL

r

r

� If ´ has just one child, and that child is its left child, then replace´ by its left
child.

qq

z

l NIL

l

� Otherwise,́ has two children. Find́ ’s successory. y must lie in´’s right
subtree and have no left child (the solution to Exercise 12.2-5 on page 12-15 of
this manual shows why).

Goal is to replacé by y, splicingy out of its current location.

� If y is ´’s right child, replacé by y and leavey’s right child alone.

q

z

l

NIL

q

y

ly x

x

� Otherwise,y lies within ´’s right subtree but is not the root of this subtree.
Replacey by its own right child. Then replacéby y.

q

z

l r

q

z

l NIL r

y

q

l r

y

x

NIL

y

x

x

12-8 Lecture Notes for Chapter 12: Binary Search Trees

TREE-DELETE.T; ´/

if ´: left == NIL

TRANSPLANT.T; ´; ´:right/ // ´ has no left child
elseif´:right == NIL

TRANSPLANT.T; ´; ´: left/ // ´ has just a left child
else// ´ has two children.

y D TREE-M INIMUM .´:right/ // y is ´’s successor
if y:p¤ ´

// y lies within ´’s right subtree but is not the root of this subtree.
TRANSPLANT.T; y; y:right/
y:right D ´:right
y:right:p D y

// Replacé by y.
TRANSPLANT.T; ´; y/

y: left D ´: left
y: left:p D y

Note that the last three lines execute when´ has two children, regardless of whether
y is ´’s right child.

Example

On this binary search treeT ,

H

B

A

E

FC

I

K

L

N

OM

J

G

D

run the following.[You can either start with the original tree each time or start with
the result of the previous call. The tree is designed so that either way will elicit all
four cases.]

� TREE-DELETE.T; I / shows the case in which the node deleted has no left child.
� TREE-DELETE.T; G/ shows the case in which the node deleted has a left child

but no right child.
� TREE-DELETE.T; K/ shows the case in which the node deleted has both chil-

dren and its successor is its right child.
� TREE-DELETE.T; B/ shows the case in which the node deleted has both chil-

dren and its successor is not its right child.

Lecture Notes for Chapter 12: Binary Search Trees 12-9

Time

O.h/, on a tree of heighth. Everything isO.1/ except for the call to TREE-
M INIMUM .

Minimizing running time

We’ve been analyzing running time in terms ofh (the height of the binary search
tree), instead ofn (the number of nodes in the tree).

� Problem: Worst case for binary search tree is‚.n/—no better than linked list.
� Solution: Guarantee small height (balanced tree)—h D O.lg n/.

In later chapters, by varying the properties of binary search trees, we will be able
to analyze running time in terms ofn.

� Method: Restructure the tree if necessary. Nothing specialis required for
querying, but there may be extra work when changing the structure of the tree
(inserting or deleting).

Red-black trees are a special class of binary trees that avoids the worst-case be-
havior ofO.n/ that we can see in “plain” binary search trees. Red-black trees are
covered in detail in Chapter 13.

Expected height of a randomly built binary search tree

[These are notes on a starred section in the book. I covered this material in an
optional lecture.]

Given a set ofn distinct keys. Insert them in random order into an initiallyempty
binary search tree.

� Each of thenŠ permutations is equally likely.
� Different from assuming that every binary search tree onn keys is equally

likely.

Try it for n D 3. Will get 5 different binary search trees. When we look at the
binary search trees resulting from each of the3Š input permutations, 4 trees will
appear once and 1 tree will appear twice.[This gives the idea for the solution
to Exercise 12.4-3.]

� Forget about deleting keys.

We will show that the expected height of a randomly built binary search tree is
O.lg n/.

Random variables

Define the following random variables:

� Xn D height of a randomly built binary search tree onn keys.

12-10 Lecture Notes for Chapter 12: Binary Search Trees

� Yn D 2Xn D exponential height.
� Rn D rank of the root within the set ofn keys used to build the binary search

tree.

� Equally likely to be any element off1; 2; : : : ; ng.
� If Rn D i , then

� Left subtree is a randomly-built binary search tree oni � 1 keys.
� Right subtree is a randomly-built binary search tree onn � i keys.

Foreshadowing

We will need to relate EŒYn� to EŒXn�.

We’ll useJensen’s inequality:

E Œf .X/� � f .E ŒX�/ ; [leave on board]

provided

� the expectations exist and are finite, and
� f .x/ is convex: for all x; y and all0 � � � 1

f .�x C .1 � �/y/ � �f .x/C .1 � �/f .y/ :

x yλx + (1–λ)y

f(x)

f(y)

f(λx + (1–λ)y)

λf(x) + (1–λ)f(y)

Convex� “curves upward”

We’ll use Jensen’s inequality forf .x/ D 2x .

Since2x curves upward, it’s convex.

Lecture Notes for Chapter 12: Binary Search Trees 12-11

Formula for Yn

Think aboutYn, if we know thatRn D i :

i–1
nodes n–i

nodes

Height of root is 1 more than the maximum height of its children:

Yn D 2 �max.Yi�1; Yn�i / :

Base cases:

� Y1 D 1 (expected height of a1-node tree is20 D 1).
� DefineY0 D 0.

Define indicator random variablesZn;1; Zn;2; : : : ; Zn;n:

Zn;i D I fRn D ig :

Rn is equally likely to be any element off1; 2; : : : ; ng
) PrfRn D ig D 1=n

) E ŒZn;i � D 1=n [leave on board]
(since EŒI fAg� D PrfAg)

Consider a givenn-node binary search tree (which could be a subtree). Exactly
oneZn;i is 1, and all others are0. Hence,

Yn D
n
X

iD1

Zn;i � .2 �max.Yi�1; Yn�i // : [leave on board]

[Recall: Yn D 2 �max.Yi�1; Yn�i / was assuming thatRn D i .]

Bounding E ŒYn�

We will show that EŒYn� is polynomial inn, which will imply that EŒXn� D
O.lg n/.

Claim
Zn;i is independent ofYi�1 andYn�i .

Justification If we choose the root such thatRn D i , the left subtree containsi�1

nodes, and it’s like any other randomly built binary search tree withi � 1 nodes.
Other than the number of nodes, the left subtree’s structurehas nothing to do with
it being the left subtree of the root. Hence,Yi�1 andZn;i are independent.

Similarly, Yn�i andZn;i are independent. (claim)

12-12 Lecture Notes for Chapter 12: Binary Search Trees

Fact
If X andY are nonnegative random variables, then EŒmax.X; Y /� � E ŒX�CE ŒY �.
[Leave on board. This is Exercise C.3-4 from the text.]

Thus,

E ŒYn� D E

"
n
X

iD1

Zn;i .2 �max.Yi�1; Yn�i //

#

D
n
X

iD1

E ŒZn;i � .2 �max.Yi�1; Yn�i //� (linearity of expectation)

D
n
X

iD1

E ŒZn;i � � E Œ2 �max.Yi�1; Yn�i /� (independence)

D
n
X

iD1

1

n
� E Œ2 �max.Yi�1; Yn�i /� (E ŒZn;i � D 1=n)

D 2

n

n
X

iD1

E Œmax.Yi�1; Yn�i /� (E ŒaX� D a E ŒX�)

� 2

n

n
X

iD1

.E ŒYi�1�C E ŒYn�i �/ (earlier fact) .

Observe that the last summation is

.E ŒY0�C E ŒYn�1�/C .E ŒY1�C E ŒYn�2�/C .E ŒY2�C E ŒYn�3�/

C � � � C .E ŒYn�1�C E ŒY0�/ D 2

n�1
X

iD0

E ŒYi � ;

and so we get the recurrence

E ŒYn� � 4

n

n�1
X

iD0

E ŒYi � : [leave on board]

Solving the recurrence

We will show that for all integersn > 0, this recurrence has the solution

E ŒYn� � 1

4

nC 3

3

!

:

Lemma
n�1
X

iD0

i C 3

3

!

D

nC 3

4

!

:

[This lemma solves Exercise 12.4-1.]

Lecture Notes for Chapter 12: Binary Search Trees 12-13

Proof Use Pascal’s identity (Exercise C.1-7):

n

k

!

D

n � 1

k � 1

!

C

n � 1

k

!

.

Also using the simple identity

4

4

!

D 1 D

3

3

!

, we have

nC 3

4

!

D

nC 2

3

!

C

nC 2

4

!

D

nC 2

3

!

C

nC 1

3

!

C

nC 1

4

!

D

nC 2

3

!

C

nC 1

3

!

C

n

3

!

C

n

4

!

:::

D

nC 2

3

!

C

nC 1

3

!

C

n

3

!

C � � � C

4

3

!

C

4

4

!

D

nC 2

3

!

C

nC 1

3

!

C

n

3

!

C � � � C

4

3

!

C

3

3

!

D
n�1
X

iD0

i C 3

3

!

: (lemma)

We solve the recurrence by induction onn.

Basis:n D 1.

1 D Y1 D E ŒY1� � 1

4

1C 3

3

!

D 1

4
� 4 D 1 :

Inductive step: Assume that EŒYi � �
1

4

i C 3

3

!

for all i < n. Then

E ŒYn� � 4

n

n�1
X

iD0

E ŒYi � (from before)

� 4

n

n�1
X

iD0

1

4

i C 3

3

!

(inductive hypothesis)

D 1

n

n�1
X

iD0

i C 3

3

!

D 1

n

nC 3

4

!

(lemma)

D 1

n
� .nC 3/Š

4Š .n � 1/Š

D 1

4
� .nC 3/Š

3Š nŠ

12-14 Lecture Notes for Chapter 12: Binary Search Trees

D 1

4

nC 3

3

!

:

Thus, we’ve proven that EŒYn� � 1

4

nC 3

3

!

.

Bounding E ŒXn�

With our bound on EŒYn�, we use Jensen’s inequality to bound EŒXn�:

2EŒXn� � E
�

2Xn
�

D E ŒYn� :

Thus,

2EŒXn� � 1

4

nC 3

3

!

D 1

4
� .nC 3/.nC 2/.nC 1/

6

D O.n3/ :

Taking logs of both sides gives EŒXn� D O.lg n/.

Done!

Solutions for Chapter 12:
Binary Search Trees

Solution to Exercise 12.1-2
This solution is also posted publicly

In a heap, a node’s key is� both of its children’s keys. In a binary search tree, a
node’s key is� its left child’s key, but� its right child’s key.

The heap property, unlike the binary-searth-tree property, doesn’t help print the
nodes in sorted order because it doesn’t tell which subtree of a node contains the
element to print before that node. In a heap, the largest element smaller than the
node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in
O.n/ time, we would have anO.n/-time algorithm for sorting, because building
the heap takes onlyO.n/ time. But we know (Chapter 8) that a comparison sort
must take�.n lg n/ time.

Solution to Exercise 12.2-5

Let x be a node with two children. In an inorder tree walk, the nodesin x’s left
subtree immediately precedex and the nodes inx’s right subtree immediately fol-
low x. Thus,x’s predecessor is in its left subtree, and its successor is inits right
subtree.

Let s bex’s successor. Thens cannot have a left child, for a left child ofs would
come betweenx ands in the inorder walk. (It’s afterx because it’s inx’s right
subtree, and it’s befores because it’s ins’s left subtree.) If any node were to come
betweenx ands in an inorder walk, thens would not bex’s successor, as we had
supposed.

Symmetrically,x’s predecessor has no right child.

12-16 Solutions for Chapter 12: Binary Search Trees

Solution to Exercise 12.2-7
This solution is also posted publicly

Note that a call to TREE-M INIMUM followed byn� 1 calls to TREE-SUCCESSOR

performs exactly the same inorder walk of the tree as does theprocedure INORDER-
TREE-WALK . INORDER-TREE-WALK prints the TREE-M INIMUM first, and by
definition, the TREE-SUCCESSORof a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs in‚.n/ time because:

� It requires�.n/ time to do then procedure calls.
� It traverses each of then � 1 tree edges at most twice, which takesO.n/ time.

To see that each edge is traversed at most twice (once going down the tree and once
going up), consider the edge between any nodeu and either of its children, node�.
By starting at the root, we must traverse.u; �/ downward fromu to �, before
traversing it upward from� to u. The only time the tree is traversed downward is
in code of TREE-M INIMUM , and the only time the tree is traversed upward is in
code of TREE-SUCCESSORwhen we look for the successor of a node that has no
right subtree.

Suppose that� is u’s left child.

� Before printingu, we must print all the nodes in its left subtree, which is rooted
at�, guaranteeing the downward traversal of edge.u; �/.

� After all nodes inu’s left subtree are printed,u must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path tou from the maximum element
(which has no right subtree) in the subtree rooted at�. This path clearly includes
edge.u; �/, and since all nodes inu’s left subtree are printed, edge.u; �/ is
never traversed again.

Now suppose that� is u’s right child.

� After u is printed, TREE-SUCCESSOR.u/ is called. To get to the minimum
element inu’s right subtree (whose root is�), the edge.u; �/ must be traversed
downward.

� After all values inu’s right subtree are printed, TREE-SUCCESSORis called on
the maximum element (again, which has no right subtree) in the subtree rooted
at �. TREE-SUCCESSORtraverses a path up the tree to an element afteru,
sinceu was already printed. Edge.u; �/ must be traversed upward on this path,
and since all nodes inu’s right subtree have been printed, edge.u; �/ is never
traversed again.

Hence, no edge is traversed twice in the same direction.

Therefore, this algorithm runs in‚.n/ time.

Solutions for Chapter 12: Binary Search Trees 12-17

Solution to Exercise 12.3-3
This solution is also posted publicly

Here’s the algorithm:

TREE-SORT.A/

let T be an empty binary search tree
for i D 1 to n

TREE-INSERT.T; AŒi �/

INORDER-TREE-WALK .T:root/

Worst case:‚.n2/—occurs when a linear chain of nodes results from the repeated
TREE-INSERT operations.

Best case:‚.n lg n/—occurs when a binary tree of height‚.lg n/ results from the
repeated TREE-INSERT operations.

Solution to Exercise 12.4-2

We will answer the second part first. We shall show that if the average depth of a
node is‚.lg n/, then the height of the tree isO.

p

n lg n/. Then we will answer
the first part by exhibiting that this bound is tight: there isa binary search tree with
average node depth‚.lg n/ and height‚.

p

n lg n/ D !.lg n/.

Lemma
If the average depth of a node in ann-node binary search tree is‚.lg n/, then the
height of the tree isO.

p

n lg n/.

Proof Suppose that ann-node binary search tree has average depth‚.lg n/ and
heighth. Then there exists a path from the root to a node at depthh, and the depths
of the nodes on this path are0; 1; : : : ; h. Let P be the set of nodes on this path and
Q be all other nodes. Then the average depth of a node is

1

n

X

x2P

depth.x/C
X

y2Q

depth.y/

!

� 1

n

X

x2P

depth.x/

D 1

n

h
X

dD0

d

D 1

n
�‚.h2/ :

For the purpose of contradiction, suppose thath is not O.
p

n lg n/, so thath D
!.
p

n lg n/. Then we have
1

n
�‚.h2/ D 1

n
� !.n lg n/

D !.lg n/ ;

12-18 Solutions for Chapter 12: Binary Search Trees

which contradicts the assumption that the average depth is‚.lg n/. Thus, the
height isO.

p

n lg n/.

Here is an example of ann-node binary search tree with average node depth
‚.lg n/ but height!.lg n/:

n �
p

n lg n

nodes

p

n lg n nodes

In this tree,n �
p

n lg n nodes are a complete binary tree, and the other
p

n lg n

nodes protrude from below as a single chain. This tree has height

‚.lg.n �
p

n lg n//C
p

n lg n D ‚.
p

n lg n/

D !.lg n/ :

To compute an upper bound on the average depth of a node, we useO.lg n/ as
an upper bound on the depth of each of then �

p

n lg n nodes in the complete
binary tree part andO.lg nC

p

n lg n/ as an upper bound on the depth of each of
the

p

n lg n nodes in the protruding chain. Thus, the average depth of a node is
bounded from above by
1

n
�O.

p

n lg n .lg nC
p

n lg n/C .n �
p

n lg n/ lg n/ D 1

n
�O.n lg n/

D O.lg n/ :

To bound the average depth of a node from below, observe that the bottommost
level of the complete binary tree part has‚.n�

p

n lg n/ nodes, and each of these
nodes has depth‚.lg n/. Thus, the average node depth is at least
1

n
�‚..n �

p

n lg n/ lg n/ D 1

n
��.n lg n/

D �.lg n/ :

Because the average node depth is bothO.lg n/ and�.lg n/, it is ‚.lg n/.

Solution to Exercise 12.4-4

We’ll go one better than showing that the function2x is convex. Instead, we’ll
show that the functioncx is convex, for any positive constantc. According to
the definition of convexity on page 1199 of the text, a function f .x/ is con-
vex if for all x and y and for all 0 � � � 1, we havef .�x C .1 � �/y/ �
�f .x/C .1 � �/f .y/. Thus, we need to show that for all0 � � � 1, we have
c�xC.1��/y � �cx C .1 � �/cy.

We start by proving the following lemma.

Solutions for Chapter 12: Binary Search Trees 12-19

Lemma
For any real numbersa andb and any positive real numberc,

ca � cb C .a � b/cb ln c :

Proof We first show that for all realr , we havecr � 1Cr ln c. By equation (3.12)
from the text, we haveex � 1 C x for all real x. Let x D r ln c, so thatex D
er ln c D .eln c/r D cr . Then we havecr D er ln c � 1C r ln c.

Substitutinga � b for r in the above inequality, we haveca�b � 1C .a � b/ ln c.
Multiplying both sides bycb givesca � cb C .a � b/cb ln c. (lemma)

Now we can show thatc�xC.1��/y � �cx C .1 � �/cy for all 0 � � � 1. For
convenience, let́ D �x C .1 � �/y.

In the inequality given by the lemma, substitutex for a and´ for b, giving

cx � c´ C .x � ´/c´ ln c :

Also substitutey for a and´ for b, giving

cy � c´ C .y � ´/c´ ln c :

If we multiply the first inequality by� and the second by1 � � and then add the
resulting inequalities, we get

�cx C .1 � �/cy

� �.c´C .x � ´/c´ ln c/C .1 � �/.c´C .y � ´/c´ ln c/

D �c´ C �xc´ ln c � �´c´ ln c C .1 � �/c´ C .1� �/yc´ ln c

� .1� �/´c´ ln c

D .�C .1� �//c´ C .�x C .1 � �/y/c´ ln c � .�C .1 � �//´c´ ln c

D c´ C ´c´ ln c � ´c´ ln c

D c´

D c�xC.1��/y ;

as we wished to show.

Solution to Problem 12-2
This solution is also posted publicly

To sort the strings ofS , we first insert them into a radix tree, and then use a preorder
tree walk to extract them in lexicographically sorted order. The tree walk outputs
strings only for nodes that indicate the existence of a string (i.e., those that are
lightly shaded in Figure 12.5 of the text).

Correctness

The preorder ordering is the correct order because:

� Any node’s string is a prefix of all its descendants’ strings and hence belongs
before them in the sorted order (rule 2).

12-20 Solutions for Chapter 12: Binary Search Trees

� A node’s left descendants belong before its right descendants because the corre-
sponding strings are identical up to that parent node, and inthe next position the
left subtree’s strings have 0 whereas the right subtree’s strings have 1 (rule 1).

Time

‚.n/.

� Insertion takes‚.n/ time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree whose length is the length
of the string), and the sum of all the string lengths isn.

� The preorder tree walk takesO.n/ time. It is just like INORDER-TREE-WALK

(it prints the current node and calls itself recursively on the left and right sub-
trees), so it takes time proportional to the number of nodes in the tree. The
number of nodes is at most 1 plus the sum (n) of the lengths of the binary
strings in the tree, because a length-i string corresponds to a path through the
root andi other nodes, but a single node may be shared among many string
paths.

Solution to Problem 12-3

a. The total path lengthP.T / is defined as
P

x2T d.x; T /. Dividing both quanti-
ties byn gives the desired equation.

b. For any nodex in TL, we haved.x; TL/ D d.x; T / � 1, since the distance to
the root ofTL is one less than the distance to the root ofT . Similarly, for any
nodex in TR, we haved.x; TR/ D d.x; T / � 1. Thus, ifT hasn nodes, we
have

P.T / D P.TL/C P.TR/C n � 1 ;

since each of then nodes ofT (except the root) is in eitherTL or TR.

c. If T is a randomly built binary search tree, then the root is equally likely to
be any of then elements in the tree, since the root is the first element inserted.
It follows that the number of nodes in subtreeTL is equally likely to be any
integer in the setf0; 1; : : : ; n � 1g. The definition ofP.n/ as the average total
path length of a randomly built binary search tree, along with part (b), gives us
the recurrence

P.n/ D 1

n

n�1
X

iD0

.P.i/C P.n � i � 1/C n � 1/ :

d. SinceP.0/ D 0, and since fork D 1; 2; : : : ; n � 1, each termP.k/ in the
summation appears once asP.i/ and once asP.n� i � 1/, we can rewrite the
equation from part (c) as

P.n/ D 2

n

n�1
X

kD1

P.k/C‚.n/ :

Solutions for Chapter 12: Binary Search Trees 12-21

e. Observe that if, in the recurrence (7.6) in part (c) of Problem 7-3, we replace
E ŒT .�/� by P.�/ and we replaceq by k, we get almost the same recurrence as in
part (d) of Problem 12-3. The remaining difference is that inProblem 12-3(d),
the summation starts at1 rather than2. Observe, however, that a binary tree
with just one node has a total path length of0, so thatP.1/ D 0. Thus, we can
rewrite the recurrence in Problem 12-3(d) as

P.n/ D 2

n

n�1
X

kD2

P.k/C‚.n/

and use the same technique as was used in Problem 7-3 to solve it.

We start by solving part (d) of Problem 7-3: showing that

n�1
X

kD2

k lg k � 1

2
n2 lg n � 1

8
n2 :

Following the hint in Problem 7-3(d), we split the summationinto two parts:

n�1
X

kD2

k lg k D
dn=2e�1
X

kD2

k lg k C
n�1
X

kDdn=2e
k lg k :

The lgk in the first summation on the right is less than lg.n=2/ D lg n� 1, and
the lgk in the second summation is less than lgn. Thus,
n�1
X

kD2

k lg k < .lg n � 1/

dn=2e�1
X

kD2

k C lg n

n�1
X

kDdn=2e
k

D lg n

n�1
X

kD2

k �
dn=2e�1
X

kD2

k

� 1

2
n.n � 1/ lg n � 1

2

�n

2
� 1

� n

2

� 1

2
n2 lg n � 1

8
n2

if n � 2.

Now we show that the recurrence

P.n/ D 2

n

n�1
X

kD2

P.k/C‚.n/

has the solutionP.n/ D O.n lg n/. We use the substitution method. Assume
inductively thatP.n/ � an lg nC b for some positive constantsa andb to be
determined. We can picka andb sufficiently large so thatan lg nC b � P.1/.
Then, forn > 1, we have by substitution

P.n/ D 2

n

n�1
X

kD2

P.k/C‚.n/

� 2

n

n�1
X

kD2

.ak lg k C b/C‚.n/

12-22 Solutions for Chapter 12: Binary Search Trees

D 2a

n

n�1
X

kD2

k lg k C 2b

n
.n � 2/C‚.n/

� 2a

n

�
1

2
n2 lg n � 1

8
n2

�

C 2b

n
.n � 2/C‚.n/

� an lg n � a

4
nC 2b C‚.n/

D an lg nC b C
�

‚.n/C b � a

4
n
�

� an lg nC b ;

since we can choosea large enough so thata
4
n dominates‚.n/ C b. Thus,

P.n/ D O.n lg n/.

f. We draw an analogy between inserting an element into a subtree of a binary
search tree and sorting a subarray in quicksort. Observe that once an elementx
is chosen as the root of a subtreeT , all elements that will be inserted afterx

into T will be compared tox. Similarly, observe that once an elementy is
chosen as the pivot in a subarrayS , all other elements inS will be compared
to y. Therefore, the quicksort implementation in which the comparisons are
the same as those made when inserting into a binary search tree is simply to
consider the pivots in the same order as the order in which theelements are
inserted into the tree.

Lecture Notes for Chapter 13:
Red-Black Trees

Chapter 13 overview

Red-black trees

� A variation of binary search trees.
� Balanced: height isO.lg n/, wheren is the number of nodes.
� Operations will takeO.lg n/ time in the worst case.

[These notes are a bit simpler than the treatment in the book,to make them more
amenable to a lecture situation. Our students first see red-black trees in a course
that precedes our algorithms course. This set of lecture notes is intended as a
refresher for the students, bearing in mind that some time may have passed since
they last saw red-black trees.

The procedures in this chapter are rather long sequences of pseudocode. You might
want to make arrangements to project them rather than spending time writing them
on a board.]

Red-black trees

A red-black treeis a binary search tree + 1 bit per node: an attributecolor, which
is either red or black.

All leaves are empty (nil) and colored black.

� We use a single sentinel,T:nil, for all the leaves of red-black treeT .
� T:nil:color is black.
� The root’s parent is alsoT:nil.

All other attributes of binary search trees are inherited byred-black trees (key, left,
right, andp). We don’t care about the key inT:nil.

Red-black properties

[Leave these up on the board.]

13-2 Lecture Notes for Chapter 13: Red-Black Trees

1. Every node is either red or black.

2. The root is black.

3. Every leaf (T:nil) is black.

4. If a node is red, then both its children are black. (Hence notwo reds in a row
on a simple path from the root to a leaf.)

5. For each node, all paths from the node to descendant leavescontain the same
number of black nodes.

Example:

26

17 41

30

38

47

50

T.nil

h = 4
bh = 2

h = 1
bh = 1

h = 3
bh = 2

h = 2
bh = 1

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

[Nodes with bold outline indicate black nodes. Don’t add heights and black-heights
yet. We won’t bother with drawingT:nil any more.]

Height of a red-black tree

� Height of a nodeis the number of edges in a longest path to a leaf.
� Black-heightof a nodex: bh.x/ is the number of black nodes (includingT:nil)

on the path fromx to leaf, not countingx. By property 5, black-height is well
defined.

[Now label the example tree with heighth andbh values.]

Claim
Any node with heighth has black-height� h=2.

Proof By property 4,� h=2 nodes on the path from the node to a leaf are red.
Hence� h=2 are black. (claim)

Claim
The subtree rooted at any nodex contains� 2bh.x/ � 1 internal nodes.

Lecture Notes for Chapter 13: Red-Black Trees 13-3

Proof By induction on height ofx.

Basis:Height ofx D 0) x is a leaf) bh.x/ D 0. The subtree rooted atx has0

internal nodes.20 � 1 D 0.

Inductive step: Let the height ofx be h and bh.x/ D b. Any child of x has
heighth � 1 and black-height eitherb (if the child is red) orb � 1 (if the child is
black). By the inductive hypothesis, each child has� 2bh.x/�1 � 1 internal nodes.
Thus, the subtree rooted atx contains� 2 � .2bh.x/�1 � 1/C 1 D 2bh.x/ � 1 internal
nodes. (TheC1 is for x itself.) (claim)

Lemma
A red-black tree withn internal nodes has height� 2 lg.nC 1/.

Proof Let h andb be the height and black-height of the root, respectively. Bythe
above two claims,

n � 2b � 1 � 2h=2 � 1 :

Adding 1 to both sides and then taking logs gives lg.nC 1/ � h=2, which implies
thath � 2 lg.nC 1/. (theorem)

Operations on red-black trees

The non-modifying binary-search-tree operations MINIMUM , MAXIMUM , SUC-
CESSOR, PREDECESSOR, and SEARCH run in O.height/ time. Thus, they take
O.lg n/ time on red-black trees.

Insertion and deletion are not so easy.

If we insert, what color to make the new node?

� Red? Might violate property 4.
� Black? Might violate property 5.

If we delete, thus removing a node, what color was the node that was removed?

� Red? OK, since we won’t have changed any black-heights, nor will we have
created two red nodes in a row. Also, cannot cause a violationof property 2,
since if the removed node was red, it could not have been the root.

� Black? Could cause there to be two reds in a row (violating property 4), and
can also cause a violation of property 5. Could also cause a violation of prop-
erty 2, if the removed node was the root and its child—which becomes the new
root—was red.

Rotations

� The basic tree-restructuring operation.
� Needed to maintain red-black trees as balanced binary search trees.
� Changes the local pointer structure. (Only pointers are changed.)

13-4 Lecture Notes for Chapter 13: Red-Black Trees

� Won’t upset the binary-search-tree property.
� Have both left rotation and right rotation. They are inverses of each other.
� A rotation takes a red-black-tree and a node within the tree.

y

x

α β

γ

x

yα

β γ

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

LEFT-ROTATE.T; x/

y D x:right // sety
x:right D y: left // turn y’s left subtree intox’s right subtree
if y: left¤ T:nil

y: left:p D x

y:p D x:p // link x’s parent toy

if x:p == T:nil
T:root D y

elseifx == x:p: left
x:p: left D y

elsex:p:right D y

y: left D x // put x on y’s left
x:p D y

The pseudocode for LEFT-ROTATE assumes that

� x:right ¤ T:nil, and
� root’s parent isT:nil.

Pseudocode for RIGHT-ROTATE is symmetric: exchangeleft andright everywhere.

Example

[Use to demonstrate that rotation maintains inorder ordering of keys. Node colors
omitted.]

4

7

11

9 18

14

17

19

22

x

y

4

7

18

19

14

17

22

x

y

11

9

LEFT-ROTATE(T, x)

Lecture Notes for Chapter 13: Red-Black Trees 13-5

� Before rotation: keys ofx’s left subtree� 11� keys ofy’s left subtree� 18�
keys ofy’s right subtree.

� Rotation makesy’s left subtree intox’s right subtree.
� After rotation: keys ofx’s left subtree� 11� keys ofx’s right subtree� 18�

keys ofy’s right subtree.

Time

O.1/ for both LEFT-ROTATE and RIGHT-ROTATE, since a constant number of
pointers are modified.

Notes
� Rotation is a very basic operation, also used in AVL trees andsplay trees.
� Some books talk of rotating on an edge rather than on a node.

Insertion

Start by doing regular binary-search-tree insertion:

RB-INSERT.T; ´/

y D T:nil
x D T:root
while x ¤ T:nil

y D x

if ´:key< x:key
x D x: left

elsex D x:right
´:p D y

if y == T:nil
T:root D ´

elseif´:key< y:key
y: left D ´

elsey:right D ´

´: left D T:nil
´:right D T:nil
´:color D RED

RB-INSERT-FIXUP.T; ´/

� RB-INSERT ends by coloring the new nodéred.
� Then it calls RB-INSERT-FIXUP because we could have violated a red-black

property.

Which property might be violated?

1. OK.

13-6 Lecture Notes for Chapter 13: Red-Black Trees

2. If ´ is the root, then there’s a violation. Otherwise, OK.

3. OK.

4. If ´:p is red, there’s a violation: both́and´:p are red.

5. OK.

Remove the violation by calling RB-INSERT-FIXUP:

RB-INSERT-FIXUP.T; ´/

while ´:p:color == RED

if ´:p == ´:p:p: left
y D ´:p:p:right
if y:color == RED

´:p:color D BLACK // case 1
y:color D BLACK // case 1
´:p:p:color D RED // case 1
´ D ´:p:p // case 1

else if´ == ´:p:right
´ D ´:p // case 2
LEFT-ROTATE.T; ´/ // case 2

´:p:color D BLACK // case 3
´:p:p:color D RED // case 3
RIGHT-ROTATE.T; ´:p:p/ // case 3

else(same asthen clause with “right” and “left” exchanged)
T:root:color D BLACK

Loop invariant:

At the start of each iteration of thewhile loop,

a. ´ is red.
b. There is at most one red-black violation:

� Property 2:́ is a red root, or
� Property 4:́ and´:p are both red.

[The book has a third part of the loop invariant, but we omit itfor lecture.]

Initialization: We’ve already seen why the loop invariant holds initially.

Termination: The loop terminates because´:p is black. Hence, property 4 is OK.
Only property 2 might be violated, and the last line fixes it.

Maintenance: We drop out wheń is the root (since theń:p is the sentinelT:nil,
which is black). When we start the loop body, the only violation is of property 4.

There are 6 cases, 3 of which are symmetric to the other 3. The cases are not
mutually exclusive. We’ll consider cases in which´:p is a left child.

Let y be´’s uncle (́ :p’s sibling).

Lecture Notes for Chapter 13: Red-Black Trees 13-7

Case 1: y is red

z

y

C

DA

Bα

β γ

δ ε

C

DA

Bα

β γ

δ ε

new z

y

C

DB

δ ε

C

DB

A

α β

γ δ ε

new z

A

α β

γz

If z is a right child

If z is a left child

� ´:p:p (´’s grandparent) must be black, since´ and´:p are both red and
there are no other violations of property 4.

� Make´:p andy black) now´ and´:p are not both red. But property 5
might now be violated.

� Make´:p:p red) restores property 5.
� The next iteration haś:p:p as the neẃ (i.e.,´ moves up 2 levels).

Case 2: y is black,´ is a right child

C

A

Bα

β γ

δ

Case 2

z

y B

A

α β

γ

δ

Case 3

z

y z A

B

C

α β γ δ

C

� Left rotate around́ :p) now ´ is a left child, and both́ and´:p are
red.

� Takes us immediately to case 3.

Case 3: y is black,´ is a left child

� Make´:p black and́ :p:p red.
� Then right rotate oń :p:p.
� No longer have 2 reds in a row.
� ´:p is now black) no more iterations.

Analysis

O.lg n/ time to get through RB-INSERT up to the call of RB-INSERT-FIXUP.

13-8 Lecture Notes for Chapter 13: Red-Black Trees

Within RB-INSERT-FIXUP:

� Each iteration takesO.1/ time.
� Each iteration is either the last one or it moves´ up 2 levels.
� O.lg n/ levels) O.lg n/ time.
� Also note that there are at most 2 rotations overall.

Thus, insertion into a red-black tree takesO.lg n/ time.

Deletion

[Because deletion from a binary search tree changed in the third edition, so did
deletion from a red-black tree. As with deletion from a binary search tree, the
node´ deleted from a red-black tree is always the node´ passed to the deletion
procedure.]

Based on the TREE-DELETE procedure for binary search trees:

RB-DELETE.T; ´/

y D ´

y-original-color D y:color
if ´: left == T:nil

x D ´:right
RB-TRANSPLANT.T; ´; ´:right/

elseif´:right == T:nil
x D ´: left
RB-TRANSPLANT.T; ´; ´: left/

elsey D TREE-M INIMUM .´:right/
y-original-color D y:color
x D y:right
if y:p == ´

x:p D y

elseRB-TRANSPLANT.T; y; y:right/
y:right D ´:right
y:right:p D y

RB-TRANSPLANT.T; ´; y/

y: left D ´: left
y: left:p D y

y:color D ´:color
if y-original-color == BLACK

RB-DELETE-FIXUP.T; x/

RB-DELETE calls a special version of TRANSPLANT (used in deletion from binary
search trees), customized for red-black trees:

Lecture Notes for Chapter 13: Red-Black Trees 13-9

RB-TRANSPLANT.T; u; �/

if u:p == T:nil
T:root D �

elseifu == u:p: left
u:p: left D �

elseu:p:right D �

�:p D u:p

Differences between RB-TRANSPLANT and TRANSPLANT:

� RB-TRANSPLANT references the sentinelT:nil instead ofNIL .
� Assignment to�:p occurs even if� points to the sentinel. In fact, we exploit the

ability to assign to�:p when� points to the sentinel.

RB-DELETE has almost twice as many lines as TREE-DELETE, but you can find
each line of TREE-DELETE within RB-DELETE (with NIL replaced byT:nil and
calls to TRANSPLANT replaced by calls to RB-TRANSPLANT).

Differences between RB-DELETE and TREE-DELETE:

� y is the node either removed from the tree (when´ has fewer than2 children)
or moved within the tree (wheńhas2 children).

� Need to savey’s original color (iny-original-color) to test it at the end, because
if it’s black, then removing or movingy could cause red-black properties to be
violated.

� x is the node that moves intoy’s original position. It’s eithery’s only child, or
T:nil if y has no children.

� Setsx:p to point to the original position ofy’s parent, even ifx D T:nil. x:p
is set in one of two ways:

� If ´ is noty’s original parent,x:p is set in the last line of RB-TRANSPLANT.
� If ´ is y’s original parent, theny will move up to také ’s position in the

tree. The assignmentx:p D y makesx:p point to the original position of
y’s parent, even ifx is T:nil.

� If y’s original color was black, the changes to the tree structure might cause
red-black properties to be violated, and we call RB-DELETE-FIXUP at the end
to resolve the violations.

If y was originally black, what violations of red-black properties could arise?

1. No violation.

2. If y is the root andx is red, then the root has become red.

3. No violation.

4. Violation if x:p andx are both red.

5. Any simple path containingy now has 1 fewer black node.

� Correct by givingx an “extra black.”
� Add 1 to count of black nodes on paths containingx.
� Now property 5 is OK, but property 1 is not.

13-10 Lecture Notes for Chapter 13: Red-Black Trees

� x is eitherdoubly black(if x:colorD BLACK) or red & black (if x:colorD
RED).

� The attributex:color is still eitherRED or BLACK . No new values forcolor
attribute.

� In other words, the extra blackness on a node is by virtue ofx pointing to the
node.

Remove the violations by calling RB-DELETE-FIXUP:

RB-DELETE-FIXUP.T; x/

while x ¤ T:root andx:color == BLACK

if x == x:p: left
w D x:p:right
if w:color == RED

w:color D BLACK // case 1
x:p:color D RED // case 1
LEFT-ROTATE.T; x:p/ // case 1
w D x:p:right // case 1

if w: left:color == BLACK andw:right:color == BLACK

w:color D RED // case 2
x D x:p // case 2

else ifw:right:color == BLACK

w: left:color D BLACK // case 3
w:color D RED // case 3
RIGHT-ROTATE.T; w/ // case 3
w D x:p:right // case 3

w:color D x:p:color // case 4
x:p:color D BLACK // case 4
w:right:color D BLACK // case 4
LEFT-ROTATE.T; x:p/ // case 4
x D T:root // case 4

else(same asthen clause with “right” and “left” exchanged)
x:color D BLACK

Idea

Move the extra black up the tree until

� x points to a red & black node) turn it into a black node,
� x points to the root) just remove the extra black, or
� we can do certain rotations and recolorings and finish.

Within thewhile loop:

� x always points to a nonroot doubly black node.
� w is x’s sibling.
� w cannot beT:nil, since that would violate property 5 atx:p.

There are 8 cases, 4 of which are symmetric to the other 4. As with insertion, the
cases are not mutually exclusive. We’ll look at cases in which x is a left child.

Lecture Notes for Chapter 13: Red-Black Trees 13-11

Case 1: w is red

A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

� w must have black children.
� Makew black andx:p red.
� Then left rotate onx:p.
� New sibling ofx was a child ofw before rotation)must be black.
� Go immediately to case 2, 3, or 4.

Case 2: w is black and both ofw’s children are black

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

[Node with gray outline is of unknown color, denoted byc.]

� Take 1 black offx () singly black) and offw () red).
� Move that black tox:p.
� Do the next iteration withx:p as the newx.
� If entered this case from case 1, thenx:p was red) newx is red & black
) color attribute of newx is RED) loop terminates. Then newx is made
black in the last line.

Case 3: w is black,w’s left child is red, andw’s right child is black

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

� Makew red andw’s left child black.
� Then right rotate onw.
� New siblingw of x is black with a red right child) case 4.

13-12 Lecture Notes for Chapter 13: Red-Black Trees

Case 4: w is black,w’s left child is black, andw’s right child is red

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = T.rootγ δ ε ζ

Case 4

c′ c′

[Now there are two nodes of unknown colors, denoted byc andc 0.]

� Makew bex:p’s color (c).
� Makex:p black andw’s right child black.
� Then left rotate onx:p.
� Remove the extra black onx () x is now singly black) without violating

any red-black properties.
� All done. Settingx to root causes the loop to terminate.

Analysis

O.lg n/ time to get through RB-DELETE up to the call of RB-DELETE-FIXUP.

Within RB-DELETE-FIXUP:

� Case 2 is the only case in which more iterations occur.

� x moves up 1 level.
� Hence,O.lg n/ iterations.

� Each of cases 1, 3, and 4 has 1 rotation)� 3 rotations in all.
� Hence,O.lg n/ time.

[In Chapter 14, we’ll see a theorem that relies on red-black tree operations causing
at most a constant number of rotations. This is where red-black trees enjoy an
advantage over AVL trees: in the worst case, an operation on an n-node AVL tree
causes�.lg n/ rotations.]

Solutions for Chapter 13:
Red-Black Trees

Solution to Exercise 13.1-3

If we color the root of a relaxed red-black tree black but makeno other changes,
the resulting tree is a red-black tree. Not even any black-heights change.

Solution to Exercise 13.1-4
This solution is also posted publicly

After absorbing each red node into its black parent, the degree of each node black
node is

� 2, if both children were already black,
� 3, if one child was black and one was red, or
� 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5
This solution is also posted publicly

In the longest path, at least every other node is black. In theshortest path, at most
every node is black. Since the two paths contain equal numbers of black nodes, the
length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh.x/ black nodes, even the shortest path fromx to a
descendant leaf has length at least bh.x/. By definition, the longest path fromx
to a descendant leaf has length height.x/. Since the longest path has bh.x/ black
nodes and at least half the nodes on the longest path are black(by property 4),
bh.x/ � height.x/=2, so

length of longest pathD height.x/ � 2 � bh.x/ � twice length of shortest path:

13-14 Solutions for Chapter 13: Red-Black Trees

Solution to Exercise 13.2-4

Since the exercise asks about binary search trees rather than the more specific red-
black trees, we assume here that leaves are full-fledged nodes, and we ignore the
sentinels.

Taking the book’s hint, we start by showing that with at mostn� 1 right rotations,
we can convert any binary search tree into one that is just a right-going chain.

The idea is simple. Let us define theright spineas the root and all descendants of
the root that are reachable by following onlyright pointers from the root. A binary
search tree that is just a right-going chain has alln nodes in the right spine.

As long as the tree is not just a right spine, repeatedly find some nodey on the
right spine that has a non-leaf left childx and then perform a right rotation ony:

γ

y

x

α β

RIGHT-ROTATE(T, y)

y

x

α

β γ

(In the above figure, note that any of˛, ˇ, and can be an empty subtree.)

Observe that this right rotation addsx to the right spine, and no other nodes leave
the right spine. Thus, this right rotation increases the number of nodes in the right
spine by1. Any binary search tree starts out with at least one node—theroot—in
the right spine. Moreover, if there are any nodes not on the right spine, then at least
one such node has a parent on the right spine. Thus, at mostn � 1 right rotations
are needed to put all nodes in the right spine, so that the treeconsists of a single
right-going chain.

If we knew the sequence of right rotations that transforms anarbitrary binary search
treeT to a single right-going chainT 0, then we could perform this sequence in
reverse—turning each right rotation into its inverse left rotation—to transformT 0

back intoT .

Therefore, here is how we can transform any binary search tree T1 into any
other binary search treeT2. Let T 0 be the unique right-going chain consist-
ing of the nodes ofT1 (which is the same as the nodes ofT2). Let r D
hr1; r2; : : : ; rki be a sequence of right rotations that transformsT1 to T 0, and let
r 0 D hr 0

1; r 0
2; : : : ; r 0

k0i be a sequence of right rotations that transformsT2 to T 0.
We know that there exist sequencesr andr 0 with k; k0 � n � 1. For each right
rotation r 0

i , let l 0
i be the corresponding inverse left rotation. Then the sequence

hr1; r2; : : : ; rk ; l 0
k0 ; l 0

k0�1
; : : : ; l 0

2; l 0
1i transformsT1 to T2 in at most2n� 2 rotations.

Solution to Exercise 13.3-3
This solution is also posted publicly

In Figure 13.5, nodesA, B, andD have black-heightk C 1 in all cases, because
each of their subtrees has black-heightk and a black root. NodeC has black-

Solutions for Chapter 13: Red-Black Trees 13-15

height k C 1 on the left (because its red children have black-heightk C 1) and
black-heightkC2 on the right (because its black children have black-heightkC1).

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

In Figure 13.6, nodesA, B, andC have black-heightkC 1 in all cases. At left and
in the middle, each ofA’s andB ’s subtrees has black-heightk and a black root,
while C has one such subtree and a red child with black-heightkC 1. At the right,
each ofA’s andC ’s subtrees has black-heightk and a black root, whileB ’s red
children each have black-heightk C 1.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

Property 5 is preserved by the transformations. We have shown above that the
black-height is well-defined within the subtrees pictured,so property 5 is preserved
within those subtrees. Property 5 is preserved for the tree containing the subtrees
pictured, because every path through these subtrees to a leaf contributeskC2 black
nodes.

Solution to Exercise 13.3-4

Colors are set to red only in cases 1 and 3, and in both situations, it is´:p:p that
is reddened. If́ :p:p is the sentinel, theń:p is the root. By part (b) of the loop
invariant and line 1 of RB-INSERT-FIXUP, if ´:p is the root, then we have dropped
out of the loop. The only subtlety is in case 2, where we set´ D ´:p before
coloring´:p:p red. Because we rotate before the recoloring, the identity of ´:p:p
is the same before and after case 2, so there’s no problem.

13-16 Solutions for Chapter 13: Red-Black Trees

Solution to Exercise 13.4-6

Case 1 occurs only ifx’s siblingw is red. Ifx:p were red, then there would be two
reds in a row, namelyx:p (which is alsow:p) andw, and we would have had these
two reds in a row even before calling RB-DELETE.

Solution to Exercise 13.4-7

No, the red-black tree will not necessarily be the same. Hereare two examples:
one in which the tree’s shape changes, and one in which the shape remains the
same but the node colors change.

3

2

2

1 3

2

3

3

2 4

3

2 4

3

2 4

1

insert 1 delete 1

insert 1 delete 1

Solution to Problem 13-1
This solution is also posted publicly

a. When inserting keyk, all nodes on the path from the root to the added node
(a new leaf) must change, since the need for a new child pointer propagates up
from the new node to all of its ancestors.

When deleting a node, lety be the node actually removed and´ be the node
given to the delete procedure.

� If ´ has at most one child, it will be spliced out, so that all ancestors of´ will
be changed. (As with insertion, the need for a new child pointer propagates
up from the removed node.)

� If ´ has two children, then its successory will be spliced out and moved
to ´’s position. Therefore all ancestors of both´ andy must be changed.
Becausé is an ancestor ofy, we can just say that all ancestors ofy must be
changed.

In either case,y’s children (if any) are unchanged, because we have assumed
that there is no parent attribute.

Solutions for Chapter 13: Red-Black Trees 13-17

b. We assume that we can call two procedures:

� MAKE-NEW-NODE.k/ creates a new node whosekeyattribute has valuek
and withleft andright attributesNIL , and it returns a pointer to the new node.

� COPY-NODE.x/ creates a new node whosekey, left, andright attributes have
the same values as those of nodex, and it returns a pointer to the new node.

Here are two ways to write PERSISTENT-TREE-INSERT. The first is a version
of TREE-INSERT, modified to create new nodes along the path to where the
new node will go, and to not use parent attributes. It returnsthe root of the new
tree.

PERSISTENT-TREE-INSERT.T; k/

´ D MAKE-NEW-NODE.k/

new-root D COPY-NODE.T:root/
y D NIL

x D new-root
while x ¤ NIL

y D x

if ´:key< x:key
x D COPY-NODE.x: left/
y: left D x

elsex D COPY-NODE.x:right/
y:right D x

if y == NIL

new-root D ´

elseif´:key< y:key
y: left D ´

elsey:right D ´

return new-root

The second is a rather elegant recursive procedure. The initial call should have
T:root as its first argument. It returns the root of the new tree.

PERSISTENT-TREE-INSERT.r; k/

if r == NIL

x D MAKE-NEW-NODE.k/

elsex D COPY-NODE.r/

if k < r:key
x: left D PERSISTENT-TREE-INSERT.r: left; k/

elsex:right D PERSISTENT-TREE-INSERT.r:right; k/

return x

c. Like TREE-INSERT, PERSISTENT-TREE-INSERT does a constant amount of
work at each node along the path from the root to the new node. Since the
length of the path is at mosth, it takesO.h/ time.

Since it allocates a new node (a constant amount of space) foreach ancestor of
the inserted node, it also needsO.h/ space.

13-18 Solutions for Chapter 13: Red-Black Trees

d. If there were parent attributes, then because of the new root, every node of the
tree would have to be copied when a new node is inserted. To seewhy, observe
that the children of the root would change to point to the new root, then their
children would change to point to them, and so on. Since therearen nodes, this
change would cause insertion to create�.n/ new nodes and to take�.n/ time.

e. From parts (a) and (c), we know that insertion into a persistent binary search
tree of heighth, like insertion into an ordinary binary search tree, takes worst-
case timeO.h/. A red-black tree hash D O.lg n/, so insertion into an ordinary
red-black tree takesO.lg n/ time. We need to show that if the red-black tree is
persistent, insertion can still be done inO.lg n/ time. To do this, we will need
to show two things:

� How to still find the parent pointers we need inO.1/ time without using a
parent attribute. We cannot use a parent attribute because apersistent tree
with parent attributes uses�.n/ time for insertion (by part (d)).

� That the additional node changes made during red-black treeoperations (by
rotation and recoloring) don’t cause more thanO.lg n/ additional nodes to
change.

Each parent pointer needed during insertion can be found inO.1/ time without
having a parent attribute as follows:

To insert into a red-black tree, we call RB-INSERT, which in turn calls RB-
INSERT-FIXUP. Make the same changes to RB-INSERT as we made to TREE-
INSERT for persistence. Additionally, as RB-INSERT walks down the tree to
find the place to insert the new node, have it build a stack of the nodes it tra-
verses and pass this stack to RB-INSERT-FIXUP. RB-INSERT-FIXUP needs
parent pointers to walk back up the same path, and at any giventime it needs
parent pointers only to find the parent and grandparent of thenode it is working
on. As RB-INSERT-FIXUP moves up the stack of parents, it needs only parent
pointers that are at known locations a constant distance away in the stack. Thus,
the parent information can be found inO.1/ time, just as if it were stored in a
parent attribute.

Rotation and recoloring change nodes as follows:

� RB-INSERT-FIXUP performs at most 2 rotations, and each rotation changes
the child pointers in 3 nodes (the node around which we rotate, that node’s
parent, and one of the children of the node around which we rotate). Thus, at
most 6 nodes are directly modified by rotation during RB-INSERT-FIXUP. In
a persistent tree, all ancestors of a changed node are copied, so RB-INSERT-
FIXUP’s rotations takeO.lg n/ time to change nodes due to rotation. (Ac-
tually, the changed nodes in this case share a singleO.lg n/-length path of
ancestors.)

� RB-INSERT-FIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and some children of an-
cestors (the “uncles” referred to in the algorithm description). There are
at mostO.lg n/ ancestors, hence at mostO.lg n/ color changes of uncles.
Recoloring uncles doesn’t cause any additional node changes due to persis-
tence, because the ancestors of the uncles are the same nodes(ancestors of

Solutions for Chapter 13: Red-Black Trees 13-19

the inserted node) that are being changed anyway due to persistence. Thus,
recoloring does not affect theO.lg n/ running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case
time O.h/.

� We already saw in part (a) thatO.h/ nodes change.
� We could write a persistent RB-DELETE procedure that runs inO.h/ time,

analogous to the changes we made for persistence in insertion. But to do so
without using parent pointers we need to walk down the tree tothe node to be
deleted, to build up a stack of parents as discussed above forinsertion. This
is a little tricky if the set’s keys are not distinct, becausein order to find the
path to the node to delete—a particular node with a given key—we have to
make some changes to how we store things in the tree, so that duplicate keys
can be distinguished. The easiest way is to have each key takea second part
that is unique, and to use this second part as a tiebreaker when comparing
keys.

Then the problem of showing that deletion needs onlyO.lg n/ time in a persis-
tent red-black tree is the same as for insertion.

� As for insertion, we can show that the parents needed by RB-DELETE-
FIXUP can be found inO.1/ time (using the same technique as for insertion).

� Also, RB-DELETE-FIXUP performs at most 3 rotations, which as discussed
above for insertion requiresO.lg n/ time to change nodes due to persistence.
It also doesO.lg n/ color changes, which (as for insertion) take onlyO.lg n/

time to change ancestors due to persistence, because the number of copied
nodes isO.lg n/.

Lecture Notes for Chapter 14:
Augmenting Data Structures

Chapter 14 overview

We’ll be looking at methods fordesigningalgorithms. In some cases, the design
will be intermixed with analysis. In other cases, the analysis is easy, and it’s the
design that’s harder.

Augmenting data structures

� It’s unusual to have to design an all-new data structure fromscratch.
� It’s more common to take a data structure that you know and store additional

information in it.
� With the new information, the data structure can support newoperations.
� But you have to figure out how tocorrectly maintainthe new informationwith-

out loss of efficiency.

We’ll look at a couple of situations in which we augment red-black trees.

Dynamic order statistics

We want to support the usual dynamic-set operations from R-Btrees, plus:

� OS-SELECT.x; i/: return pointer to node containing thei th smallest key of the
subtree rooted atx.

� OS-RANK .T; x/: return the rank ofx in the linear order determined by an
inorder walk ofT .

Augmentby storing in each nodex:

x:sizeD # of nodes in subtree rooted atx :

� Includesx itself.
� Does not include leaves (sentinels).

Define for sentinelT:nil:sizeD 0.

Thenx:sizeD x: left:sizeC x:right:sizeC 1.

14-2 Lecture Notes for Chapter 14: Augmenting Data Structures

M

8

B

B B

BR

R R

R

i= 5
r= 6

i= 3
r= 2

i= 1
r= 1

i= 5
r= 2

M

8

M

8

P

2

M

8

Q

1

M

8

C

5

M

8

A

1

M

8

F

3

M

8

D

1

M

8

H

1

[Example above:Ignore colors, but legal coloring shown with “R” and “B” nota-
tions. Values ofi andr are for the example below.]

Note: OK for keys to not be distinct. Rank is defined with respect to position in
inorder walk. So if we changed D to C, rank of original C is 2, rank of D changed
to C is 3.

OS-SELECT.x; i/

r D x: left:sizeC 1

if i == r

return x

elseif i < r

return OS-SELECT.x: left; i/

else return OS-SELECT.x:right; i � r/

Initial call: OS-SELECT.T:root; i/

Try OS-SELECT.T:root; 5/. [Values shown in figure above. Returns node whose
key is H.]

Correctness

r D rank ofx within subtree rooted atx.

� If i D r , then we wantx.
� If i < r , theni th smallest element is inx’s left subtree, and we want thei th

smallest element in the subtree.
� If i > r , theni th smallest element is inx’s right subtree, but subtract off ther

elements inx’s subtree that precede those inx’s right subtree.
� Like the randomized SELECT algorithm.

Analysis

Each recursive call goes down one level. Since R-B tree hasO.lg n/ levels, have
O.lg n/ calls) O.lg n/ time.

Lecture Notes for Chapter 14: Augmenting Data Structures 14-3

OS-RANK .T; x/

r D x: left:sizeC 1

y D x

while y ¤ T:root
if y == y:p:right

r D r C y:p: left:sizeC 1

y D y:p
return r

Demo: Node D.

Why does this work?

Loop invariant: At start of each iteration ofwhile loop, r D rank ofx:key
in subtree rooted aty.

Initialization: Initially, r D rank ofx:keyin subtree rooted atx, andy D x.

Termination: Loop terminates wheny D T:root) subtree rooted aty is entire
tree. Therefore,r D rank ofx:keyin entire tree.

Maintenance: At end of each iteration, sety D y:p. So, show that ifr D rank
of x:keyin subtree rooted aty at start of loop body, thenr D rank ofx:keyin
subtree rooted aty:p at end of loop body.

x

y

[r D # of nodes in subtree rooted aty precedingx in inorder walk]

Must add nodes iny’s sibling’s subtree.

� If y is a left child, its sibling’s subtree follows all nodes iny’s subtree)
don’t changer .

� If y is a right child, all nodes iny’s sibling’s subtree precede all nodes iny’s
subtree) add size ofy’s sibling’s subtree, plus 1 fory:p, into r .

yy.p.left

y.p

Analysis

y goes up one level in each iteration) O.lg n/ time.

14-4 Lecture Notes for Chapter 14: Augmenting Data Structures

Maintaining subtree sizes

� Need to maintainsizeattributes during insert and delete operations.
� Need to maintain them efficiently. Otherwise, might have to recompute them

all, at a cost of�.n/.

Will see how to maintain without increasingO.lg n/ time for insert and delete.

Insert
� During pass downward, we know that the new node will be a descendant of

each node we visit, and only of these nodes. Therefore, incrementsizeattribute
of each node visited.

� Then there’s the fixup pass:

� Goes up the tree.
� Changes colorsO.lg n/ times.
� Performs� 2 rotations.

� Color changes don’t affect subtree sizes.
� Rotations do!
� But we can determine new sizes based on old sizes and sizes of children.

LEFT-ROTATE(T, x)
x

y x

yM

8

C

5

M

8

A

1

M

8

F

3

M

8

D

1

M

8

H

1

M

8

D

1

M

8

C

3

M

8

F

5

M

8

A

1

M

8

H

1

y:size D x:size

x:size D x: left:sizeC x:right:sizeC 1

� Similar for right rotation.
� Therefore, can update inO.1/ time per rotation) O.1/ time spent updating

sizeattributes during fixup.
� Therefore,O.lg n/ to insert.

Delete

Also 2 phases:

1. Splice out some nodey.

2. Fixup.

Lecture Notes for Chapter 14: Augmenting Data Structures 14-5

After splicing outy, traverse a pathy ! root, decrementingsizein each node on
path.O.lg n/ time.

During fixup, like insertion, only color changes and rotations.

� � 3 rotations) O.1/ time spent updatingsizeattributes during fixup.
� Therefore,O.lg n/ to delete.

Done!

Methodology for augmenting a data structure

1. Choose an underlying data structure.

2. Determine additional information to maintain.

3. Verify that we can maintain additional information for existing data structure
operations.

4. Develop new operations.

Don’t need to do these steps in strict order! Usually do a little of each, in parallel.

How did we do them for OS trees?

1. R-B tree.

2. x:size.

3. Showed how to maintainsizeduring insert and delete.

4. Developed OS-SELECT and OS-RANK .

Red-black trees are particularly amenable to augmentation.

Theorem
Augment a R-B tree with attributef , wherex: f depends only on information in
x, x: left, andx:right (includingx: left: f andx:right: f). Then can maintain values
of f in all nodes during insert and delete without affectingO.lg n/ performance.

Proof Sincex: f depends only onx and its children, when we alter information
in x, changes propagate only upward (tox:p; x:p:p; x:p:p:p; : : : ; root).

Height =O.lg n/) O.lg n/ updates, atO.1/ each.

Insertion

Insert a node as child of existing node. Even if can’t updatef on way down, can
go up from inserted node to updatef . During fixup, only changes come from color
changes (no effect onf) and rotations. Each rotation affectsf of � 3 nodes (x,y,
and parent), and can recompute each inO.1/ time. Then, if necessary, propagate
changes up the tree. Therefore,O.lg n/ time per rotation. Since� 2 rotations,
O.lg n/ time to updatef during fixup.

14-6 Lecture Notes for Chapter 14: Augmenting Data Structures

Delete

Same idea. After splicing out a node, go up from there to update f . Fixup has� 3

rotations.O.lg n/ per rotation) O.lg n/ to updatef during fixup. (theorem)

For some attributes, can get away withO.1/ per rotation. Example:sizeattribute.

Interval trees

Maintain a set of intervals. For instance, time intervals.

4

5

7

15

17

21 23

19

18

10

11

8

i= [7,10]
low[i] = 7 high[i] = 10

[leave on board]

Operations

� INTERVAL-INSERT.T; x/: x: int already filled in.
� INTERVAL-DELETE.T; x/

� INTERVAL-SEARCH.T; i/: return pointer to a nodex in T such thatx: int over-
laps intervali . Any overlapping node inT is OK. Return pointer to sen-
tinel T:nil if no overlapping node inT .

Interval i hasi: low, i:high.

i andj overlap if and only if
i: low � j:high andj: low � i:high.

(Go through examples of proper inclusion, overlap without proper inclusion, no
overlap.)

Another way:i andj don’t overlap if and only if
i: low > j:high or j: low > i:high.
[leave this on board]

Recall the 4-part methodology.

For interval trees

1. Use R-B trees.

� Each nodex contains intervalx: int.
� Key is low endpoint (x: int: low).
� Inorder walk would list intervals sorted by low endpoint.

Lecture Notes for Chapter 14: Augmenting Data Structures 14-7

2. Each nodex contains

x:maxD max endpoint value in subtree rooted atx :

int

max
M

8

[17,19]

23

M

8

[21,23]

23

M

8

[5,11]

18

M

8

[15,18]

18

M

8

[4,8]

8

M

8

[7,10]

10

[leave on board]

x:maxD max

8

<

:

x: int:high ;

x: left:max;

x:right:max

Couldx: left:max> x:right:max? Sure. Position in tree is determined only by
low endpoints, not high endpoints.

3. Maintaining the information.

� This is easy—x:maxdepends only on:
� information inx: x: int:high
� information inx: left: x: left:max
� information inx:right: x:right:max

� Apply the theorem.
� In fact, can updatemaxon way down during insertion, and inO.1/ time per

rotation.

4. Developing new operations.

INTERVAL-SEARCH.T; i/

x D T:root
while x ¤ T:nil andi does not overlapx: int

if x: left¤ T:nil andx: left:max� i: low
x D x: left

elsex D x:right
return x

Examples

Search forŒ14; 16� andŒ12; 14�.

Time

O.lg n/.

14-8 Lecture Notes for Chapter 14: Augmenting Data Structures

Correctness

Key idea: need check only 1 of node’s 2 children.

Theorem
If search goes right, then either:

� There is an overlap in right subtree, or
� There is no overlap in either subtree.

If search goes left, then either:

� There is an overlap in left subtree, or
� There is no overlap in either subtree.

Proof If search goes right:

� If there is an overlap in right subtree, done.
� If there is no overlap in right, show there is no overlap in left. Went right

because

� x: leftD T:nil) no overlap in left.

OR
� x: left:max< i: low) no overlap in left.

i

x.left.max = highest endpoint in left

If search goes left:

� If there is an overlap in left subtree, done.
� If there is no overlap in left, show there is no overlap in right.

� Went left because:

i: low � x: left:max

D j:high for somej in left subtree:
� Since there is no overlap in left,i andj don’t overlap.
� Refer back to: no overlap if

i: low > j:high or j: low > i:high :

� Sincei: low � j:high, must havej: low > i:high.
� Now considerany intervalk in right subtree.
� Because keys are low endpoint,

j: low
„ƒ‚…

in left

� k: low
„ƒ‚…

in right

:

� Therefore,i:high < j: low � k: low.
� Therefore,i:high < k: low.
� Therefore,i andk do not overlap. (theorem)

Solutions for Chapter 14:
Augmenting Data Structures

Solution to Exercise 14.1-5

Given an elementx in ann-node order-statistic treeT and a natural numberi , the
following procedure retrieves thei th successor ofx in the linear order ofT :

OS-SUCCESSOR.T; x; i/

r D OS-RANK .T; x/

s D r C i

return OS-SELECT.T:root; s/

Since OS-RANK and OS-SELECT each takeO.lg n/ time, so does the procedure
OS-SUCCESSOR.

Solution to Exercise 14.1-6

When inserting nodé, we search down the tree for the proper place for´. For
each nodex on this path, add1 to x:rank if ´ is inserted withinx’s left subtree,
and leavex:rank unchanged if́ is inserted withinx’s right subtree. Similarly
when deleting, subtract1 from x:rank whenever the spliced-out node had been in
x’s left subtree.

We also need to handle the rotations that occur during the fixup procedures for in-
sertion and deletion. Consider a left rotation on nodex, where the pre-rotation
right child of x is y (so thatx becomesy’s left child after the left rotation).
We leavex:rank unchanged, and lettingr D y:rank before the rotation, we set
y:rank D r C x:rank. Right rotations are handled in an analogous manner.

Solution to Exercise 14.1-7
This solution is also posted publicly

Let AŒ1 : : n� be the array ofn distinct numbers.

One way to count the inversions is to add up, for each element,the number of larger
elements that precede it in the array:

14-10 Solutions for Chapter 14: Augmenting Data Structures

of inversionsD
n
X

j D1

jIn�.j /j ;

whereIn�.j / D fi W i < j andAŒi� > AŒj �g.
Note thatjIn�.j /j is related toAŒj �’s rank in the subarrayAŒ1 : : j � because the
elements inIn�.j / are the reason thatAŒj � is not positioned according to its rank.
Let r.j / be the rank ofAŒj � in AŒ1 : : j �. Thenj D r.j / C jIn�.j /j, so we can
compute

jIn�.j /j D j � r.j /

by insertingAŒ1�; : : : ; AŒn� into an order-statistic tree and using OS-RANK to find
the rank of eachAŒj � in the tree immediately after it is inserted into the tree. (This
OS-RANK value isr.j /.)

Insertion and OS-RANK each takeO.lg n/ time, and so the total time forn ele-
ments isO.n lg n/.

Solution to Exercise 14.2-2
This solution is also posted publicly

Yes, we can maintain black-heights as attributes in the nodes of a red-black tree
without affecting the asymptotic performance of the red-black tree operations. We
appeal to Theorem 14.1, because the black-height of a node can be computed from
the information at the node and its two children. Actually, the black-height can
be computed from just one child’s information: the black-height of a node is the
black-height of a red child, or the black height of a black child plus one. The
second child does not need to be checked because of property 5of red-black trees.

Within the RB-INSERT-FIXUP and RB-DELETE-FIXUP procedures are color
changes, each of which potentially causeO.lg n/ black-height changes. Let us
show that the color changes of the fixup procedures cause onlylocal black-height
changes and thus are constant-time operations. Assume thatthe black-height of
each nodex is kept in the attributex:bh.

For RB-INSERT-FIXUP, there are 3 cases to examine.

Solutions for Chapter 14: Augmenting Data Structures 14-11

Case 1: ´’s uncle is red.

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

� Before color changes, suppose that all subtrees˛; ˇ; ; ı; � have the same
black-heightk with a black root, so that nodesA, B, C , andD have black-
heights ofk C 1.

� After color changes, the only node whose black-height changed is nodeC .
To fix that, add́ :p:p:bhD ´:p:p:bhC 1 after line 7 in RB-INSERT-FIXUP.

� Since the number of black nodes between´:p:p and ´ remains the same,
nodes abové:p:p are not affected by the color change.

Case 2: ´’s uncley is black, and́ is a right child.

Case 3: ´0’s uncley is black, and́ is a left child.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

� With subtrees̨ ; ˇ; ; ı; � of black-heightk, we see that even with color
changes and rotations, the black-heights of nodesA, B, andC remain the
same (k C 1).

Thus, RB-INSERT-FIXUP maintains its originalO.lg n/ time.

For RB-DELETE-FIXUP, there are 4 cases to examine.

14-12 Solutions for Chapter 14: Augmenting Data Structures

Case 1: x’s sibling w is red.

A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

� Even though case 1 changes colors of nodes and does a rotation, black-
heights are not changed.

� Case 1 changes the structure of the tree, but waits for cases 2, 3, and 4 to
deal with the “extra black” onx.

Case 2: x’s sibling w is black, and both ofw’s children are black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

� w is colored red, andx’s “extra” black is moved up tox:p.
� Now we can addx:p:bhD x:bhafter line 10 in RB-DELETE-FIXUP.
� This is a constant-time update. Then, keep looping to deal with the extra

black onx:p.

Case 3: x’s sibling w is black,w’s left child is red, andw’s right child is black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

� Regardless of the color changes and rotation of this case, the black-heights
don’t change.

� Case 3 just sets up the structure of the tree, so it can fall correctly into case 4.

Case 4: x’s sibling w is black, andw’s right child is red.

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = root[T]γ δ ε ζ

Case 4

c′ c′

Solutions for Chapter 14: Augmenting Data Structures 14-13

� NodesA, C , andE keep the same subtrees, so their black-heights don’t
change.

� Add these two constant-time assignments in RB-DELETE-FIXUP after
line 20:

x:p:bh D x:bhC 1

x:p:p:bh D x:p:bhC 1

� The extra black is taken care of. Loop terminates.

Thus, RB-DELETE-FIXUP maintains its originalO.lg n/ time.

Therefore, we conclude that black-heights of nodes can be maintained as attributes
in red-black trees without affecting the asymptotic performance of red-black tree
operations.

For the second part of the question, no, we cannot maintain node depths without
affecting the asymptotic performance of red-black tree operations. The depth of a
node depends on the depth of its parent. When the depth of a node changes, the
depths of all nodes below it in the tree must be updated. Updating the root node
causesn � 1 other nodes to be updated, which would mean that operations on the
tree that change node depths might not run inO.n lg n/ time.

Solution to Exercise 14.3-3

As it travels down the tree, INTERVAL-SEARCH first checks whether current nodex

overlaps the query intervali and, if it does not, goes down to either the left or right
child. If nodex overlapsi , and some node in the right subtree overlapsi , but
no node in the left subtree overlapsi , then because the keys are low endpoints,
this order of checking (firstx, then one child) will return the overlapping interval
with the minimum low endpoint. On the other hand, if there is an interval that
overlapsi in the left subtree ofx, then checkingx before the left subtree might
cause the procedure to return an interval whose low endpointis not the minimum
of those that overlapi . Therefore, if there is a possibility that the left subtree might
contain an interval that overlapsi , we need to check the left subtree first. If there is
no overlap in the left subtree but nodex overlapsi , then we returnx. We check the
right subtree under the same conditions as in INTERVAL-SEARCH: the left subtree
cannot contain an interval that overlapsi , and nodex does not overlapi , either.

Because we might search the left subtree first, it is easier towrite the pseudocode to
use a recursive procedure MIN-INTERVAL-SEARCH-FROM.T; x; i/, which returns
the node overlappingi with the minimum low endpoint in the subtree rooted atx,
or T:nil if there is no such node.

M IN-INTERVAL-SEARCH.T; i/

return M IN-INTERVAL-SEARCH-FROM.T; T:root; i/

14-14 Solutions for Chapter 14: Augmenting Data Structures

M IN-INTERVAL-SEARCH-FROM.T; x; i/

if x: left¤ T:nil andx: left:max� i: low
y D M IN-INTERVAL-SEARCH-FROM.T; x: left; i/

if y ¤ T:nil
return y

elseif i overlapsx: int
return x

else return T:nil
elseif i overlapsx: int

return x

else return M IN-INTERVAL-SEARCH-FROM.T; x:right; i/

The call MIN-INTERVAL-SEARCH.T; i/ takesO.lg n/ time, since each recursive
call of MIN-INTERVAL-SEARCH-FROM goes one node lower in the tree, and the
height of the tree isO.lg n/.

Solution to Exercise 14.3-6

1. Underlying data structure:
A red-black tree in which the numbers in the set are stored simply as the keys
of the nodes.

SEARCH is then just the ordinary TREE-SEARCH for binary search trees, which
runs inO.lg n/ time on red-black trees.

2. Additional information:
The red-black tree is augmented by the following attributesin each nodex:

� x:min-gap contains the minimum gap in the subtree rooted atx. It has the
magnitude of the difference of the two closest numbers in thesubtree rooted
at x. If x is a leaf (its children are allT:nil), let x:min-gapD1.

� x:min-�al contains the minimum value (key) in the subtree rooted atx.
� x:max-�al contains the maximum value (key) in the subtree rooted atx.

3. Maintaining the information:
The three attributes added to the tree can each be computed from information
in the node and its children. Hence by Theorem 14.1, they can be maintained
during insertion and deletion without affecting theO.lg n/ running time:

x:min-�al D
(

x: left:min-�al if there is a left subtree;

x:key otherwise;

x:max-�al D
(

x:right:max-�al if there is a right subtree;

x:key otherwise;

x:min-gapD min

„
x: left:min-gap (1 if no left subtree);

x:right:min-gap (1 if no right subtree);

x:key� x: left:max-�al (1 if no left subtree);

x:right:min-�al � x:key (1 if no right subtree):

Solutions for Chapter 14: Augmenting Data Structures 14-15

In fact, the reason for defining themin-�al andmax-�al attributes is to make it
possible to computemin-gap from information at the node and its children.

4. New operation:
M IN-GAP simply returns themin-gapstored at the tree root. Thus, its running
time isO.1/.

Note that in addition (not asked for in the exercise), it is possible to find the
two closest numbers inO.lg n/ time. Starting from the root, look for where the
minimum gap (the one stored at the root) came from. At each node x, simulate
the computation ofx:min-gap to figure out wherex:min-gapcame from. If it
came from a subtree’smin-gapattribute, continue the search in that subtree. If
it came from a computation withx’s key, thenx and that other number are the
closest numbers.

Solution to Exercise 14.3-7
This solution is also posted publicly

General idea: Move a sweep line from left to right, while maintaining the set of
rectangles currently intersected by the line in an intervaltree. The interval tree
will organize all rectangles whosex interval includes the current position of the
sweep line, and it will be based on they intervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlapping rectangles.

Details:

1. Sort the rectangles by theirx-coordinates. (Actually, each rectangle must ap-
pear twice in the sorted list—once for its leftx-coordinate and once for its right
x-coordinate.)

2. Scan the sorted list (from lowest to highestx-coordinate).

� When anx-coordinate of a left edge is found, check whether the rectangle’s
y-coordinate interval overlaps an interval in the tree, and insert the rectangle
(keyed on itsy-coordinate interval) into the tree.

� When anx-coordinate of a right edge is found, delete the rectangle from the
interval tree.

The interval tree always contains the set of “open” rectangles intersected by the
sweep line. If an overlap is ever found in the interval tree, there are overlapping
rectangles.

Time: O.n lg n/

� O.n lg n/ to sort the rectangles (we can use merge sort or heap sort).
� O.n lg n/ for interval-tree operations (insert, delete, and check for overlap).

Solution to Problem 14-1

a. Assume for the purpose of contradiction that there is no point of maximum
overlap in an endpoint of a segment. The maximum overlap point p is in the

14-16 Solutions for Chapter 14: Augmenting Data Structures

interior ofm segments. Actually,p is in the interior of the intersection of those
m segments. Now look at one of the endpointsp0 of the intersection of them
segments. Pointp0 has the same overlap asp because it is in the same intersec-
tion of m segments, and sop0 is also a point of maximum overlap. Moreover,p0

is in the endpoint of a segment (otherwise the intersection would not end there),
which contradicts our assumption that there is no point of maximum overlap in
an endpoint of a segment. Thus, there is always a point of maximum overlap
which is an endpoint of one of the segments.

b. Keep a balanced binary search tree of the endpoints. That is,to insert an in-
terval, we insert its endpoints separately. With each left endpointe, associate
a valuep.e/ D C1 (increasing the overlap by 1). With each right endpointe

associate a valuep.e/ D �1 (decreasing the overlap by 1). When multiple end-
points have the same value, insert all the left endpoints with that value before
inserting any of the right endpoints with that value.

Here’s some intuition. Lete1, e2, . . . , en be the sorted sequence of endpoints
corresponding to our intervals. Lets.i; j / denote the sump.ei/ C p.eiC1/ C
� � � C p.ej / for 1 � i � j � n. We wish to find ani maximizings.1; i/.

For each nodex in the tree, letl.x/ andr.x/ be the indices in the sorted order
of the leftmost and rightmost endpoints, respectively, in the subtree rooted atx.
Then the subtree rooted atx contains the endpointsel.x/; el.x/C1; : : : ; er.x/.

Each nodex stores three new attributes. We storex:� D s.l.x/; r.x//, the
sum of the values of all nodes in the subtree rooted atx. We also store
x:m, the maximum value obtained by the expressions.l.x/; i/ for any i in
fl.x/; l.x/C 1; : : : ; r.x/g. Finally, we storex:o as the value ofi for which
x:machieves its maximum. For the sentinel, we defineT:nil:� D T:nil:mD 0.

We can compute these attributes in a bottom-up fashion to satisfy the require-
ments of Theorem 14.1:

x:� D x: left:� C p.x/C x:right:� ;

x:m D max

�
x: left:m (max is inx’s left subtree);

x: left:� C p.x/ (max is atx) ;

x: left:� C p.x/C x:right:m (max is inx’s right subtree):

Computingx:� is straightforward. Computingx:m bears further explanation.
Recall that it is the maximum value of the sum of thep values for the nodes
in the subtree rooted atx, starting at the node forel.x/, which is the leftmost
endpoint inx’s subtree, and ending at any node forei in x’s subtree. The
endpointei that maximizes this sum—let’s call itei�—corresponds to either a
node inx’s left subtree,x itself, or a node inx’s right subtree. Ifei� corresponds
to a node inx’s left subtree, thenx: left:m represents a sum starting at the node
for el.x/ and ending at a node inx’s left subtree, and hencex:m D x: left:m.
If ei� corresponds tox itself, thenx:m represents the sum of allp values in
x’s left subtree, plusp.x/, so thatx:m D x: left:� C p.x/. Finally, if ei�

corresponds to a node inx’s right subtree, thenx:m represents the sum of allp

values inx’s left subtree, plusp.x/, plus the sum of some subset ofp values in
x’s right subtree. Moreover, the values taken fromx’s right subtree must start
from the leftmost endpoint stored in the right subtree. To maximize this sum,

Solutions for Chapter 14: Augmenting Data Structures 14-17

we need to maximize the sum from the right subtree, and that value is precisely
x:right:m. Hence, in this case,x:mD x: left:� C p.x/C x:right:m.

Once we understand how to computex:m, it is straightforward to computex:o
from the information inx and its two children. Thus, we can implement the
operations as follows:

� INTERVAL-INSERT: insert two nodes, one for each endpoint of the interval.
� FIND-POM: return the interval whose endpoint is represented byT:root:o.

(Note that because we are building a binary search tree of allthe endpoints and
then determiningT:root:o, we have no need to delete any nodes from the tree.)

Because of how we have defined the new attributes, Theorem 14.1 says that
each operation runs inO.lg n/ time. In fact, FIND-POM takes onlyO.1/ time.

Solution to Problem 14-2

a. We use a circular list in which each element has two attributes, keyandnext. At
the beginning, we initialize the list to contain the keys1; 2; : : : ; n in that order.
This initialization takesO.n/ time, since there is only a constant amount of
work per element (i.e., setting itskeyand itsnextattributes). We make the list
circular by letting thenextattribute of the last element point to the first element.

We then start scanning the list from the beginning. We outputand then delete
everymth element, until the list becomes empty. The output sequence is the
.n; m/-Josephus permutation. This process takesO.m/ time per element, for a
total time ofO.mn/. Sincem is a constant, we getO.mn/ D O.n/ time, as
required.

b. We can use an order-statistic tree, straight out of Section 14.1. Why? Suppose
that we are at a particular spot in the permutation, and let’ssay that it’s thej th
largest remaining person. Suppose that there arek � n people remaining. Then
we will remove personj , decrementk to reflect having removed this person,
and then go on to the.jCm�1/th largest remaining person (subtract 1 because
we have just removed thej th largest). But that assumes thatj Cm � k. If not,
then we use a little modular arithmetic, as shown below.

In detail, we use an order-statistic treeT , and we call the procedures OS-
INSERT, OS-DELETE, OS-RANK , and OS-SELECT:

14-18 Solutions for Chapter 14: Augmenting Data Structures

JOSEPHUS.n; m/

initialize T to be empty
for j D 1 to n

create a nodex with x:key== j

OS-INSERT.T; x/

k D n

j D m

while k > 2

x D OS-SELECT.T:root; j /

print x:key
OS-DELETE.T; x/

k D k � 1

j D ..j Cm � 2/ modk/C 1

print OS-SELECT.T:root; 1/:key

The above procedure is easier to understand. Here’s a streamlined version:

JOSEPHUS.n; m/

initialize T to be empty
for j D 1 to n

create a nodex with x:key== j

OS-INSERT.T; x/

j D 1

for k D n downto 1

j D ..j Cm � 2/ modk/C 1

x D OS-SELECT.T:root; j /

print x:key
OS-DELETE.T; x/

Either way, it takesO.n lg n/ time to build up the order-statistic treeT , and
then we makeO.n/ calls to the order-statistic-tree procedures, each of which
takesO.lg n/ time. Thus, the total time isO.n lg n/.

Lecture Notes for Chapter 15:
Dynamic Programming

Dynamic Programming

� Not a specific algorithm, but a technique (like divide-and-conquer).
� Developed back in the day when “programming” meant “tabularmethod” (like

linear programming). Doesn’t really refer to computer programming.
� Used for optimization problems:

� Finda solution withtheoptimal value.
� Minimization or maximization. (We’ll see both.)

Four-step method

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Rod cutting

[New in the third edition of the book.]

How to cut steel rods into pieces in order to maximize the revenue you can get?
Each cut is free. Rod lengths are always an integral number ofinches.

Input: A lengthn and table of pricespi , for i D 1; 2; : : : ; n.

Output: The maximum revenue obtainable for rods whose lengths sum ton, com-
puted as the sum of the prices for the individual rods.

If pn is large enough, an optimal solution might require no cuts, i.e., just leave the
rod asn inches long.

15-2 Lecture Notes for Chapter 15: Dynamic Programming

Example: [Using the first8 values from the example in the book.]

lengthi 1 2 3 4 5 6 7 8
pricepi 1 5 8 9 10 17 17 20

Can cut up a rod in2n�1 different ways, because can choose to cut or not cut after
each of the firstn � 1 inches.

Here are all8 ways to cut a rod of length4, with the costs from the example:

9 1 8

1 1 1 1

5 5 18

511 5 11 5 11

The best way is to cut it into two2-inch pieces, getting a revenue ofp2 C p2 D
5C 5 D 10.

Let ri be the maximum revenue for a rod of lengthi . Can express a solution as a
sum of individual rod lengths.

Can determine optimal revenuesri for the example, by inspection:

i ri optimal solution
1 1 1 (no cuts)
2 5 2 (no cuts)
3 8 3 (no cuts)
4 10 2C 2

5 13 2C 3

6 17 6 (no cuts)
7 18 1C 6 or 2C 2C 3

8 22 2C 6

Can determine optimal revenuern by taking the maximum of
� pn: the price we get by not making a cut,
� r1C rn�1: the maximum revenue from a rod of1 inch and a rod ofn�1 inches,
� r2 C rn�2: the maximum revenue from a rod of2 inches and a rod ofn � 2

inches, . . .
� rn�1 C r1.

That is,

rn D max.pn; r1 C rn�1; r2 C rn�2; : : : ; rn�1 C r1/ :

Optimal substructure:To solve the original problem of sizen, solve subproblems
on smaller sizes. After making a cut, we have two subproblems. The optimal
solution to the original problem incorporates optimal solutions to the subproblems.
We may solve the subproblems independently.

Example:For n D 7, one of the optimal solutions makes a cut at3 inches, giving
two subproblems, of lengths3 and4. We need to solve both of them optimally. The
optimal solution for the problem of length4, cutting into 2 pieces, each of length2,
is used in the optimal solution to the original problem with length7.

Lecture Notes for Chapter 15: Dynamic Programming 15-3

A simpler way to decompose the problem:Every optimal solution has a leftmost
cut. In other words, there’s some cut that gives a first piece of length i cut off the
left end, and a remaining piece of lengthn � i on the right.

� Need to divide only the remainder, not the first piece.
� Leaves only one subproblem to solve, rather than two subproblems.
� Say that the solution with no cuts has first piece sizei D n with revenuepn,

and remainder size0 with revenuer0 D 0.
� Gives a simpler version of the equation forrn:

rn D max
1�i�n

.pi C rn�i / :

Recursive top-down solution

Direct implementation of the simpler equation forrn.
The call CUT-ROD.p; n/ returns the optimal revenuern:

CUT-ROD.p; n/

if n == 0

return 0
q D �1
for i D 1 to n

q D max.q; pŒi �C CUT-ROD.p; n � i//

return q

This procedure works, but it is terriblyinefficient. If you code it up and run it, it
could take more than an hour forn D 40. Running time almost doubles each time
n increases by1.

Why so inefficient?: CUT-ROD calls itself repeatedly, even on subproblems it has
already solved. Here’s a tree of recursive calls forn D 4. Inside each node is the
value ofn for the call represented by the node:

3

1 0

0

0

01

2 0

0

1

2

0

1 0

4

Lots of repeated subproblems. Solve the subproblem for size2 twice, for size1

four times, and for size0 eight times.

Exponential growth:Let T .n/ equal the number of calls to CUT-ROD with second
parameter equal ton. Then

15-4 Lecture Notes for Chapter 15: Dynamic Programming

T .n/ D

�
1 if n D 0 ;

1C
n�1
X

j D0

T .j / if n � 1 :

Summation counts calls where second parameter isj D n � i .
Solution to recurrence isT .n/ D 2n.

Dynamic-programming solution

Instead of solving the same subproblems repeatedly, arrange to solve each sub-
problem just once.
Save the solution to a subproblem in a table, and refer back tothe table whenever
we revisit the subproblem.
“Store, don’t recompute”) time-memory trade-off.
Can turn an exponential-time solution into a polynomial-time solution.

Two basic approaches: top-down with memoization, and bottom-up.

Top-down with memoization

Solve recursively, but store each result in a table.
To find the solution to a subproblem, first look in the table. Ifthe answer is there,
use it. Otherwise, compute the solution to the subproblem and then store the solu-
tion in the table for future use.

Memoizingis remembering what we have computed previously.

Memoized version of the recursive solution, storing the solution to the subproblem
of lengthi in array entryrŒi �:

MEMOIZED-CUT-ROD.p; n/

let rŒ0 : : n� be a new array
for i D 0 to n

rŒi � D �1
return MEMOIZED-CUT-ROD-AUX .p; n; r/

MEMOIZED-CUT-ROD-AUX .p; n; r/

if rŒn� � 0

return rŒn�

if n == 0

q D 0

elseq D �1
for i D 1 to n

q D max.q; pŒi �CMEMOIZED-CUT-ROD-AUX .p; n � i; r//

rŒn� D q

return q

Lecture Notes for Chapter 15: Dynamic Programming 15-5

Bottom-up

Sort the subproblems by size and solve the smaller ones first.That way, when
solving a subproblem, have already solved the smaller subproblems we need.

BOTTOM-UP-CUT-ROD.p; n/

let rŒ0 : : n� be a new array
rŒ0� D 0

for j D 1 to n

q D �1
for i D 1 to j

q D max.q; pŒi �C rŒj � i �/

rŒj � D q

return rŒn�

Running time

Both the top-down and bottom-up versions run in‚.n2/ time.

� Bottom-up: Doubly nested loops. Number of iterations of inner for loop forms
an arithmetic series.

� Top-down: MEMOIZED-CUT-ROD solves each subproblem just once, and it
solves subproblems for sizes0; 1; : : : ; n. To solve a subproblem of sizen, the
for loop iteratesn times) over all recursive calls, total number of iterations
forms an arithmetic series.[Actually using aggregate analysis, which Chap-
ter 17 covers.]

Subproblem graphs

How to understand the subproblems involved and how they depend on each other.

Directed graph:

� One vertex for each distinct subproblem.
� Has a directed edge.x; y/ if computing an optimal solution to subproblemx

directly requires knowing an optimal solution to subproblemy.

Example: For rod-cutting problem withn D 4:

3

0

1

2

4

15-6 Lecture Notes for Chapter 15: Dynamic Programming

Can think of the subproblem graph as a collapsed version of the tree of recursive
calls, where all nodes for the same subproblem are collapsedinto a single vertex,
and all edges go from parent to child.

Subproblem graph can help determine running time. Because we solve each sub-
problem just once, running time is sum of times needed to solve each subproblem.

� Time to compute solution to a subproblem is typically linearin the out-degree
(number of outgoing edges) of its vertex.

� Number of subproblems equals number of vertices.

When these conditions hold, running time is linear in numberof vertices and edges.

Reconstructing a solution

So far, have focused on computing thevalueof an optimal solution, rather than the
choicesthat produced an optimal solution.

Extend the bottom-up approach to record not just optimal values, but optimal
choices. Save the optimal choices in a separate table. Then use a separate pro-
cedure to print the optimal choices.

EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

let rŒ0 : : n� andsŒ0 : : n� be new arrays
rŒ0� D 0

for j D 1 to n

q D �1
for i D 1 to j

if q < pŒi�C rŒj � i �

q D pŒi�C rŒj � i �

sŒj � D i

rŒj � D q

return r ands

Saves the first cut made in an optimal solution for a problem ofsizei in sŒi �.

To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION.p; n/

.r; s/ D EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

while n > 0

print sŒn�

n D n � sŒn�

Example: For the example, EXTENDED-BOTTOM-UP-CUT-ROD returns

i 0 1 2 3 4 5 6 7 8

rŒi � 0 1 5 8 10 13 17 18 22

sŒi � 0 1 2 3 2 2 6 1 2

A call to PRINT-CUT-ROD-SOLUTION.p; 8/ calls EXTENDED-BOTTOM-UP-
CUT-ROD to compute the abover and s tables. Then it prints2, setsn to 6,
prints6, and finishes (becausen becomes0).

Lecture Notes for Chapter 15: Dynamic Programming 15-7

Longest common subsequence

Problem: Given 2 sequences,X D hx1; : : : ; xmi andY D hy1; : : : ; yni. Find
a subsequence common to both whose length is longest. A subsequence doesn’t
have to be consecutive, but it has to be in order.

[To come up with examples of longest common subsequences, search the dictio-
nary for all words that contain the word you are looking for asa subsequence. On
a UNIX system, for example, to find all the words withpine as a subsequence,
use the commandgrep ’.*p.*i.*n.*e.*’ dict, wheredict is your lo-
cal dictionary. Then check if that word is actually a longestcommon subsequence.
Working C code for finding a longest common subsequence of twostrings appears
at http://www.cs.dartmouth.edu/˜thc/code/lcs.c]

Examples
[The examples are of different types of trees.]

h e r o i c a l l y

s p r i n g t i m e

p i o n e e r

h o r s e b a c k

s n o w f l a k e

m a e l s t r o m

b e c a l m s c h o l a r l y

Brute-force algorithm:

For every subsequence ofX , check whether it’s a subsequence ofY .

Time: ‚.n2m/.
� 2m subsequences ofX to check.
� Each subsequence takes‚.n/ time to check: scanY for first letter, from there

scan for second, and so on.

Optimal substructure

Notation:
Xi D prefix hx1; : : : ; xi i
Yi D prefix hy1; : : : ; yi i

Theorem
Let Z D h´1; : : : ; ´ki be any LCS ofX andY .

1. If xm D yn, then´k D xm D yn andZk�1 is an LCS ofXm�1 andYn�1.
2. If xm ¤ yn, then´k ¤ xm) Z is an LCS ofXm�1 andY .
3. If xm ¤ yn, then´k ¤ yn) Z is an LCS ofX andYn�1.

15-8 Lecture Notes for Chapter 15: Dynamic Programming

Proof

1. First show that́ k D xm D yn. Suppose not. Then make a subsequence
Z0 D h´1; : : : ; ´k ; xmi. It’s a common subsequence ofX and Y and has
lengthk C 1) Z0 is a longer common subsequence thanZ) contradictsZ
being an LCS.

Now showZk�1 is an LCS ofXm�1 andYn�1. Clearly, it’s a common subse-
quence. Now suppose there exists a common subsequenceW of Xm�1 andYn�1

that’s longer thanZk�1) length ofW � k. Make subsequenceW 0 by ap-
pendingxm to W . W 0 is common subsequence ofX andY , has length� kC 1

) contradictsZ being an LCS.

2. If ´k ¤ xm, thenZ is a common subsequence ofXm�1 andY . Suppose there
exists a subsequenceW of Xm�1 andY with length> k. ThenW is a common
subsequence ofX andY) contradictsZ being an LCS.

3. Symmetric to2. (theorem)

Therefore, an LCS of two sequences contains as a prefix an LCS of prefixes of the
sequences.

Recursive formulation

DefinecŒi; j � D length of LCS ofXi andYj . We wantcŒm; n�.

cŒi; j � D

�
0 if i D 0 or j D 0 ;

cŒi � 1; j � 1�C 1 if i; j > 0 andxi D yj ;

max.cŒi � 1; j �; cŒi; j � 1�/ if i; j > 0 andxi ¤ yj :

Again, we could write a recursive algorithm based on this formulation.

Try with bozo, bat.

0,3 1,2 1,2 2,1 1,2 2,1 2,1 3,0

1,3 2,2 2,2 3,1 2,2 3,1 3,1 4,0

2,3 3,2 3,2 4,1

3,3 3,3

4,3

� Lots of repeated subproblems.
� Instead of recomputing, store in a table.

Lecture Notes for Chapter 15: Dynamic Programming 15-9

Compute length of optimal solution

LCS-LENGTH.X; Y; m; n/

let bŒ1 : : m; 1 : : n� andcŒ0 : : m; o : : n� be new tables
for i D 1 to m

cŒi; 0� D 0

for j D 0 to n

cŒ0; j � D 0

for i D 1 to m

for j D 1 to n

if xi == yj

cŒi; j � D cŒi � 1; j � 1�C 1

bŒi; j � D “-”
else ifcŒi � 1; j � � cŒi; j � 1�

cŒi; j � D cŒi � 1; j �

bŒi; j � D “"”
elsecŒi; j � D cŒi; j � 1�

bŒi; j � D “ ”
return c andb

PRINT-LCS.b; X; i; j /

if i == 0 or j D 0

return
if bŒi; j � == “-”

PRINT-LCS.b; X; i � 1; j � 1/

print xi

elseifbŒi; j � == “"”
PRINT-LCS.b; X; i � 1; j /

elsePRINT-LCS.b; X; i; j � 1/

� Initial call is PRINT-LCS.b; X; m; n/.
� bŒi; j � points to table entry whose subproblem we used in solving LCSof Xi

andYj .
� WhenbŒi; j � D-, we have extended LCS by one character. So longest com-

mon subsequenceD entries with- in them.

Demonstration

What dospanking andamputation have in common?[Show onlycŒi; j �.]

15-10 Lecture Notes for Chapter 15: Dynamic Programming

43322111110

43322111110

33322111110

32222111110

32222111110

22222111110

11111111000

00000000000

00000000000

g

n

i

k

n

a

p

s

noitatupma

niap

Answer:pain.

Time

‚.mn/

Optimal binary search trees

[Added in the second edition.]

� Given sequenceK D hk1; k2; : : : ; kni of n distinct keys, sorted (k1 < k2 <

� � � < kn).
� Want to build a binary search tree from the keys.
� Forki , have probabilitypi that a search is forki .
� Want BST with minimum expected search cost.
� Actual costD # of items examined.

For keyki , costD depthT .ki /C 1, where depthT .ki / D depth ofki in BSTT .

E Œsearch cost inT �

D
n
X

iD1

.depthT .ki /C 1/ � pi

D
n
X

iD1

depthT .ki / � pi C
n
X

iD1

pi

D 1C
n
X

iD1

depthT .ki / � pi (since probabilities sum to 1) (�)

[Keep equation (*) on board.]

Lecture Notes for Chapter 15: Dynamic Programming 15-11

[Similar to optimal BST problem in the book, but simplified here: we assume that
all searches are successful. Book has probabilities of searches between keys in
tree.]

Example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3

k2

k1 k4

k3 k5

i depthT .ki / depthT .ki / � pi

1 1 .25
2 0 0
3 2 .1
4 1 .2
5 2 .6

1.15

Therefore, EŒsearch cost� D 2:15.

k2

k1 k5

k4

k3

i depthT .ki / depthT .ki / � pi

1 1 .25
2 0 0
3 3 .15
4 2 .4
5 1 .3

1.10

Therefore, EŒsearch cost� D 2:10, which turns out to be optimal.

Observations
� Optimal BST might not have smallest height.
� Optimal BST might not have highest-probability key at root.

Build by exhaustive checking?

15-12 Lecture Notes for Chapter 15: Dynamic Programming

� Construct eachn-node BST.
� For each, put in keys.
� Then compute expected search cost.
� But there are�.4n=n3=2/ different BSTs withn nodes.

Optimal substructure

Consider any subtree of a BST. It contains keys in a contiguous rangeki ; : : : ; kj

for some1 � i � j � n.

T

T'

If T is an optimal BST andT contains subtreeT 0 with keyski ; : : : ; kj , thenT 0

must be an optimal BST for keyski ; : : : ; kj .

Proof Cut and paste.

Use optimal substructure to construct an optimal solution to the problem from op-
timal solutions to subproblems:

� Given keyski ; : : : ; kj (the problem).
� One of them,kr , wherei � r � j , must be the root.
� Left subtree ofkr containski ; : : : ; kr�1.
� Right subtree ofkr containskrC1; : : : ; kj .

kr

ki kr–1 kr+1 kj

� If

� we examine all candidate rootskr , for i � r � j , and
� we determine all optimal BSTs containingki ; : : : ; kr�1 and containing

krC1; : : : ; kj ,

then we’re guaranteed to find an optimal BST forki ; : : : ; kj .

Lecture Notes for Chapter 15: Dynamic Programming 15-13

Recursive solution

Subproblem domain:

� Find optimal BST forki ; : : : ; kj , wherei � 1; j � n; j � i � 1.
� Whenj D i � 1, the tree is empty.

DefineeŒi; j � D expected search cost of optimal BST forki ; : : : ; kj .

If j D i � 1, theneŒi; j � D 0.

If j � i ,

� Select a rootkr , for somei � r � j .
� Make an optimal BST withki ; : : : ; kr�1 as the left subtree.
� Make an optimal BST withkrC1; : : : ; kj as the right subtree.
� Note: whenr D i , left subtree iski ; : : : ; ki�1; whenr D j , right subtree is

kj C1; : : : ; kj .

When a subtree becomes a subtree of a node:

� Depth of every node in subtree goes up by 1.
� Expected search cost increases by

w.i; j / D
j
X

lDi

pl (refer to equation (�)) .

If kr is the root of an optimal BST forki ; : : : ; kj :

eŒi; j � D pr C .eŒi; r � 1�Cw.i; r � 1//C .eŒr C 1; j �C w.r C 1; j // :

But w.i; j / D w.i; r � 1/C pr Cw.r C 1; j /.

Therefore,eŒi; j � D eŒi; r � 1�C eŒr C 1; j �Cw.i; j /.

This equation assumes that we already know which key iskr .

We don’t.

Try all candidates, and pick the best one:

eŒi; j � D
(

0 if j D i � 1 ;

min
i�r�j

feŒi; r � 1�C eŒr C 1; j �C w.i; j /g if i � j :

Could write a recursive algorithm. . .

Computing an optimal solution

As “usual,” we’ll store the values in a table:

eŒ 1 : : nC 1
„ ƒ‚ …

can store
eŒnC 1; n�

; 0 : : n
„ƒ‚…

can store
eŒ1; 0�

�

� Will use only entrieseŒi; j �, wherej � i � 1.

15-14 Lecture Notes for Chapter 15: Dynamic Programming

� Will also compute

rootŒi; j � D root of subtree with keyski ; : : : ; kj , for 1 � i � j � n :

One other table: don’t recomputew.i; j / from scratch every time we need it.
(Would take‚.j � i/ additions.)

Instead:

� TablewŒ1 : : nC 1; 0 : : n�

� wŒi; i � 1� D 0 for 1 � i � n

� wŒi; j � D wŒi; j � 1�C pj for 1 � i � j � n

Can compute all‚.n2/ values inO.1/ time each.

OPTIMAL -BST.p; q; n/

let eŒ1 : : nC 1; 0 : : n�, wŒ1 : : nC 1; 0 : : n�, androotŒ1 : : n; 1 : : n� be new tables
for i D 1 to nC 1

eŒi; i � 1� D 0

wŒi; i � 1� D 0

for l D 1 to n

for i D 1 to n � l C 1

j D i C l � 1

eŒi; j � D 1
wŒi; j � D wŒi; j � 1�C pj

for r D i to j

t D eŒi; r � 1�C eŒr C 1; j �CwŒi; j �

if t < eŒi; j �

eŒi; j � D t

rootŒi; j � D r

returne androot

First for loop initializese; w entries for subtrees with0 keys.

Main for loop:

� Iteration forl works on subtrees withl keys.
� Idea: compute in order of subtree sizes, smaller (1 key) to larger (n keys).

For example at beginning:

e

1

2

3

4

5

6

0 1 2 3 4 5

i

j

0

0

0

0

0

0

.25 .65 .8 1.25 2.10

.2 .3 .75 1.35

.3

.2

.05 .3 .85

.7pi

Lecture Notes for Chapter 15: Dynamic Programming 15-15

w

1

2

3

4

5

6

0 1 2 3 4 5

i

j

0

0

0

0

0

0

.25 .45 .5 .7 1.0

.2 .25 .45 .75

.3

.2

.05 .25 .55

.5

root

1

2

3

4

5

1 2 3 4 5

i

j

1

2

3

4

5

1 1 2 2

2 2 4

5

4 5

Time
O.n3/: for loops nested3 deep, each loop index takes on� n values. Can also
show�.n3/. Therefore,‚.n3/.

Construct an optimal solution

CONSTRUCT-OPTIMAL -BST.root/

r D rootŒ1; n�

print “k” r “is the root”
CONSTRUCT-OPT-SUBTREE.1; r � 1; r; “left” ; root/
CONSTRUCT-OPT-SUBTREE.r C 1; n; r; “right” ; root/

CONSTRUCT-OPT-SUBTREE.i; j; r; dir ; root/

if i � j

t D rootŒi; j �

print “k” t “is” dir “child of k” r

CONSTRUCT-OPT-SUBTREE.i; t � 1; t; “left” ; root/
CONSTRUCT-OPT-SUBTREE.t C 1; j; t; “right” ; root/

Elements of dynamic programming

Mentioned already:
� optimal substructure
� overlapping subproblems

Optimal substructure

� Show that a solution to a problem consists of making a choice,which leaves
one or subproblems to solve.

15-16 Lecture Notes for Chapter 15: Dynamic Programming

� Suppose that you are given this last choice that leads to an optimal solution.
[We find that students often have trouble understanding the relationship be-
tween optimal substructure and determining which choice ismade in an opti-
mal solution. One way that helps them understand optimal substructure is to
imagine that the dynamic-programming gods tell you what wasthe last choice
made in an optimal solution.]

� Given this choice, determine which subproblems arise and how to characterize
the resulting space of subproblems.

� Show that the solutions to the subproblems used within the optimal solution
must themselves be optimal. Usually use cut-and-paste:

� Suppose that one of the subproblem solutions is not optimal.
� Cut it out.
� Pastein an optimal solution.
� Get a better solution to the original problem. Contradicts optimality of prob-

lem solution.

That was optimal substructure.

Need to ensure that you consider a wide enough range of choices and subprob-
lems that you get them all.[The dynamic-programming gods are too busy to tell
you what that last choice really was.]Try all the choices, solve all the subprob-
lems resulting from each choice, and pick the choice whose solution, along with
subproblem solutions, is best.

How to characterize the space of subproblems?

� Keep the space as simple as possible.
� Expand it as necessary.

Examples

Rod cutting
� Space of subproblems was rods of lengthn � i , for 1 � i � n.
� No need to try a more general space of subproblems.

Optimal binary search trees
� Suppose we had tried to constrain space of subproblems to subtrees with

keysk1; k2; : : : ; kj .
� An optimal BST would have rootkr , for some1 � r � j .
� Get subproblemsk1; : : : ; kr�1 andkrC1; : : : ; kj .
� Unless we could guarantee thatr D j , so that subproblem withkrC1; : : : ; kj

is empty, then this subproblem isnot of the formk1; k2; : : : ; kj .
� Thus, needed to allow the subproblems to vary at “both ends,”i.e., allow

both i andj to vary.

Optimal substructure varies across problem domains:

1. How many subproblemsare used in an optimal solution.

2. How many choicesin determining which subproblem(s) to use.

Lecture Notes for Chapter 15: Dynamic Programming 15-17

� Rod cutting:

� 1 subproblem (of sizen � i)
� n choices

� Longest common subsequence:

� 1 subproblem
� Either

� 1 choice (ifxi D yj , LCS ofXi�1 andYj �1), or
� 2 choices (ifxi ¤ yj , LCS ofXi�1 andY , and LCS ofX andYj �1)

� Optimal binary search tree:

� 2 subproblems (ki ; : : : ; kr�1 andkrC1; : : : ; kj)
� j � i C 1 choices forkr in ki ; : : : ; kj . Once we determine optimal solutions

to subproblems, we choose from among thej � i C 1 candidates forkr .

Informally, running time depends on (# of subproblems overall) � (# of choices).

� Rod cutting:‚.n/ subproblems,� n choices for each
) O.n2/ running time.

� Longest common subsequence:‚.mn/ subproblems,� 2 choices for each
) ‚.mn/ running time.

� Optimal binary search tree:‚.n2/ subproblems,O.n/ choices for each
) O.n3/ running time.

Can use the subproblem graph to get the same analysis: count the number of edges.

� Each vertex corresponds to a subproblem.
� Choices for a subproblem are vertices that the subproblem has edges going to.
� For rod cutting, subproblem graph hasn vertices and� n edges per vertex
) O.n2/ running time.
In fact, can get an exact count of the edges: fori D 0; 1; : : : ; n, vertex for
subproblem sizei has out-degreei) # of edgesDPn

iD0 i D n.nC 1/=2.
� Subproblem graph for matrix-chain multiplication would have ‚.n2/ vertices,

each with degree� n � 1

) O.n3/ running time.

Dynamic programming uses optimal substructurebottom up.

� First find optimal solutions to subproblems.
� Thenchoose which to use in optimal solution to the problem.

When we look at greedy algorithms, we’ll see that they worktop down: first make
a choice that looks best,thensolve the resulting subproblem.

Don’t be fooled into thinking optimal substructure appliesto all optimization prob-
lems. It doesn’t.

Here are two problems that look similar. In both, we’re givenan unweighted,
directed graphG D .V; E/.

15-18 Lecture Notes for Chapter 15: Dynamic Programming

� V is a set ofvertices.
� E is a set ofedges.

And we ask about finding apath (sequence of connected edges) from vertexu to
vertex�.

� Shortest path: find pathu ; � with fewest edges. Must besimple(no cycles),
since removing a cycle from a path gives a path with fewer edges.

� Longest simple path: find simplepathu ; � with most edges. If didn’t require
simple, could repeatedly traverse a cycle to make an arbitrarily long path.

Shortest path has optimal substructure.

u vw

p1 p2

p

� Supposep is shortest pathu ; �.
� Let w be any vertex onp.
� Let p1 be the portion ofp goingu ; w.
� Thenp1 is a shortest pathu ; w.

Proof Suppose there exists a shorter pathp0
1 goingu ; w. Cut outp1, replace it

with p0
1, get pathu

p0
1

; w
p2
; � with fewer edges thanp.

Therefore, can find shortest pathu ; � by considering all intermediate verticesw,
then finding shortest pathsu ; w andw ; �.

Same argument applies top2.

Does longest path have optimal substructure?

� It seems like it should.
� It doesnot.

q r

s t

Considerq ! r ! t D longest pathq ; t . Are its subpaths longest paths?

No!

� Subpathq ; r is q ! r .
� Longest simple pathq ; r is q ! s ! t ! r .
� Subpathr ; t is r ! t .
� Longest simple pathr ; t is r ! q ! s ! t .

Lecture Notes for Chapter 15: Dynamic Programming 15-19

Not only isn’t there optimal substructure, but we can’t evenassemble a legal solu-
tion from solutions to subproblems.

Combine longest simple paths:

q ! s ! t ! r ! q ! s ! t

Not simple!

In fact, this problem is NP-complete (so it probably has no optimal substructure to
find.)

What’s the big difference between shortest path and longestpath?

� Shortest path hasindependentsubproblems.
� Solution to one subproblem does not affect solution to another subproblem of

the same problem.
� Longest simple path: subproblems arenot independent.
� Consider subproblems of longest simple pathsq ; r andr ; t .
� Longest simple pathq ; r usess andt .
� Cannot uses andt to solve longest simple pathr ; t , since if we do, the path

isn’t simple.
� But wehaveto uset to find longest simple pathr ; t !
� Using resources (vertices) to solve one subproblem rendersthem unavailable to

solve the other subproblem.

[For shortest paths, if we look at a shortest pathu
p1
; w

p2
; �, no vertex other

thanw can appear inp1 andp2. Otherwise, we have a cycle.]

Independent subproblems in our examples:

� Rod cutting and longest common subsequence

� 1 subproblem) automatically independent.

� Optimal binary search tree

� ki ; : : : ; kr�1 andkrC1; : : : ; kj) independent.

Overlapping subproblems

These occur when a recursive algorithm revisits the same problem over and over.

Good divide-and-conquer algorithms usually generate a brand new problem at each
stage of recursion.

Example: merge sort

1..8

1..4 5..8

1..2 3..4 5..6 7..8

1..1 2..2 3..3 4..4 5..5 6..6 7..7 8..8

15-20 Lecture Notes for Chapter 15: Dynamic Programming

Won’t go through exercise of showing repeated subproblems.

Book has a good example for matrix-chain multiplication.

Alternative approach to dynamic programming:memoization

� “Store, don’t recompute.”
� Make a table indexed by subproblem.
� When solving a subproblem:

� Lookup in table.
� If answer is there, use it.
� Else, compute answer, then store it.

� In bottom-up dynamic programming, we go one step further. Wedetermine in
what order we’d want to access the table, and fill it in that way.

Solutions for Chapter 15:
Dynamic Programming

Solution to Exercise 15.1-1

We can verify thatT .n/ D 2n is a solution to the given recurrence by the substitu-
tion method. We note that forn D 0, the formula is true since20 D 1. Forn > 0,
substituting into the recurrence and using the formula for summing a geometric
series yields

T .n/ D 1C
n�1
X

j D0

2j

D 1C .2n � 1/

D 2n :

Solution to Exercise 15.1-2

Here is a counterexample for the “greedy” strategy:

lengthi 1 2 3 4
pricepi 1 20 33 36

pi=i 1 10 11 1

Let the given rod length be 4. According to a greedy strategy,we first cut out a rod
of length 3 for a price of 33, which leaves us with a rod of length 1 of price 1. The
total price for the rod is 34. The optimal way is to cut it into two rods of length 2
each fetching us 40 dollars.

15-22 Solutions for Chapter 15: Dynamic Programming

Solution to Exercise 15.1-3

MODIFIED-CUT-ROD.p; n; c/

let rŒ0 : : n� be a new array
rŒ0� D 0

for j D 1 to n

q D pŒj �

for i D 1 to j � 1

q D max.q; pŒi �C rŒj � i � � c/

rŒj � D q

return rŒn�

The major modification required is in the body of the innerfor loop, which now
readsq D max.q; pŒi � C rŒj � i � � c/. This change reflects the fixed cost of
making the cut, which is deducted from the revenue. We also have to handle the
case in which we make no cuts (wheni equalsj); the total revenue in this case is
simply pŒj �. Thus, we modify the innerfor loop to run fromi to j � 1 instead of
toj . The assignmentq D pŒj � takes care of the case of no cuts. If we did not make
these modifications, then even in the case of no cuts, we wouldbe deductingc from
the total revenue.

Solution to Exercise 15.1-4

MEMOIZED-CUT-ROD.p; n/

let rŒ0 : : n� andsŒ0 : : n� be new arrays
for i D 0 to n

rŒi � D �1
.�al; s/ D MEMOIZED-CUT-ROD-AUX .p; n; r; s/

print “The optimal value is ”�al “ and the cuts are at ”
j D n

while j > 0

print sŒj �

j D j � sŒj �

Solutions for Chapter 15: Dynamic Programming 15-23

MEMOIZED-CUT-ROD-AUX .p; n; r; s/

if rŒn� � 0

return rŒn�

if n == 0

q D 0

elseq D �1
for i D 1 to n

.�al; s/ D MEMOIZED-CUT-ROD-AUX .p; n � i; r; s/

if q < pŒi�C �al
q D pŒi�C �al
sŒn� D i

rŒn� D q

return .q; s/

PRINT-CUT-ROD-SOLUTION constructs the actual lengths where a cut should hap-
pen. Array entrysŒi � contains the valuej indicating that an optimal cut for a rod
of lengthi is j inches. The next cut is given bysŒi � j �, and so on.

Solution to Exercise 15.1-5

FIBONACCI.n/

let fibŒ0 : : n� be a new array
fibŒ0� D fibŒ1� D 1

for i D 2 to n

fibŒi � D fibŒi � 1�C fibŒi � 2�

return fibŒn�

FIBONACCI directly implements the recurrence relation of the Fibonacci sequence.
Each number in the sequence is the sum of the two previous numbers in the se-
quence. The running time is clearlyO.n/.

The subproblem graph consists ofn C 1 vertices, �0; �1; : : : ; �n. For i D
2; 3; : : : ; n, vertex�i has two leaving edges: to vertex�i�1 and to vertex�i�2.
No edges leave vertices�0 or �1. Thus, the subproblem graph has2n � 2 edges.

Solution to Exercise 15.2-4

The vertices of the subproblem graph are the ordered pairs�ij , wherei � j . If
i D j , then there are no edges out of�ij . If i < j , then for everyk such that
i � k < j , the subproblem graph contains edges.�ij ; �ik/ and.�ij ; �kC1;j /. These
edges indicate that to solve the subproblem of optimally parenthesizing the product
Ai � � �Aj , we need to solve subproblems of optimally parenthesizing the products
Ai � � �Ak andAkC1 � � �Aj . The number of vertices is

n
X

iD1

n
X

j Di

1 D n.nC 1/

2
;

15-24 Solutions for Chapter 15: Dynamic Programming

and the number of edges is
n
X

iD1

n
X

j Di

.j � i/ D
n
X

iD1

n�i
X

tD0

t (substitutingt D j � i)

D
n
X

iD1

.n � i/.n � i C 1/

2
:

Substitutingr D n � i and reversing the order of summation, we obtain
n
X

iD1

.n � i/.n � i C 1/

2

D 1

2

n�1
X

rD0

.r2 C r/

D 1

2

�
.n � 1/n.2n � 1/

6
C .n � 1/n

2

�

(by equations (A.3) and (A.1))

D .n � 1/n.nC 1/

6
:

Thus, the subproblem graph has‚.n2/ vertices and‚.n3/ edges.

Solution to Exercise 15.2-5
This solution is also posted publicly

Each time thel-loop executes, thei-loop executesn � l C 1 times. Each time the
i-loop executes, thek-loop executesj � i D l � 1 times, each time referencing
m twice. Thus the total number of times that an entry ofm is referenced while
computing other entries is

Pn

lD2.n � l C 1/.l � 1/2. Thus,
n
X

iD1

n
X

j Di

R.i; j / D
n
X

lD2

.n � l C 1/.l � 1/2

D 2

n�1
X

lD1

.n � l/l

D 2

n�1
X

lD1

nl � 2

n�1
X

lD1

l2

D 2
n.n � 1/n

2
� 2

.n � 1/n.2n � 1/

6

D n3 � n2 � 2n3 � 3n2 C n

3

D n3 � n

3
:

Solutions for Chapter 15: Dynamic Programming 15-25

Solution to Exercise 15.3-1
This solution is also posted publicly

Running RECURSIVE-MATRIX -CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and computing the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches.

� For each possible place to split the matrix chain, the enumeration approach
finds all ways to parenthesize the left half, finds all ways to parenthesize the
right half, and looks at all possible combinations of the left half with the right
half. The amount of work to look at each combination of left- and right-half
subproblem results is thus the product of the number of ways to do the left half
and the number of ways to do the right half.

� For each possible place to split the matrix chain, RECURSIVE-MATRIX -CHAIN

finds the best way to parenthesize the left half, finds the bestway to parenthesize
the right half, and combines just those two results. Thus theamount of work to
combine the left- and right-half subproblem results isO.1/.

Section 15.2 argued that the running time for enumeration is�.4n=n3=2/. We will
show that the running time for RECURSIVE-MATRIX -CHAIN is O.n3n�1/.

To get an upper bound on the running time of RECURSIVE-MATRIX -CHAIN , we’ll
use the same approach used in Section 15.2 to get a lower bound: Derive a recur-
rence of the formT .n/ � : : : and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1–2and 6–7 each take at
least unit time. For the upper-bound recurrence, we’ll assume those pairs of lines
each take at most constant timec. Thus, we have the recurrence

T .n/ �

�
c if n D 1 ;

c C
n�1
X

kD1

.T .k/C T .n � k/C c/ if n � 2 :

This is just like the book’s� recurrence except that it hasc instead of 1, and so we
can be rewrite it as

T .n/ � 2

n�1
X

iD1

T .i/C cn :

We shall prove thatT .n/ D O.n3n�1/ using the substitution method. (Note: Any
upper bound onT .n/ that iso.4n=n3=2/ will suffice. You might prefer to prove one
that is easier to think up, such asT .n/ D O.3:5n/.) Specifically, we shall show
thatT .n/ � cn3n�1 for all n � 1. The basis is easy, sinceT .1/ � c D c � 1 � 31�1.
Inductively, forn � 2 we have

15-26 Solutions for Chapter 15: Dynamic Programming

T .n/ � 2

n�1
X

iD1

T .i/C cn

� 2

n�1
X

iD1

ci3i�1 C cn

� c �

2

n�1
X

iD1

i3i�1 C n

!

D c �
�

2 �
�

n3n�1

3 � 1
C 1 � 3n

.3� 1/2

�

C n

�

(see below)

D cn3n�1 C c �
�

1� 3n

2
C n

�

D cn3n�1 C c

2
.2nC 1� 3n/

� cn3n�1 for all c > 0, n � 1 .

Running RECURSIVE-MATRIX -CHAIN takesO.n3n�1/ time, and enumerating all
parenthesizations takes�.4n=n3=2/ time, and so RECURSIVE-MATRIX -CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:
n�1
X

iD1

ixi�1 D nxn�1

x � 1
C 1 � xn

.x � 1/2
:

This equation can be derived from equation (A.5) by taking the derivative. Let

f .x/ D
n�1
X

iD1

xi D xn � 1

x � 1
� 1 :

Then
n�1
X

iD1

ixi�1 D f 0.x/ D nxn�1

x � 1
C 1� xn

.x � 1/2
:

Solution to Exercise 15.3-5

We say that a problem exhibits the optimal substructure property when optimal
solutions to a problem incorporate optimal solutions to related subproblems,which
we may solve independently(i.e., they do not share resources). When we impose
a limit li on the number of pieces of sizei that we are permitted to produce, the
subproblems can no longer be solvedindependently. For example, consider a rod
of length 4 with the following prices and limits:

lengthi 1 2 3 4
pricepi 15 20 33 36
limit li 2 1 1 1

This instance has only three solutions that do not violate the limits: length 4 with
price 36; lengths 1 and 3 with price 48; and lengths 1, 1, and 2 with price 50. The

Solutions for Chapter 15: Dynamic Programming 15-27

optimal solution, therefore is to cut into lengths 1, 1, and 2. When we look at the
subproblem for length 2, it has two solutions that do not violate the limits: length 2
with price 20, and lengths 1 and 1 with price 30. The optimal solution for length 2,
therefore, is to cut into lengths 1 and 1. But we cannot use this optimal solution for
the subproblem in the optimal solution for the original problem, because it would
result in using four rods of length 1 to solve the original problem, violating the
limit of two length-1 rods.

Solution to Exercise 15.3-6

Any solution must add the additional assumption that no currency can be repeated
in a sequence of trades. Without this assumption, ifrij > 1=rj i for some currencies
i andj , we could repeatedly exchangei ! j ! i ! j ! � � � and make an
unbounded profit.

To see that this problem has optimal substructure whenck D 0 for all k, observe
that the problem of exchanging currencya for currencyb is equivalent to finding a
sequence of currenciesk1; k2; : : : ; km such thatk1 D a, km D b, and the product
rk1k2

rk2k3
� � � rkm�1km

is maximized.

We use the usual cut-and-paste argument. Suppose that an optimal solution con-
tains a sequencehki ; kiC1; : : : ; kj i of currencies, and suppose that there exists a
sequencehk0

i ; k0
iC1; : : : ; k0

j i, such thatk0
i D ki , k0

j D kj , andrk0
i
k0

iC1
� � � rk0

j �1
k0

j
>

rki kiC1
� � � rkj �1kj

. Then we could substitute the sequencehk0
i ; k0

iC1; : : : ; k0
j i for the

sequencehki ; kiC1; : : : ; kj i in the optimal solution to create an even better solution.

We show that optimal substructure does not hold when theck are arbitrary values
by means of an example. Suppose we have four currencies, withthe following
exchange rates:

j

rij 1 2 3 4
1 1 2 5/2 6
2 1/2 1 3/2 3

i 3 2/5 2/3 1 3
4 1/6 1/3 1/3 1

Let c1 D 2 andc2 D c3 D 3. Note that this example is not too badly contrived, in
thatrj i D 1=rij for all i andj .

To see how this example does not exhibit optimal substructure, let’s examine an
optimal solution for exchanging currency 1 for currency 4. There are five possible
exchange sequences, with the following costs:

h1; 4i W 6� 2 D 4 ;

h1; 2; 4i W 2 � 3 � 3 D 3 ;

h1; 3; 4i W 5=2 � 3� 3 D 9=2 ;

h1; 2; 3; 4i W 2 � 3=2 � 3� 3 D 6

h1; 3; 2; 4i W 5=2 � 2=3 � 3 � 3 D 2

The optimal exchange sequence,h1; 2; 3; 4i, appears in boldface.

15-28 Solutions for Chapter 15: Dynamic Programming

Let’s examine the subproblem of exchanging currency 1 for currency 3. Allow-
ing currency 4 to be part of the exchange sequence, there are again five possible
exchange sequences with the following costs and the optimalone in boldface:

h1; 3i W 5=2� 2 D 1=2

h1; 2; 3i W 2 � 3=2 � 3 D 0

h1; 4; 3i W 6 � 1=3 � 3 D �1

h1; 2; 4; 3i W 2 � 3 � 1=3 � 3 D �1

h1; 4; 2; 3i W 6 � 1=3 � 3=2 D 3 D 0

We see that the solution to the original problem includes thesubproblem of ex-
changing currency 1 for currency 3, yet the solutionh1; 2; 3i to the subproblem
used in the optimal solution to the original problem is not the optimal solutionh1;3i
to the subproblem on its own.

Solution to Exercise 15.4-4
This solution is also posted publicly

When computing a particular row of thec table, no rows before the previous row
are needed. Thus only two rows—2 � Y: lengthentries—need to be kept in memory
at a time. (Note: Each row ofc actually hasY: lengthC1 entries, but we don’t need
to store the column of 0’s—instead we can make the program “know” that those
entries are 0.) With this idea, we need only2 �min.m; n/ entries if we always call
LCS-LENGTH with the shorter sequence as theY argument.

We can thus do away with thec table as follows:

� Use two arrays of length min.m; n/, pre�ious-row andcurrent-row, to hold the
appropriate rows ofc.

� Initialize pre�ious-row to all 0 and computecurrent-row from left to right.
� When current-row is filled, if there are still more rows to compute, copy

current-row into pre�ious-row and compute the newcurrent-row.

Actually only a little more than one row’s worth ofc entries—min.m; n/C 1 en-
tries—are needed during the computation. The only entries needed in the table
when it is time to computecŒi; j � arecŒi; k� for k � j � 1 (i.e., earlier entries in
the current row, which will be needed to compute the next row); andcŒi � 1; k� for
k � j � 1 (i.e., entries in the previous row that are still needed to compute the rest
of the current row). This is one entry for eachk from 1 to min.m; n/ except that
there are two entries withk D j �1, hence the additional entry needed besides the
one row’s worth of entries.

We can thus do away with thec table as follows:

� Use an arraya of length min.m; n/C 1 to hold the appropriate entries ofc. At
the timecŒi; j � is to be computed,a will hold the following entries:

� aŒk� D cŒi; k� for 1 � k < j � 1 (i.e., earlier entries in the current “row”),
� aŒk� D cŒi � 1; k� for k � j � 1 (i.e., entries in the previous “row”),

Solutions for Chapter 15: Dynamic Programming 15-29

� aŒ0� D cŒi; j � 1� (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededcŒi � 1; j � 1�).

� Initialize a to all 0 and compute the entries from left to right.

� Note that the 3 values needed to computecŒi; j � for j > 1 are inaŒ0� D
cŒi; j � 1�, aŒj � 1� D cŒi � 1; j � 1�, andaŒj � D cŒi � 1; j �.

� When cŒi; j � has been computed, moveaŒ0� (cŒi; j � 1�) to its “correct”
place,aŒj � 1�, and putcŒi; j � in aŒ0�.

Solution to Problem 15-1

We will make use of the optimal substructure property of longest paths inacyclic
graphs. Letu be some vertex of the graph. Ifu D t , then the longest path fromu
to t has zero weight. Ifu ¤ t , let p be a longest path fromu to t . Pathp has at
least two vertices. Let� be the second vertex on the path. Letp0 be the subpath
of p from � to t (p0 might be a zero-length path). That is, the pathp looks like

u! �
p0

; t .

We claim thatp0 is a longest path from� to t .

To prove the claim, we use a cut-and-paste argument. Ifp0 were not a longest
path, then there exists a longer pathp00 from � to t . We could cut outp0 and paste

in p00 to produce a pathu! �
p00

; t which is longer thanp, thus contradicting the
assumption thatp is a longest path fromu to t .

It is important to note that the graph isacyclic. Because the graph is acyclic,
pathp00 cannot include the vertexu, for otherwise there would be a cycle of the
form u! � ; u in the graph. Thus, we can indeed usep00 to construct a longer
path. The acyclicity requirement ensures that by pasting inpathp00, the overall
path is still asimplepath (there is no cycle in the path). This difference between
the cyclic and the acyclic case allows us to use dynamic programming to solve the
acyclic case.

LetdistŒu� denote the weight of a longest path fromu to t . The optimal substructure
property allows us to write a recurrence fordistŒu� as

distŒu� D
(

0 if u D t ;

max
.u;�/2E

˚

w.u; �/C distŒ��
	

otherwise:

This recurrence allows us to construct the following procedure:

15-30 Solutions for Chapter 15: Dynamic Programming

LONGEST-PATH-AUX .G; u; t; dist; next/

if u == t

distŒu� D 0

return .dist; next/
elseifnextŒu� � 0

return .dist; next/
elsenextŒu� D 0

for each vertex� 2 G:AdjŒu�

.dist; next/ D LONGEST-PATH-AUX .G; �; t; dist; next/
if w.u; �/C distŒ�� > distŒu�

distŒu� D w.u; �/C distŒ��

nextŒu� D �

return .dist; next/

(See Section 22.1 for an explanation of the notationG:AdjŒu�.)

LONGEST-PATH-AUX is a memoized, recursive procedure, which returns the tuple
.dist; next/. The arraydist is the memoized array that holds the solution to sub-
problems. That is, after the procedure returns,distŒu� will hold the weight of a
longest path fromu to t . The arraynextserves two purposes:

� It holds information necessary for printing out an actual path. Specifically, ifu
is a vertex on the longest path that the procedure found, thennextŒu� is the next
vertex on the path.

� The value innextŒu� is used to check whether the current subproblem has been
solved earlier. A value of at least zero indicates that this subproblem has been
solved earlier.

The first if condition checks for the base caseu D t . The secondif condition
checks whether the current subproblem has already been solved. Thefor loop
iterates over each adjacent edge.u; �/ and updates the longest distance indistŒu�.

What is the running time of LONGEST-PATH-AUX? Each subproblem represented
by a vertexu is solved at most once due to the memoization. For each vertex, we
examine its adjacent edges. Thus, each edge is examined at most once, and the
overall running time isO.E/. (Section 22.1 discusses how we achieveO.E/ time
by representing the graph with adjacency lists.)

The PRINT-PATH procedure prints out the path using information stored in thenext
array:

PRINT-PATH.s; t; next/

u D s

print u

while u ¤ t

print “!” next[u]
u D nextŒu�

The LONGEST-PATH-MAIN procedure is the main driver. It creates and initializes
thedist and thenextarrays. It then calls LONGEST-PATH-AUX to find a path and
PRINT-PATH to print out the actual path.

Solutions for Chapter 15: Dynamic Programming 15-31

LONGEST-PATH-MAIN .G; s; t/

n D jG:Vj
let distŒ1 : : n� andnextŒ1 : : n� be new arrays
for i D 1 to n

distŒi � D �1
nextŒi � D �1

.dist; next/ D LONGEST-PATH-AUX .G; s; t; dist; next/
if distŒs� == �1

print “No path exists”
elseprint “The weight of the longest path is ”distŒs�

PRINT-PATH.s; t; next/

Initializating thedist andnextarrays takesO.V / time. Thus the overall running
time of LONGEST-PATH-MAIN is O.V CE/.

Alternative solution

We can also solve the problem using a bottom-up aproach. To doso, we need
to ensure that we solve “smaller” subproblems before we solve “larger” ones. In
our case, we can use atopological sort(see Section 22.4) to obtain a bottom-up
procedure, imposing the required ordering on the vertices in ‚.V CE/ time.

LONGEST-PATH2.G; s; t/

let distŒ1 : : n� andnextŒ1 : : n� be new arrays
topologically sort the vertices ofG
for i D 1 to jG:Vj

distŒi � D �1
distŒs� D 0

for eachu in topological order, starting froms
for each edge.u; �/ 2 G:AdjŒu�

if distŒu�Cw.u; �/ > distŒ��

distŒ�� D distŒu�Cw.u; �/

nextŒu� D �

print “The longest distance is ”distŒt �
PRINT-PATH.s; t; next/

The running time of LONGEST-PATH2 is‚.V CE/.

Solution to Problem 15-2

We solve the longest palindrome subsequence (LPS) problem in a manner similar
to how we compute the longest common subsequence in Section 15.4.

Step 1: Characterizing a longest palindrome subsequence

The LPS problem has an optimal-substructure property, where the subproblems
correspond to pairs of indices, starting and ending, of the input sequence.

15-32 Solutions for Chapter 15: Dynamic Programming

For a sequenceX D hx1; x2; : : : ; xni, we denote the subsequence starting atxi and
ending atxj by Xij D hxi ; xiC1; : : : ; xj i.

Theorem (Optimal substructure of an LPS)
Let X D hx1; x2; : : : ; xni be the input sequence, and letZ D h´1; ´2; : : : ; ´mi be
any LPS ofX .

1. If n D 1, thenm D 1 and´1 D x1.

2. If n D 2 andx1 D x2, thenm D 2 and´1 D ´2 D x1 D x2.

3. If n D 2 andx1 ¤ x2, thenm D 1 and´1 is equal to eitherx1 or xn.

4. If n > 2 andx1 D xn, thenm > 2, ´1 D ´m D x1 D xn, andZ2;m�1 is an LPS
of X2;n�1.

5. If n > 2 andx1 ¤ xn, then´1 ¤ x1 implies thatZ1;m is an LPS ofX2;n.

6. If n > 2 andx1 ¤ xn, then´m ¤ xn implies thatZ1;m is an LPS ofX1;n�1.

Proof Properties (1), (2), and (3) follow trivially from the definition of LPS.

(4) If n > 2 andx1 D xn, then we can choosex1 andxn as the ends ofZ and
at least one more element ofX as part ofZ. Thus, it follows thatm > 2. If
´1 ¤ x1, then we could appendx1 D xn to the ends ofZ to obtain a palindrome
subsequence ofX with length m C 2, contradicting the supposition thatZ is a
longestpalindrome subsequence ofX . Thus, we must havé1 D x1 .D xn D ´m/.
Now, Z2;m�1 is a length-.m � 2/ palindrome subsequence ofX2;n�1. We wish to
show that it is an LPS. Suppose for the purpose of contradiction that there exists
a palindrome subsequenceW of X2;n�1 with length greater thanm � 2. Then,
appendingx1 D xn to the ends ofW produces a palindrome subsequence ofX

whose length is greater thanm, which is a contradiction.

(5) If ´1 ¤ x1, then Z is a palindrome subsequence ofX2;n. If there were a
palindrome subsequenceW of X2;n with length greater thanm, thenW would also
be a palindrome subsequence ofX , contradicting the assumption thatZ is an LPS
of X .

(6) The proof is symmetric to (2).

The way that the theorem characterizes longest palindrome subsequences tells us
that an LPS of a sequence contains within it an LPS of a subsequence of the se-
quence. Thus, the LPS problem has an optimal-substructure property.

Step 2: A recursive solution

The theorem implies that we should examine either one or two subproblems when
finding an LPS ofX D hx1; x2; : : : ; xni, depending on whetherx1 D xn.

Let us definepŒi; j � to be the length of an LPS of the subsequenceXij . If i D j ,
the LPS has length 1. Ifj D iC1, then the LPS has length either 1 or 2, depending
on whetherxi D xj . The optimal substructure of the LPS problem gives the
following recursive formula:

Solutions for Chapter 15: Dynamic Programming 15-33

pŒi; j � D

˚
1 if i D j ;

2 if j D i C 1 andxi D xj ;

1 if j D i C 1 andxi ¤ xj ;

pŒi C 1; j � 1�C 2 if j > i C 1 andxi D xj ;

max.pŒi; j � 1�; pŒi C 1; j �/ if j > i C 1 andxi ¤ xj :

Step 3: Computing the length of an LPS

Procedure LONGEST-PALINDROME takes a sequenceX D hx1; x2; : : : ; xni as
input. The procedure fills cellspŒi; i �, where1 � i � n, andpŒi; i C 1�, where
1 � i � n�1, as the base cases. It then starts filling cellspŒi; j �, wherej > i C 1.
The procedure fills thep table row by row, starting with rown� 2 and moving to-
ward row 1. (Rowsn� 1 andn are already filled as part of the base cases.) Within
each row, the procedure fills the entries from left to right. The procedure also main-
tains the tablebŒ1 : : n; 1 : : n� to help us construct an optimal solution. Intuitively,
bŒi; j � points to the table entry corresponding to the optimal subproblem solution
chosen when computingpŒi; j �. The procedure returns theb andp tables;pŒ1; n�

contains the length of an LPS ofX . The running time of LONGEST-PALINDROME

is clearly‚.n2/.

LONGEST-PALINDROME .X/

n D X: length
let bŒ1 : : n; 1 : : n� andpŒ0 : : n; 0 : : n� be new tables
for i D 1 to n � 1

pŒi; i � D 1

j D i C 1

if xi == xj

pŒi; j � D 2

bŒi; j � D “.”
elsepŒi; j � D 1

bŒi; j � D “#”
pŒn; n� D 1

for i D n � 2 downto 1

for j D i C 2 to n

if xi == xj

pŒi; j � D pŒi C 1; j � 1�C 2

bŒi; j � D “.”
elseifpŒi C 1; j � � pŒi; j � 1�

pŒi; j � D pŒi C 1; j �

bŒi; j � D “#”
elsepŒi; j � D pŒi; j � 1�

bŒi; j � D “ ”
return p andb

15-34 Solutions for Chapter 15: Dynamic Programming

Step 4: Constructing an LPS

Theb table returned by LONGEST-PALINDROME enables us to quickly construct
an LPS ofX D hx1; x2; : : : ; xmi. We simply begin atbŒ1; n� and trace through
the table by following the arrows. Whenever we encounter a “.” in entry bŒi; j �,
it implies thatxi D yj are the first and last elements of the LPS that LONGEST-
PALINDROME found. The following recursive procedure returns a sequence S that
contains an LPS ofX . The initial call is GENERATE-LPS.b; X; 1; X: length; hi/,
wherehi denotes an empty sequence. Within the procedure, the symboljj denotes
concatenation of a symbol and a sequence.

GENERATE-LPS.b; X; i; j; S/

if i > j

return S

elseif i == j

return S jj xi

elseifbŒi; j � == “.”
return xi jjGENERATE-LPS.b; X; i C 1; j � 1; S/ jj xi

elseifbŒi; j � == “#”
return GENERATE-LPS.b; X; i C 1; j; S/

else return GENERATE-LPS.b; X; i; j � 1; S/

Solution to Problem 15-3

Taking the book’s hint, we sort the points byx-coordinate, left to right, inO.n lg n/

time. Let the sorted points be, left to right,hp1; p2; p3; : : : ; pni. Therefore,p1 is
the leftmost point, andpn is the rightmost.

We define as our subproblems paths of the following form, which we call bitonic
paths. Abitonic path Pi;j , wherei � j , includes all pointsp1; p2; : : : ; pj ; it
starts at some pointpi , goes strictly left to pointp1, and then goes strictly right to
pointpj . By “going strictly left,” we mean that each point in the pathhas a lowerx-
coordinate than the previous point. Looked at another way, the indices of the sorted
points form a strictly decreasing sequence. Likewise, “going strictly right” means
that the indices of the sorted points form a strictly increasing sequence. Moreover,
Pi;j contains all the pointsp1; p2; p3; : : : ; pj . Note thatpj is the rightmost point
in Pi;j and is on the rightgoing subpath. The leftgoing subpath may be degenerate,
consisting of justp1.

Let us denote the euclidean distance between any two pointspi andpj by jpipj j.
And let us denote bybŒi; j �, for 1 � i � j � n, the length of the shortest bitonic
pathPi;j . Since the leftgoing subpath may be degenerate, we can easily compute
all valuesbŒ1; j �. The only value ofbŒi; i � that we will need isbŒn; n�, which is the
length of the shortest bitonic tour. We have the following formulation ofbŒi; j � for
1 � i � j � n:

bŒ1; 2� D jp1p2j ;

bŒi; j � D bŒi; j � 1�C jpj �1pj j for i < j � 1 ;

bŒj � 1; j � D min
1�k<j �1

fbŒk; j � 1�C jpkpj jg :

Solutions for Chapter 15: Dynamic Programming 15-35

Why are these formulas correct? Any bitonic path ending atp2 hasp2 as its right-
most point, so it consists only ofp1 andp2. Its length, therefore, isjp1p2j.
Now consider a shortest bitonic pathPi;j . The pointpj �1 is somewhere on this
path. If it is on the rightgoing subpath, then it immediatelypreceedspj on this
subpath. Otherwise, it is on the leftgoing subpath, and it must be the rightmost
point on this subpath, soi D j � 1. In the first case, the subpath frompi to pj �1

must be a shortest bitonic pathPi;j �1, for otherwise we could use a cut-and-paste
argument to come up with a shorter bitonic path thanPi;j . (This is part of our opti-
mal substructure.) The length ofPi;j , therefore, is given bybŒi; j � 1�C jpj �1pj j.
In the second case,pj has an immediate predecessorpk, wherek < j � 1, on
the rightgoing subpath. Optimal substructure again applies: the subpath frompk

to pj �1 must be a shortest bitonic pathPk;j �1, for otherwise we could use cut-and-
paste to come up with a shorter bitonic path thanPi;j . (We have implicitly relied
on paths having the same length regardless of which direction we traverse them.)
The length ofPi;j , therefore, is given by min1�k�j �1 fbŒk; j � 1�C jpkpj jg.
We need to computebŒn; n�. In an optimal bitonic tour, one of the points adjacent
to pn must bepn�1, and so we have

bŒn; n� D bŒn� 1; n�C jpn�1pnj :

To reconstruct the points on the shortest bitonic tour, we define rŒi; j � to be the
index of the immediate predecessor ofpj on the shortest bitonic pathPi;j . Because
the immediate predecessor ofp2 on P1;2 is p1, we know thatrŒ1; 2� must be1.
The pseudocode below shows how we computebŒi; j � andrŒi; j �. It fills in only
entriesbŒi; j � where1 � i � n � 1 andi C 1 � j � n, or wherei D j D n, and
only entriesrŒi; j � where1 � i � n � 2 andi C 2 � j � n.

EUCLIDEAN-TSP.p/

sort the points so thathp1; p2; p3; : : : ; pni are in order of increasingx-coordinate
let bŒ1 : : n; 2 : : n� andrŒ1 : : n � 2; 3 : : n� be new arrays
bŒ1; 2� D jp1p2j
for j D 3 to n

for i D 1 to j � 2

bŒi; j � D bŒi; j � 1�C jpj �1pj j
rŒi; j � D j � 1

bŒj � 1; j � D 1
for k D 1 to j � 2

q D bŒk; j � 1�C jpkpj j
if q < bŒj � 1; j �

bŒj � 1; j � D q

rŒj � 1; j � D k

bŒn; n� D bŒn � 1; n�C jpn�1pnj
return b andr

We print out the tour we found by starting atpn, then a leftgoing subpath that
includespn�1, from right to left, until we hitp1. Then we print right-to-left the re-
maining subpath, which does not includepn�1. For the example in Figure 15.11(b)
on page 405, we wish to print the sequencep7; p6; p4; p3; p1; p2; p5. Our code is
recursive. The right-to-left subpath is printed as we go deeper into the recursion,
and the left-to-right subpath is printed as we back out.

15-36 Solutions for Chapter 15: Dynamic Programming

PRINT-TOUR.r; n/

print pn

print pn�1

k D rŒn � 1; n�

PRINT-PATH(r; k; n � 1)
print pk

PRINT-PATH.r; i; j /

if i < j

k D rŒi; j �

if k ¤ i

print pk

if k > 1

PRINT-PATH(r; i; k)
elsek D rŒj; i �

if k > 1

PRINT-PATH(r; k; j)
print pk

The relative values of the parametersi andj in each call of PRINT-PATH indicate
which subpath we’re working on. Ifi < j , we’re on the right-to-left subpath, and
if i > j , we’re on the left-to-right subpath. The test fork ¤ i prevents us from
printing p1 an extra time, which could occur when we call PRINT-PATH.r; 1; 2/.

The time to run EUCLIDEAN-TSP isO.n2/ since the outer loop onj iteratesn�2

times and the inner loops oni andk each run at mostn� 2 times. The sorting step
at the beginning takesO.n lg n/ time, which the loop times dominate. The time to
run PRINT-TOUR is O.n/, since each point is printed just once.

Solution to Problem 15-4
This solution is also posted publicly

Note: We assume that no word is longer than will fit into a line,i.e., li � M for
all i .

First, we’ll make some definitions so that we can state the problem more uniformly.
Special cases about the last line and worries about whether asequence of words fits
in a line will be handled in these definitions, so that we can forget about them when
framing our overall strategy.

� DefineextrasŒi; j � D M � j C i �Pj

kDi lk to be the number of extra spaces
at the end of a line containing wordsi throughj . Note thatextrasmay be
negative.

� Now define the cost of including a line containing wordsi throughj in the sum
we want to minimize:

lcŒi; j � D

�
1 if extrasŒi; j � < 0 (i.e., wordsi; : : : ; j don’t fit) ;

0 if j D n andextrasŒi; j � � 0 (last line costs 0);

.extrasŒi; j �/3 otherwise:

Solutions for Chapter 15: Dynamic Programming 15-37

By making the line cost infinite when the words don’t fit on it, we prevent such
an arrangement from being part of a minimal sum, and by makingthe cost 0 for
the last line (if the words fit), we prevent the arrangement ofthe last line from
influencing the sum being minimized.

We want to minimize the sum oflc over all lines of the paragraph.

Our subproblems are how to optimally arrange words1; : : : ; j , where j D
1; : : : ; n.

Consider an optimal arrangement of words1; : : : ; j . Suppose we know that the
last line, which ends in wordj , begins with wordi . The preceding lines, therefore,
contain words1; : : : ; i � 1. In fact, they must contain an optimal arrangement of
words1; : : : ; i � 1. (The usual type of cut-and-paste argument applies.)

Let cŒj � be the cost of an optimal arrangement of words1; : : : ; j . If we know that
the last line contains wordsi; : : : ; j , thencŒj � D cŒi�1�C lcŒi; j �. As a base case,
when we’re computingcŒ1�, we needcŒ0�. If we setcŒ0� D 0, thencŒ1� D lcŒ1; 1�,
which is what we want.

But of course we have to figure out which word begins the last line for the sub-
problem of words1; : : : ; j . So we try all possibilities for wordi , and we pick the
one that gives the lowest cost. Here,i ranges from1 to j . Thus, we can definecŒj �

recursively by

cŒj � D
(

0 if j D 0 ;

min
1�i�j

.cŒi � 1�C lcŒi; j �/ if j > 0 :

Note that the way we definedlc ensures that

� all choices made will fit on the line (since an arrangement with lc D 1 cannot
be chosen as the minimum), and

� the cost of putting wordsi; : : : ; j on the last line will not be 0 unless this really
is the last line of the paragraph (j D n) or wordsi : : : j fill the entire line.

We can compute a table ofc values from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep a parallel p table that
points to where eachc value came from. WhencŒj � is computed, ifcŒj � is based
on the value ofcŒk � 1�, setpŒj � D k. Then aftercŒn� is computed, we can trace
the pointers to see where to break the lines. The last line starts at wordpŒn� and
goes through wordn. The previous line starts at wordpŒpŒn�� and goes through
wordpŒn�� 1, etc.

In pseudocode, here’s how we construct the tables:

15-38 Solutions for Chapter 15: Dynamic Programming

PRINT-NEATLY .l; n; M /

let extrasŒ1 : : n; 1 : : n�, lcŒ1 : : n; 1 : : n�, andcŒ0 : : n� be new arrays
// ComputeextrasŒi; j � for 1 � i � j � n.
for i D 1 to n

extrasŒi; i � D M � li

for j D i C 1 to n

extrasŒi; j � D extrasŒi; j � 1� � lj � 1

// ComputelcŒi; j � for 1 � i � j � n.
for i D 1 to n

for j D i to n

if extrasŒi; j � < 0

lcŒi; j � D 1
elseifj == n andextrasŒi; j � � 0

lcŒi; j � D 0

elselcŒi; j � D .extrasŒi; j �/3

// ComputecŒj � andpŒj � for 1 � j � n.
cŒ0� D 0

for j D 1 to n

cŒj � D 1
for i D 1 to j

if cŒi � 1�C lcŒi; j � < cŒj �

cŒj � D cŒi � 1�C lcŒi; j �

pŒj � D i

return c andp

Quite clearly, both the time and space are‚.n2/.

In fact, we can do a bit better: we can get both the time and space down to‚.nM /.
The key observation is that at mostdM=2e words can fit on a line. (Each word is
at least one character long, and there’s a space between words.) Since a line with
words i; : : : ; j containsj � i C 1 words, if j � i C 1 > dM=2e then we know
that lcŒi; j � D 1. We need only compute and storeextrasŒi; j � and lcŒi; j � for
j � i C 1 � dM=2e. And the innerfor loop header in the computation ofcŒj �

andpŒj � can run from max.1; j � dM=2e C 1/ to j .

We can reduce the space even further to‚.n/. We do so by not storing thelc
andextrastables, and instead computing the value oflcŒi; j � as needed in the last
loop. The idea is that we could computelcŒi; j � in O.1/ time if we knew the
value ofextrasŒi; j �. And if we scan for the minimum value indescendingorder
of i , we can compute that asextrasŒi; j � D extrasŒi C 1; j � � li � 1. (Initially,
extrasŒj; j � D M � lj .) This improvement reduces the space to‚.n/, since now
the only tables we store arec andp.

Here’s how we print which words are on which line. The printedoutput of
GIVE-L INES.p; j / is a sequence of triples.k; i; j /, indicating that wordsi; : : : ; j

are printed on linek. The return value is the line numberk.

Solutions for Chapter 15: Dynamic Programming 15-39

GIVE-L INES.p; j /

i D pŒj �

if i == 1

k D 1

elsek D GIVE-L INES.p; i � 1/C 1

print .k; i; j /

return k

The initial call is GIVE-L INES.p; n/. Since the value ofj decreases in each recur-
sive call, GIVE-L INES takes a total ofO.n/ time.

Solution to Problem 15-5

a. Dynamic programming is the ticket. This problem is slightlysimilar to the
longest-common-subsequence problem. In fact, we’ll definethe notational con-
veniencesXi and Yj in the similar manner as we did for the LCS problem:
Xi D xŒ1 : : i � andYj D yŒ1 : : j �.

Our subproblems will be determining an optimal sequence of operations that
convertsXi to Yj , for 0 � i � m and0 � j � n. We’ll call this the “Xi ! Yj

problem.” The original problem is theXm ! Yn problem.

Let’s suppose for the moment that we know what was the last operation used to
convertXi to Yj . There are six possibilities. We denote bycŒi; j � the cost of an
optimal solution to theXi ! Yj problem.

� If the last operation was a copy, then we must have hadxŒi � D yŒj �. The sub-
problem that remains is convertingXi�1 to Yj �1. And an optimal solution to
theXi ! Yj problem must include an optimal solution to theXi�1 ! Yj �1

problem. The cut-and-paste argument applies. Thus, assuming that the last
operation was a copy, we havecŒi; j � D cŒi � 1; j � 1�C cost.copy/.

� If it was a replace, then we must have hadxŒi � ¤ yŒj �. (Here, we assume
that we cannot replace a character with itself. It is a straightforward mod-
ification if we allow replacement of a character with itself.) We have the
same optimal substructure argument as for copy, and assuming that the last
operation was a replace, we havecŒi; j � D cŒi � 1; j � 1�C cost.replace/.

� If it was a twiddle, then we must have had bothxŒi � D yŒj � 1� and
xŒi � 1� D yŒj �, along with the implicit assumption thati; j � 2. Now
our subproblem isXi�2 ! Yj �2 and, assuming that the last operation was a
twiddle, we havecŒi; j � D cŒi � 2; j � 2�C cost.twiddle/.

� If it was a delete, then we have no restrictions onx or y. Since we can view
delete as removing a character fromXi and leavingYj alone, our subprob-
lem isXi�1 ! Yj . Assuming that the last operation was a delete, we have
cŒi; j � D cŒi � 1; j �C cost.delete/.

� If it was an insert, then we have no restrictions onx or y. Our subproblem
is Xi ! Yj �1. Assuming that the last operation was an insert, we have
cŒi; j � D cŒi; j � 1�C cost.insert/.

15-40 Solutions for Chapter 15: Dynamic Programming

� If it was a kill, then we had to have completed convertingXm to Yn, so that
the current problem must be theXm ! Yn problem. In other words, we must
havei D m andj D n. If we think of a kill as a multiple delete, we can get
any Xi ! Yn, where0 � i < m, as a subproblem. We pick the best one,
and so assuming that the last operation was a kill, we have

cŒm; n� D min
0�i<m

fcŒi; n�g C cost.kill / :

We have not handled the base cases, in whichi D 0 or j D 0. These are
easy.X0 andY0 are the empty strings. We convert an empty string intoYj by
a sequence ofj inserts, so thatcŒ0; j � D j � cost.insert/. Similarly, we convert
Xi into Y0 by a sequence ofi deletes, so thatcŒi; 0� D i � cost.delete/. When
i D j D 0, either formula gives uscŒ0; 0� D 0, which makes sense, since
there’s no cost to convert the empty string to the empty string.

For i; j > 0, our recursive formulation forcŒi; j � applies the above formulas in
the situations in which they hold:

cŒi; j � D min

†
cŒi � 1; j � 1�C cost.copy/ if xŒi � D yŒj � ;

cŒi � 1; j � 1�C cost.replace/ if xŒi � ¤ yŒj � ;

cŒi � 2; j � 2�C cost.twiddle/ if i; j � 2;

xŒi � D yŒj � 1�;

andxŒi � 1� D yŒj � ;

cŒi � 1; j �C cost.delete/ always;

cŒi; j � D cŒi; j � 1�C cost.insert/ always;

min
0�i<m

fcŒi; n�g C cost.kill / if i D m andj D n :

Like we did for LCS, our pseudocode fills in the table in row-major order, i.e.,
row-by-row from top to bottom, and left to right within each row. Column-
major order (column-by-column from left to right, and top tobottom within
each column) would also work. Along with thecŒi; j � table, we fill in the table
opŒi; j �, holding which operation was used.

Solutions for Chapter 15: Dynamic Programming 15-41

EDIT-DISTANCE.x; y; m; n/

let cŒ0 : : m; 0 : : n� andopŒ0 : : m; 0 : : n� be new arrays
for i D 0 to m

cŒi; 0� D i � cost.delete/
opŒi; 0� D DELETE

for j D 0 to n

cŒ0; j � D j � cost.insert/
opŒ0; j � D INSERT

for i D 1 to m

for j D 1 to n

cŒi; j � D 1
if xŒi � == yŒj �

cŒi; j � D cŒi � 1; j � 1�C cost.copy/
opŒi; j � D COPY

if xŒi � ¤ yŒj � andcŒi � 1; j � 1�C cost.replace/ < cŒi; j �

cŒi; j � D cŒi � 1; j � 1�C cost.replace/
opŒi; j � D REPLACE(by yŒj �)

if i � 2 andj � 2 andxŒi � == yŒj � 1� and
xŒi � 1� == yŒj � and
cŒi � 2; j � 2�C cost.twiddle/ < cŒi; j �

cŒi; j � D cŒi � 2; j � 2�C cost.twiddle/

opŒi; j � D TWIDDLE

if cŒi � 1; j �C cost.delete/ < cŒi; j �

cŒi; j � D cŒi � 1; j �C cost.delete/
opŒi; j � D DELETE

if cŒi; j � 1�C cost.insert/ < cŒi; j �

cŒi; j � D cŒi; j � 1�C cost.insert/
opŒi; j � D INSERT(yŒj �)

for i D 0 to m � 1

if cŒi; n�C cost.kill / < cŒm; n�

cŒm; n� D cŒi; n�C cost.kill /
opŒm; n� D KILL i

return c andop

The time and space are both‚.mn/. If we store aKILL operation inopŒm; n�,
we also include the indexi after which we killed, to help us reconstruct the
optimal sequence of operations. (We don’t need to storeyŒi � in theop table for
replace or insert operations.)

To reconstruct this sequence, we use theop table returned by EDIT-DISTANCE.
The procedure OP-SEQUENCE.op; i; j / reconstructs the optimal operation se-
quence that we found to transformXi into Yj . The base case is when
i D j D 0. The first call is OP-SEQUENCE.op; m; n/.

15-42 Solutions for Chapter 15: Dynamic Programming

OP-SEQUENCE.op; i; j /

if i == 0 andj D 0

return
if opŒi; j � == COPY or opŒi; j � D REPLACE

i 0 D i � 1

j 0 D j � 1

elseifopŒi; j � == TWIDDLE

i 0 D i � 2

j 0 D j � 2

elseifopŒi; j � == DELETE

i 0 D i � 1

j 0 D j

elseifopŒi; j � == INSERT // don’t care yet what character is inserted
i 0 D i

j 0 D j � 1

else // must beKILL , and must havei D m andj D n

let opŒi; j � == KILL k

i 0 D k

j 0 D j

OP-SEQUENCE.op; i 0; j 0/
print opŒi; j �

This procedure determines which subproblem we used, recurses on it, and then
prints its own last operation.

b. The DNA-alignment problem is just the edit-distance problem, with

cost.copy/ D �1 ;

cost.replace/ D C1 ;

cost.delete/ D C2 ;

cost.insert/ D C2 ;

and the twiddle and kill operations are not permitted.

The score that we are trying to maximize in the DNA-alignmentproblem is
precisely the negative of the cost we are trying to minimize in the edit-distance
problem. The negative cost of copy is not an impediment, since we can only
apply the copy operation when the characters are equal.

Solution to Problem 15-8

a. Let us set up a recurrence for the number of valid seams as a function of m.
Suppose we are in the process of carving out a seam row by row, starting from
the first row. Let the last pixel carved out beAŒi; j �. How many choices do we
have for the pixel in rowiC1 such that the pixel continues the seam? If the last
pixel AŒi; j � were on the column boundary (i D 1 or i D n), then there would
be two choices for the next pixel. For example, wheni D 1, the two choices
for the next pixel areAŒi C 1; j � andAŒi C 1; j C 1�. Otherwise, there would

Solutions for Chapter 15: Dynamic Programming 15-43

be three choices for the next pixel:AŒiC 1; j � 1�; AŒi C 1; j �; AŒi C 1; j C 1�.
Thus, for a general pixelAŒi; j �, there are at least two possible choices for a
pixel p in the next row such thatp continues a seam ending inAŒi; j �. LetT .i/

denote the number of possible seams from row 1 to rowi . Then, fori D 1, we
haveT .i/ D n, and fori > 1,

T .i/ � 2T .i � 1/ :

It is easy to guess thatT .i/ � n2i�1, which we verify by direct substitution.
For i D 1, we haveT .1/ D n � n � 20. For i > 1, we have

T .i/ � 2T .i � 1/

� 2 � n2i�2

D n2i�1 :

Thus, the total numberT .m/ of seams is at leastn2m�1. We conclude that the
number of seams grows at least exponentially inm.

b. As proved in the previous part, it is infeasible to systematically check every
seam, since the number of possible seams grows exponentially.

The structure of the problem allows us to build the solution row by row. Con-
sider a pixelAŒi; j �. We ask the question: “Ifi were the first row of the
picture, what is the minimum disruptive measure of seams that start with the
pixel AŒi; j �?”

Let S� be a seam of minimum disruptive measure among all seams that start
with pixel AŒi; j �. Let AŒi C 1; p�, wherep 2 fj � 1; j; j C 1g, be the pixel
of S� in the next row. LetS 0 be the sub-seam ofS� that starts withAŒi C 1; p�.
We claim thatS 0 has the minimum disruptive measure among seams that start
with AŒi C 1; p�. Why? Suppose there exists another seamS 00 that starts
with AŒiC1; p� and has disruptive measure less than that ofS 0. By usingS 00 as
the sub-seam instead ofS 0, we can obtain another seam that starts withAŒi; j �

and has a disruptive measure which is less than that ofS�. Thus, we obtain a
contradiction to our assumption thatS� is a seam of minimum disruptive mea-
sure.

Let disrŒi; j � be the value of the minimum disruptive measure among all seams
that start with pixelAŒi; j �. For rowm, the seam with the minimum disruptive
measure consists of just one point. We can now state a recurrence fordisrŒi; j �

as follows. In the base case,disrŒm; j � D dŒm; j � for j D 1; 2; : : : ; n. In the
recursive case, forj D 1; 2; : : : ; n,

disrŒi; j � D dŒi; j �Cmin
k2K
fdisrŒi C i; j C k�g ;

where the setK of index offsets is

K D

�
f0; 1g if j D 1 ;

f�1; 0; 1g if 1 < j < m ;

f�1; 0g if j D n :

Since every seam has to start with a pixel of the first row, we simply find the
minimumdisrŒ1; j � for pixels in the first row to obtain the minimum disruptive
measure.

15-44 Solutions for Chapter 15: Dynamic Programming

COMPRESS-IMAGE.d/

m D d:rows
n D d:columns
let disrŒ1 : : m; 1 : : n� andnextŒ1 : : m; 1 : : n� be new tables
for j D 1 to n

disrŒm; j � D dŒm; j �

for i D m � 1 downto 1

for j D 1 to n

low D max.�1; 1 � j /

high D min.1; n � j /

disrŒi; j � D 1
for k D low to high

if disrŒi C 1; j C k� < disrŒi; j �

disrŒi; j � D disrŒi C 1; j C k�

nextŒi; j � D j C k

disrŒi; j � D disrŒi; j �C dŒi; j �

�al D 1
start D 1

for j D 1 to n

if disrŒ1; j � < �al
�al D disrŒ1; j �

start D j

print “The minimum value of the disruptive measure is ”�al
for i D 1 to m

print “cut point at ”.i; start/
start D nextŒi; start�

The procedure COMPRESS-IMAGE is simply an implementation of this recur-
rence in a bottom-up fashion.

We first carry out the initialization of the base cases, whichare the cases when
row i D m. The minimum disruptive measure for the base cases is sim-
ply dŒm; j �.

The nextfor loop runs down fromm � 1 to 1. Thus,disrŒi C 1; j � is already
available before computingdisrŒi; j � for pixels of rowi .

The assignments tolow and high allow the index offsetk to range over the
correct setK from above. We setlow to 0 whenj D 1 and to�1 whenj > 1,
and we sethigh to 0 whenj D n and to1 whenj < n. The innermostfor loop
setsdisrŒi; j � to the minimum value ofdisrŒi C 1; j C k� for all k 2 K, and the
line that follows this loop adds indŒi; j �.

We use thenexttable to reconstruct the actual seam. For a given pixel, it records
which pixel was used as the next pixel. Specifically, for a pixel AŒi; j �, if
nextŒi; j � D p, wherep 2 fj � 1; j; j C 1g, then the next pixel of the seam
is AŒi C 1; p�.

The last line of thefor loop adds the disruptive measure of the current pixel to
the disruptive measure of the seam.

The nextfor loop finds the minimum disruptive measure of pixels in the first
row. We print the minimum disruptive measure as the answer.

Solutions for Chapter 15: Dynamic Programming 15-45

The rest of the code reconstructs the actual seam, using the information stored
in thenextarray.

Noting that the innermostfor loop runs over at most three values ofk, we see
that the running time of COMPRESS-IMAGE is O.mn/. The space requirement
is alsoO.mn/. We can improve upon the space requirement by observing that
row i of the disr table depends on only rowi C 1. Therefore, we can store
just two rows at any time. Thus, we can improve the space requirement of
COMPRESS-IMAGE to O.n/.

Solution to Problem 15-9

Our first step will be to identify the subproblems that satisfy the optimal-
substructure property. Before we frame the subproblem, we make two simplifying
modifications to the input:

� We sortL so that the indices inL are in ascending order.
� We prepend the index0 to the beginning ofL and appendn to the end ofL.

Let LŒi : : j � denote a subarray ofL that starts from indexi and ends at indexj .
Define the subproblem denoted by.i; j / as “What is the cheapest sequence of
breaks to break the substringSŒLŒi � C 1 : : LŒj � �?” Note that the first and last
elements of the subarrayLŒi : : j � define the ends of the substring, and we have to
worry about only the indices of the subarrayLŒi C 1 : : j � 1�.

For example, letL D h20; 17; 14; 11; 25i andn D 30. First, we sortL. Then, we
prepend0 and appendn as explained to getL D h0; 11; 14; 17; 20; 25; 30i. Now,
what is the subproblem.2; 6/? We obtain a substring by breakingS after character
LŒ2� D 11 and characterLŒ6� D 25. We ask “What is the cheapest sequence of
breaks to break the substringSŒ12 : : 25�?” We have to worry about only indices in
the subarrayLŒ3 : : 5� D h14; 17; 20i, since the other indices are not present in the
substring.

At this point, the problem looks similar to matrix-chain multiplication (see Sec-
tion 15.2). We can make the first break at any element ofLŒi C 1 : : j � 1�.

Suppose that an optimal sequence of breaks� for subproblem.i; j / makes the first
break atLŒk�, wherei < k < j . This break gives rise to two subproblems:

� The “prefix” subproblem.i; k/, covering the subarrayLŒi C 1 : : k � 1�,
� The “suffix” subproblem.k; j /, covering the subarrayLŒk C 1 : : j � 1�.

The overall cost can be expressed as the sum of the length of the substring, the
prefix cost, and the suffix cost.

We show optimal substructure by claiming that the sequence of breaks in� for the
prefix subproblem.i; k/ must be an optimal one. Why? If there were a less costly
way to break the substringSŒLŒi �C1 : : LŒk� � represented by the subproblem.i; k/,
then substituting that sequence of breaks in� would produce another sequence of
breaks whose cost is lower than that of� , which would be a contradiction. A sim-
ilar observation holds for the sequence of breaks for the suffix subproblem.k; j /:
it must be an optimal sequence of breaks.

15-46 Solutions for Chapter 15: Dynamic Programming

Let costŒi; j � denote the cost of the cheapest solution to subproblem.i; j /. We
write the recurrence relation forcostas

costŒi; j � D

˚
0 if j � i � 1 ;

min
i<k<j

n

costŒi; k�C costŒk; j �C .LŒj � � LŒi�/
o

if j � i > 1 :

Thus, our approach to solving the subproblem.i; j / will be to try to split the re-
spective substring at all possible values ofk and then choosing a break that results
in the minimum cost. We need to be careful to solve smaller subproblems before
we solve larger subproblems. In particular, we solve subproblems in increasing
order of the lengthj � i .

BREAK-STRING.n; L/

prepend0 to the start ofL and appendn to the end ofL
m D L: length
sortL into increasing order
let costŒ1 : : m; 1 : : m� andbreakŒ1 : : m; 1 : : m� be new tables
for i D 1 to m � 1

costŒi; i � D costŒi; i C 1� D 0

costŒm; m� D 0

for len D 3 to m

for i D 1 to m � lenC 1

j D i C len� 1

costŒi; j � D 1
for k D i C 1 to j � 1

if costŒi; k�C costŒk; j � < costŒi; j �

costŒi; j � D costŒi; k�C costŒk; j �

breakŒi; j � D k

costŒi; j � D costŒi; j �C LŒj � � LŒi�

print “The minimum cost of breaking the string is ”costŒ1; m�

PRINT-BREAKS.L; break; 1; m/

After sortingL, we initialize the base cases, in whichi D j or j D i C 1.

The nestedfor loops represent the main computation. The outermostfor loop runs
for lenD 3 to m, which means that we need to consider subarrays ofL with length
at least3, since the first and the last element define the substring, andwe need at
least one more element to specify a break. The increasing values oflenalso ensures
that we solve subproblems with smaller length before we solve subproblems with
greater length.

The innerfor loop oni runs from1 to m� lenC1. The upper bound ofm� lenC1

is the largest value that the start indexi can take such thati C len� 1 � m.

In the innermostfor loop, we try each possible locationk as the place to make the
first break for subproblem.i; j /. The first such place isLŒiC1�, and notLŒi�, since
LŒi� represents the start of the substring (and thus not a valid place for a break).
Similarly, the last valid place isLŒj � 1�, becauseLŒj � represents the end of the
substring.

The if condition tests whetherk is the best place for a break found so far, and
it updates the best value incostŒi; j � if so. We usebreakŒi; j � to record that the

Solutions for Chapter 15: Dynamic Programming 15-47

best place for the first break isk. Specifically, ifbreakŒi; j � D k, then an optimal
sequence of breaks for.i; j / makes the first break atLŒk�.

Finally, we add the length of the substringLŒj � � LŒi� to costŒi; j � because, irre-
spective of what we choose as the first break, it costs us a price equal to the length
of the substring to make a break.

The lowest cost for the original problem ends up incostŒ1; m�. By our initialization,
LŒ1� D 0 andLŒm� D n. Thus,costŒ1; m� will hold the optimum price of cutting
the substring fromLŒ1�C 1 D 1 to LŒm� D n, which is the entire string.

The running time is‚.m3/, and it is dictated by the three nestedfor loops. They
fill in the entries above the main diagonal of the two tables, except for entries in
which j D i C 1. That is, they fill in rowsi D 1; 2; : : : ; m � 2, entriesj D
i C 2; i C 3; : : : ; m. When filling in entryŒi; j �, we check values ofk running
from i C 1 to j � 1, or j � i � 1 entries. Thus, the total number of iterations of the
innermostfor loop is
m�2
X

iD1

m
X

j DiC2

.j � i � 1/ D
m�2
X

iD1

m�i�1
X

dD1

d (d D j � i � 1)

D
m�2
X

iD1

‚..m � i/2/ (equation (A.2))

D
m�1
X

hD2

‚.h2/ (h D m � i)

D ‚.m3/ (equation (A.3)) .
Since each iteration of the innermostfor loop takes constant time, the total running
time is‚.m3/. Note in particular that the running time is independent of the length
of the stringn.

PRINT-BREAKS.L; break; i; j /

if j � i � 2

k D breakŒi; j �

print “Break at ”LŒk�

PRINT-BREAKS.L; break; i; k/

PRINT-BREAKS.L; break; k; j /

PRINT-BREAKS uses the information stored inbreak to print out the actual se-
quence of breaks.

Solution to Problem 15-11

We state the subproblem.k; s/ as “What is the cheapest way to satisfy all the de-
mands of monthsk; : : : ; n when we start with a surplus ofs before thekth month?”
A plan for the subproblem.k; s/ would specify the number of machines to manu-
facture for each monthk; : : : ; n such that demands are satisfied.

In some optimal planP to .k; s/, let f � machines be maufactured in monthk.
Thus, the surpluss0 in monthk C 1 is s C f � � dk. Let P 0 be the part of the

15-48 Solutions for Chapter 15: Dynamic Programming

plan P for monthsk C 1; : : : ; n. We claim thatP 0 is an optimal plan for the
subproblem.k C 1; s0/. Why? SupposeP 0 were not an optimal plan and letP 00

be an optimal plan for.k C 1; s0/. If we modify planP by cutting outP 0 and
pasting inP 00 (i.e., by using planP 00 for monthsk C 1; : : : ; n), we obtain another
plan for .k; s/ which is cheaper than planP . Thus, we obtain a contradiction to
the assumption that planP was optimal.

Let costŒk; s� denote the cost of an optimal plan for.k; s/, and letf denote the
number of machines that can be manufactured in monthk. The bounds forf are
as follows:

� At least the number of machines so that (along with surpluss) there are enough
machines to satisfy the current month’s demand. Let us denote this lower bound
by L.k; s/. We have

L.k; s/ D max.dk � s; 0/ :

� At most the number of machines such that there are enough machines to sat-
isfy the demands of all the following months. Let us denote this upper bound
by U.k; s/. We have

U.k; s/ D

n
X

iDk

di

!

� s :

For the last month, we need only manufacture the minimum required number of
machines, given byL.n; s/. For other months, we examine the costs of manufac-
turing all feasible numbers of machines and see which choicegives us the cheapest
plan. We can now write the recurrence forcostas the following:

costŒk; s� D

‚
c �max.L.n; s/ �m; 0/

C h.s C L.n; s/ � dn/ if k D n ;

min
L.k;s/�f �U.k;s/

n

costŒk C 1; s C f � dk �

C c �max.f �m; 0/

C h.s C f � dk/
o

if 0 < k < n :

The recurrence suggests how to build an optimal plan in a bottom-up fashion. We
now present the algorithm for constructing an optimal plan.

Solutions for Chapter 15: Dynamic Programming 15-49

INVENTORY-PLANNING .n; m; c; D; d; h/

let costŒ1 : : n; 0 : : D� andmakeŒ1 : : n; 0 : : D� be new tables
// ComputecostŒn; 0 : : D� andmakeŒn; 0 : : D�.
for s D 0 to D

f D max.dn � s; 0/

costŒn; s� D c �max.f �m; 0/C h.s C f � dn/

makeŒn; s� D f

// ComputecostŒ1 : : n � 1; 0 : : D� andmakeŒ1 : : n � 1; 0 : : D�.
U D dn

for k D n � 1 downto 1
U D U C dk

for s D 0 to D

costŒk; s� D 1
for f D max.dk � s; 0/ to U � s

�al D costŒk C 1; s C f � dk�

C c �max.f �m; 0/C h.s C f � dk/

if �al < costŒk; s�

costŒk; s� D �al
makeŒk; s� D f

print cost[1,0]
PRINT-PLAN .make; n; d/

PRINT-PLAN .make; n; d/

s D 0

for k D 1 to n

print “For month ”k “ manufacture ”makeŒk; s� “ machines”
s D s CmakeŒk; s� � dk

In INVENTORY-PLANNING , we build the solution month by month, starting from
monthn, moving backward toward month1. First, we solve the subproblem for the
last month, for all surpluses. Then, for each month and for each surplus entering
that month, we calculate the cheapest way to satisfy demand for that month based
on the solved subproblems of the next month.

� f is the number of machines that we try to manufacture in monthk.
� costŒk; s� holds the cheapest way to satisfy demands of monthsk; : : : ; n, with a

net surplus ofs left over at the beginning of monthk.
� makeŒk; s� holds the number of machines to manufacture in monthk and the

surpluss of an optimal plan. We will use this table to reconstruct the optimal
plan.

We first initialize the base cases, which are the cases for month n starting with
surpluss, for s D 0; : : : ; D. If dn > s, it suffices to manufacturedn � s ma-
chines, since we need not keep any surplus after monthn. If dn � s, we need not
manufacture any machines at all.

We then calculate the total cost for monthn as the sum of hiring extra labor
c �max.f �m; 0/ and the inventory costs for leftover surplush.sCf �dn/, which
can be nonzero if we had started out with a large surplus.

15-50 Solutions for Chapter 15: Dynamic Programming

The outerfor loop of the next block of code runs down from monthn�1 to 1, thus
ensuring that when we consider monthk, we have already solved the subproblems
of monthk C 1.

The next innerfor loop iterates through all possible values off as described.

For every choice off for a given monthk, the total cost of.k; s/ is given by the
cost of extra labor (if any) plus the cost of inventory (if there is a surplus) plus the
cost of the subproblem.k C 1; s C f � dk/. This value is checked and updated.

Finally, the required answer is the answer to the subproblem.1; 0/, which ap-
pears incostŒ1; 0�. That is, it is the cheapest way to satisfy all the demands of
months1; : : : ; n when we start with a surplus of0.

The running time of INVENTORY-PLANNING is clearly O.nD2/. The space re-
quirement isO.nD/. We can improve upon the space requirement by noting that
we need only store the solution to subproblems of the next month. With this obser-
vation, we can construct an algorithm that usesO.nCD/ space.

Solution to Problem 15-12

Let p:cost denote the cost andp:�orp denote the VORP of playerp. We shall
assume that all dollar amounts are expressed in units of $100,000.

Since the order of choosing players for the positions does not matter, we may
assume that we make our decisions starting from position 1, moving toward posi-
tion N . For each position, we decide to either sign one player or sign no players.
Suppose we decide to sign playerp, who plays position 1. Then, we are left with
an amount ofX � p:costdollars to sign players at positions2; : : : ; N . This obser-
vation guides us in how to frame the subproblems.

We define the cost and VORP of asetof players as the sum of costs and the sum
of VORPs of all players in that set. Let.i; x/ denote the following subproblem:
“Suppose we consider only positionsi; i C 1; : : : ; N and we can spend at mostx

dollars. What set of players (with at most one player for eachposition under con-
sideration) has the maximum VORP?” Avalid set of players for.i; x/ is one in
which each player in the set plays one of the positionsi; iC1; : : : ; n, each position
has at most one player, and the cost of the players in the set isat mostx dollars.
An optimal set of players for.i; x/ is a valid set with the maximum VORP. We
now show that the problem exhibits optimal substructure.

Theorem (Optimal substructure of the VORP maximization problem)
Let L D fp1; p2; : : : ; pkg be a set of players, possibly empty, with maximum
VORP for the subproblem.i; x/.

1. If i D N , thenL has at most one player. If all players in positionN have cost
more thanx, thenL has no players. Otherwise,L D fp1g, wherep1 has the
maximum VORP among players for positionN with cost at mostx.

2. If i < N andL includes playerp for position i , thenL0 D L � fpg is an
optimal set for the subproblem.i C 1; x � p:cost/.

3. If i < N andL does not include a player for positioni , thenL is an optimal
set for the subproblem.i C 1; x/.

Solutions for Chapter 15: Dynamic Programming 15-51

Proof Property (1) follows trivially from the problem statement.

(2) Suppose thatL0 is not an optimal set for the subproblem.i C 1; x � p:cost/.
Then, there exists another valid setL00 for .i C 1; x � p:cost/ that has VORP
more thanL0. Let L000 D L00 [fpg. The cost ofL000 is at mostx, sinceL00 has a
cost at mostx � p:cost. Moreover,L000 has at most one player for each position
i; i C 1; : : : ; N . Thus,L000 is a valid set for.i; x/. But L000 has VORP more thanL,
thus contradicting the assumption thatL had the maximum VORP for.i; x/.

(3) Clearly, any valid set for.i C 1; x/ is also a valid set for.i; x/. If L were not
an optimal set for.i C 1; x/, then there exists another valid setL0 for .i C 1; x/

with VORP more thanL. The setL0 would also be a valid set for.i; x/, which
contradicts the assumption thatL had the maximum VORP for.i; x/.

The theorem suggests that wheni < N , we examine two subproblems and choose
the better of the two. Let�Œi; x� denote the maximum VORP for.i; x/. Let S.i; x/

be the set of players who play positioni and cost at mostx. In the following
recurrence for�Œi; x�, we assume that the max function returns�1 when invoked
over an empty set:

�Œi; x� D

˚
max

p2S.N;x/

˚

p:�orp
	

if i D N ;

max

�

�Œi C 1; x�;

max
p2S.i;x/

˚

p:�orpC �Œi C 1; x � p:cost�
	
�

if i < N :

This recurrence lends itself to implementation in a straightforward way. Letpij

denote thej th player who plays positioni .

15-52 Solutions for Chapter 15: Dynamic Programming

FREE-AGENT-VORP.p; N; P; X/

let �Œ1 : : N �Œ0 : : X� andwhoŒ1 : : N �Œ0 : : X� be new tables
for x D 0 to X

�ŒN; x� D �1
whoŒN; x� D 0

for k D 1 to P

if pN k:cost� x andpN k:�orp > �ŒN; x�

�ŒN; x� D pN k:�orp
whoŒN; x� D k

for i D N � 1 downto 1

for x D 0 to X

�Œi; x� D �Œi C 1; x�

whoŒi; x� D 0

for k D 1 to P

if pik:cost� x and�Œi C 1; x � pik:cost�C pik:�orp > �Œi; x�

�Œi; x� D �Œi C 1; x � pik:cost�C pik:�orp
whoŒi; x� D k

print “The maximum value of VORP is ”�Œ1; X�

amtD X

for i D 1 to N

k D whoŒi; amt�
if k ¤ 0

print “sign player ”pik

amtD amt� pik:cost
print “The total money spent is ”X � amt

The input to FREE-AGENT-VORP is the list of playersp andN , P , andX , as
given in the problem. The table�Œi; x� holds the maximum VORP for the sub-
problem.i; x/. The tablewhoŒi; x� holds information necessary to reconstruct the
actual solution. Specifically,whoŒi; x� holds the index of player to sign for posi-
tion i , or 0 if no player should be signed for positioni . The first set of nestedfor
loops initializes the base cases, in whichi D N . For every amountx, the inner
loop simply picks the player with the highest VORP who plays position N and
whose cost is at mostx.

The next set of three nestedfor loops represents the main computation. The outer-
mostfor loop runs down from positionN � 1 to 1. This order ensures that smaller
subproblems are solved before larger ones. We initialize�Œi; x� as�ŒiC1; x�. This
way, we already take care of the case in which we decide not to sign any player
who plays positioni . The innermostfor loop tries to sign each player (if we have
enough money) in turn, and it keeps track of the maximum VORP possible.

The maximum VORP for the entire problem ends up in�Œ1; X�. The finalfor loop
uses the information inwho table to print out which players to sign. The running
time of FREE-AGENT-VORP is clearly‚.NPX/, and it uses‚.NX/ space.

Lecture Notes for Chapter 16:
Greedy Algorithms

Chapter 16 Introduction

Similar to dynamic programming.

Used for optimization problems.

Idea

When we have a choice to make, make the one that looks bestright now. Make a
locally optimal choicein hope of getting aglobally optimal solution.

Greedy algorithms don’t always yield an optimal solution. But sometimes they
do. We’ll see a problem for which they do. Then we’ll look at some general
characteristics of when greedy algorithms give optimal solutions.

[We do not cover Huffman codes or matroids in these notes.]

Activity selection

n activitiesrequireexclusiveuse of a common resource. For example, scheduling
the use of a classroom.

Set of activitiesS D fa1; : : : ; ang.
ai needs resource during periodŒsi ; fi/, which is a half-open interval, wheresi D
start time andfi D finish time.

Goal

Select the largest possible set of nonoverlapping (mutually compatible) activities.

Note

Could have many other objectives:

� Schedule room for longest time.
� Maximize income rental fees.

Assume that activities are sorted by finish time:f1 � f2 � f3 � � � � � fn�1 � fn.

16-2 Lecture Notes for Chapter 16: Greedy Algorithms

Example

S sorted by finish time:[Leave on board]

i 1 2 3 4 5 6 7 8 9

si 1 2 4 1 5 8 9 11 13

fi 3 5 7 8 9 10 11 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1

a4

a5

a6

a7

a8

a9a2

a3

1615

Maximum-size mutually compatible set:fa1; a3; a6; a8g.
Not unique: alsofa2; a5; a7; a9g.

Optimal substructure of activity selection

Sij D fak 2 S W fi � sk < fk � sj g [Leave on board]

D activities that start afterai finishes and finish beforeaj starts:

ai ak aj

fi sk fk sj
.

Activities in Sij are compatible with

� all activities that finish byfi , and
� all activities that start no earlier thansj .

Let Aij be a maximum-size set of mutually compatible activities inSij .

Let ak 2 Aij be some activity inAij . Then we have two subproblems:

� Find mutually compatible activities inSik (activities that start afterai finishes
and that finish beforeak starts).

� Find mutually compatible activities inSkj (activities that start afterak finishes
and that finish beforeaj starts).

Let

Aik D Aij \ Sik D activities inAij that finish beforeak starts;

Akj D Aij \ Skj D activities inAij that start aferak finishes:

ThenAij D Aik [fakg [Akj

) jAij j D jAikj C jAkj j C 1.

Claim
Optimal solutionAij must include optimal solutions for the two subproblems for
Sik andSkj .

Lecture Notes for Chapter 16: Greedy Algorithms 16-3

Proof Use the usual cut-and-paste argument. Will show the claim for Skj ; proof
for Sik is symmetric.

Suppose we could find a setA0
kj

of mutually compatible activities inSkj , where
ˇ
ˇA0

kj

ˇ
ˇ > jAkj j. Then useA0

kj
instead ofAkj when solving the subproblem forSij .

Size of resulting set of mutually compatible activities would bejAikjC
ˇ
ˇA0

kj

ˇ
ˇC1 >

jAikj C jAkj j C 1 D jAj. Contradicts assumption thatAij is optimal. (claim)

One recursive solution

Since optimal solutionAij must include optimal solutions to the subproblems for
Sik andSkj , could solve by dynamic programming.

Let cŒi; j � D size of optimal solution forSij . Then

cŒi; j � D cŒi; k�C cŒk; j �C 1 :

But we don’t know which activityak to choose, so we have to try them all:

cŒi; j � D
(

0 if Sij D ; ;

max
ak2Sij

fcŒi; k�C cŒk; j �C 1g if Sij ¤ ; :

Could then develop a recursive algorithm and memoize it. Or could develop a
bottom-up algorithm and fill in table entries.

Instead, we will look at a greedy approach.

Making the greedy choice

Choose an activity to add to optimal solutionbeforesolving subproblems. For
activity-selection problem, we can get away with considering only the greedy
choice: the activity that leaves the resource available foras many other activities
as possible.

Question: Which activity leaves the resource available forthe most other activities?
Answer: The first activity to finish. (If more than one activity has earliest finish
time, can choose any such activity.)

Since activities are sorted by finish time, just choose activity a1.

That leaves only one subproblem to solve: finding a maximum size set of mutually
compatible activities that start aftera1 finishes. (Don’t have to worry about activ-
ities that finish beforea1 starts, becauses1 < f1 and no activityai has finish time
fi < f1) no activityai hasfi � s1.)

Since have only subproblem to solve, simplify notation:

Sk D fai 2 S W si � fkg D activities that start afterak finishes:

Making greedy choice ofa1) S1 remains as only subproblem to solve.[Slight
abuse of notation: referring toSk not only as a set of activities but as a subproblem
consisting of these activities.]

By optimal substructure, ifa1 is in an optimal solution, then an optimal solution to
the original problem consists ofa1 plus all activities in an optimal solution toS1.

But need to prove thata1 is always part of some optimal solution.

16-4 Lecture Notes for Chapter 16: Greedy Algorithms

Theorem
If Sk is nonempty andam has the earliest finish time inSk , thenam is included in
some optimal solution.

Proof Let Ak be an optimal solution toSk, and letaj have the earliest finish time
of any activity inAk. If aj D am, done. Otherwise, letA0

k
D Ak � faj g [famg

beAk but witham substituted foraj .

Claim
Activities in A0

k
are disjoint.

Proof Activities in Ak are disjoint, aj is first activity in Ak to finish, and
fm � fj . (claim)

Since jA0
kj D jAkj, conclude thatA0

k
is an optimal solution toSk, and it in-

cludesam. (theorem)

So, don’t need full power of dynamic programming. Don’t needto work bottom-
up.

Instead, can just repeatedly choose the activity that finishes first, keep only the
activities that are compatible with that one, and repeat until no activities remain.

Can work top-down: make a choice, then solve a subproblem. Don’t have to solve
subproblems before making a choice.

Recursive greedy algorithm

Start and finish times are represented by arrayss andf , wheref is assumed to be
already sorted in monotonically increasing order.

To start, add fictitious activitya0 with f0 D 0, so thatS0 D S , the entire set of
activities.

Procedure REC-ACTIVITY-SELECTOR takes as parameters the arrayss andf , in-
dexk of current subproblem, and numbern of activities in the original problem.

REC-ACTIVITY-SELECTOR.s; f; k; n/

m D k C 1

while m � n andsŒm� < f Œk� // find the first activity inSk to finish
m D mC 1

if m � n

return famg [REC-ACTIVITY-SELECTOR.s; f; m; n/

else return;

Initial call

REC-ACTIVITY-SELECTOR.s; f; 0; n/.

Lecture Notes for Chapter 16: Greedy Algorithms 16-5

Idea

Thewhile loop checksakC1; akC2; : : : ; an until it finds an activityam that is com-
patible withak (needsm � fk).

� If the loop terminates becauseam is found (m � n), then recursively solveSm,
and return this solution, along witham.

� If the loop never finds a compatibleam (m > n), then just return empty set.

Go through example given earlier. Should getfa1; a3; a6; a8g.

Time

‚.n/—each activity examined exactly once, assuming that activities are already
sorted by finish times.

Iterative greedy algorithm

Can convert the recursive algorithm to an iterative one. It’s already almost tail
recursive.

GREEDY-ACTIVITY-SELECTOR.s; f /

n D s: length
A D fa1g
k D 1

for m D 2 to n

if sŒm� � f Œk�

A D A [famg
k D m

return A

Go through example given earlier. Should again getfa1; a3; a6; a8g.

Time

‚.n/, if activities are already sorted by finish times.

For both the recursive and iterative algorithms, addO.n lg n/ time if activities need
to be sorted.

Greedy strategy

The choice that seems best at the moment is the one we go with.

What did we do for activity selection?

1. Determine the optimal substructure.

2. Develop a recursive solution.

3. Show that if we make the greedy choice, only one subproblemremains.

16-6 Lecture Notes for Chapter 16: Greedy Algorithms

4. Prove that it’s always safe to make the greedy choice.

5. Develop a recursive greedy algorithm.

6. Convert it to an iterative algorithm.

At first, it looked like dynamic programming. In the activity-selection problem, we
started out by defining subproblemsSij , where bothi andj varied. But then found
that making the greedy choice allowed us to restrict the subproblems to be of the
form Sk.

Could instead have gone straight for the greedy approach: inour first crack at
defining subproblems, use theSk form. Could then have proven that the greedy
choiceam (the first activity to finish), combined with optimal solution to the re-
maining compatible activitiesSm, gives an optimal solution toSk.

Typically, we streamline these steps:

1. Cast the optimization problem as one in which we make a choice and are left
with one subproblem to solve.

2. Prove that there’s always an optimal solution that makes the greedy choice, so
that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, having made the greedy
choice, combining an optimal solution to the remaining subproblem with the
greedy choice gives an optimal solution to the original problem.

No general way to tell whether a greedy algorithm is optimal,but two key ingredi-
ents are

1. greedy-choice property and

2. optimal substructure.

Greedy-choice property

Can assemble a globally optimal solution by making locally optimal (greedy)
choices.

Dynamic programming
� Make a choice at each step.
� Choice depends on knowing optimal solutions to subproblems. Solve subprob-

lemsfirst.
� Solvebottom-up.

Greedy
� Make a choice at each step.
� Make the choicebeforesolving the subproblems.
� Solvetop-down.

Typically show the greedy-choice property by what we did foractivity selection:

� Look at an optimal solution.

Lecture Notes for Chapter 16: Greedy Algorithms 16-7

� If it includes the greedy choice, done.
� Otherwise, modify the optimal solution to include the greedy choice, yielding

another solution that’s just as good.

Can get efficiency gains from greedy-choice property.

� Preprocess input to put it into greedy order.
� Or, if dynamic data, use a priority queue.

Optimal substructure

Just show that optimal solution to subproblem and greedy choice) optimal solu-
tion to problem.

Greedy vs. dynamic programming

The knapsack problem is a good example of the difference.

0-1 knapsack problem
� n items.
� Item i is worth $�i , weighswi pounds.
� Find a most valuable subset of items with total weight� W .
� Have to either take an item or not take it—can’t take part of it.

Fractional knapsack problem

Like the 0-1 knapsack problem, but can take fraction of an item.

Both have optimal substructure.

But the fractional knapsack problem has the greedy-choice property, and the 0-1
knapsack problem does not.

To solve the fractional problem, rank items by value/weight: �i=wi . Let
�i=wi � �iC1=wiC1 for all i . Take items in decreasing order of value/weight. Will
take all of the items with the greatest value/weight, and possibly a fraction of the
next item.

FRACTIONAL-KNAPSACK.�; w; W /

load D 0

i D 1

while load < W andi � n

if wi � W � load
take all of itemi

elsetake.W � load/=wi of item i

add what was taken toload
i D i C 1

16-8 Lecture Notes for Chapter 16: Greedy Algorithms

Time: O.n lg n/ to sort,O.n/ thereafter.

Greedy doesn’t work for the 0-1 knapsack problem. Might get empty space, which
lowers the average value per pound of the items taken.

i 1 2 3

�i 60 100 120

wi 10 20 30

�i=wi 6 5 4

W D 50.

Greedy solution:

� Take items1 and2.
� valueD 160, weightD 30.

Have20 pounds of capacity left over.

Optimal solution:

� Take items2 and3.
� valueD 220, weightD 50.

No leftover capacity.

Solutions for Chapter 16:
Greedy Algorithms

Solution to Exercise 16.1-1

The tricky part is determining which activities are in the set Sij . If activity k is
in Sij , then we must havei < k < j , which means thatj � i � 2, but we must
also have thatfi � sk andfk � sj . If we startk atj � 1 and decrementk, we can
stop oncek reachesi , but we can also stop once we find thatfk � fi , since then
activitiesi C 1 throughk cannot be compatible with activityi .

We create two fictitious activities,a0 with f0 D 0 and anC1 with snC1 D 1.
We are interested in a maximum-size setA0;nC1 of mutually compatible activities
in S0;nC1. We’ll use tablescŒ0 : : nC 1; 0 : : nC 1�, as in recurrence (16.2) (so that
cŒi; j � D jAij j), andactŒ0 : : nC 1; 0 : : nC 1�, whereactŒi; j � is the activityk that
we choose to put intoAij .

We fill the tables in according to increasing differencej � i , which we denote byl
in the pseudocode. SinceSij D ; if j � i < 2, we initializecŒi; i � D 0 for all i

andcŒi; i C 1� D 0 for 0 � i � n. As in RECURSIVE-ACTIVITY-SELECTOR and
GREEDY-ACTIVITY-SELECTOR, the start and finish times are given as arrayss

andf , where we assume that the arrays already include the two fictitious activities
and that the activities are sorted by monotonically increasing finish time.

16-10 Solutions for Chapter 16: Greedy Algorithms

DYNAMIC -ACTIVITY-SELECTOR.s; f; n/

let cŒ0 : : nC 1; 0 : : nC 1� andactŒ0 : : nC 1; 0 : : nC 1� be new tables
for i D 0 to n

cŒi; i � D 0

cŒi; i C 1� D 0

cŒnC 1; nC 1� D 0

for l D 2 to nC 1

for i D 0 to n � l C 1

j D i C l

cŒi; j � D 0

k D j � 1

while f Œi � < f Œk�

if f Œi � � sŒk� andf Œk� � sŒj � andcŒi; k�C cŒk; j �C 1 > cŒi; j �

cŒi; j � D cŒi; k�C cŒk; j �C 1

actŒi; j � D k

k D k � 1

print “A maximum size set of mutually compatible activitieshas size ”cŒ0; nC 1�

print “The set contains ”
PRINT-ACTIVITIES.c; act; 0; nC 1/

PRINT-ACTIVITIES.c; act; i; j /

if cŒi; j � > 0

k D actŒi; j �

print k

PRINT-ACTIVITIES.c; act; i; k/

PRINT-ACTIVITIES.c; act; k; j /

The PRINT-ACTIVITIES procedure recursively prints the set of activities placed
into the optimal solutionAij . It first prints the activityk that achieved the maxi-
mum value ofcŒi; j �, and then it recurses to print the activities inAik andAkj . The
recursion bottoms out whencŒi; j � D 0, so thatAij D ;.
Whereas GREEDY-ACTIVITY-SELECTOR runs in ‚.n/ time, the DYNAMIC -
ACTIVITY-SELECTOR procedure runs inO.n3/ time.

Solution to Exercise 16.1-2

The proposed approach—selecting the last activity to startthat is compatible with
all previously selected activities—is really the greedy algorithm but starting from
the end rather than the beginning.

Another way to look at it is as follows. We are given a setS D fa1; a2; : : : ; ang
of activities, whereai D Œsi ; fi /, and we propose to find an optimal solution by
selecting the last activity to start that is compatible withall previously selected
activities. Instead, let us create a setS 0 D fa0

1; a0
2; : : : ; a0

ng, wherea0
i D Œfi ; si /.

That is,a0
i is ai in reverse. Clearly, a subset offai1; ai2 ; : : : ; aik g � S is mutually

compatible if and only if the corresponding subset
˚

a0
i1

; a0
i2

; : : : ; a0
ik

	

� S 0 is also

Solutions for Chapter 16: Greedy Algorithms 16-11

mutually compatible. Thus, an optimal solution forS maps directly to an optimal
solution forS 0 and vice versa.

The proposed approach of selecting the last activity to start that is compatible with
all previously selected activities, when run onS , gives the same answer as the
greedy algorithm from the text—selecting the first activityto finish that is compat-
ible with all previously selected activities—when run onS 0. The solution that the
proposed approach finds forS corresponds to the solution that the text’s greedy
algorithm finds forS 0, and so it is optimal.

Solution to Exercise 16.1-3

� For the approach of selecting the activity of least durationfrom those that are
compatible with previously selected activities:

i 1 2 3
si 0 2 3
fi 3 4 6
duration 3 2 3

This approach selects justfa2g, but the optimal solution selectsfa1; a3g.
� For the approach of always selecting the compatible activity that overlaps the

fewest other remaining activities:

i 1 2 3 4 5 6 7 8 9 10 11
si 0 1 1 1 2 3 4 5 5 5 6
fi 2 3 3 3 4 5 6 7 7 7 8
of overlapping activities 3 4 4 4 4 2 4 4 4 4 3

This approach first selectsa6, and after that choice it can select only two other
activities (one ofa1; a2; a3; a4 and one ofa8; a9; a10; a11). An optimal solution
is fa1; a5; a7; a11g.

� For the approach of always selecting the compatible remaining activity with
the earliest start time, just add one more activity with the interval Œ0; 14/ to
the example in Section 16.1. It will be the first activity selected, and no other
activities are compatible with it.

Solution to Exercise 16.1-4
This solution is also posted publicly

Let S be the set ofn activities.

The “obvious” solution of using GREEDY-ACTIVITY-SELECTOR to find a maxi-
mum-size setS1 of compatible activities fromS for the first lecture hall, then using
it again to find a maximum-size setS2 of compatible activities fromS �S1 for the
second hall, (and so on until all the activities are assigned), requires‚.n2/ time
in the worst case. Moreover, it can produce a result that usesmore lecture halls

16-12 Solutions for Chapter 16: Greedy Algorithms

than necessary. Consider activities with the intervalsfŒ1; 4/; Œ2; 5/; Œ6; 7/; Œ4; 8/g.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervalsŒ1; 4/

and Œ6; 7/ for the first lecture hall, and then each of the activities with intervals
Œ2; 5/ andŒ4; 8/ would have to go into its own hall, for a total of three halls used.
An optimal solution would put the activities with intervalsŒ1; 4/ andŒ4; 8/ into one
hall and the activities with intervalsŒ2; 5/ andŒ6; 7/ into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptotic time is just the time
needed to sort the activities by time—O.n lg n/ time for arbitrary times, or pos-
sibly as fast asO.n/ if the times are small integers.

The general idea is to go through the activities in order of start time, assigning
each to any hall that is available at that time. To do this, move through the set
of events consisting of activities starting and activitiesfinishing, in order of event
time. Maintain two lists of lecture halls: Halls that are busy at the current event-
time t (because they have been assigned an activityi that started atsi � t but
won’t finish until fi > t) and halls that are free at timet . (As in the activity-
selection problem in Section 16.1, we are assuming that activity time intervals are
half open—i.e., that ifsi � fj , then activitiesi andj are compatible.) Whent
is the start time of some activity, assign that activity to a free hall and move the
hall from the free list to the busy list. Whent is the finish time of some activity,
move the activity’s hall from the busy list to the free list. (The activity is certainly
in some hall, because the event times are processed in order and the activity must
have started before its finish timet , hence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had
an activity assigned to it, if possible, before picking a never-used hall. (This can be
done by always working at the front of the free-halls list—putting freed halls onto
the front of the list and taking halls from the front of the list—so that a new hall
doesn’t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture hallsas possible: The algo-
rithm will terminate with a schedule requiringm � n lecture halls. Let activityi
be the first activity scheduled in lecture hallm. The reason thati was put in the
mth lecture hall is that the firstm � 1 lecture halls were busy at timesi . So at this
time there arem activities occurring simultaneously. Therefore any schedule must
use at leastm lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

� Sort the2n activity-starts/activity-ends events. (In the sorted order, an activity-
ending event should precede an activity-starting event that is at the same time.)
O.n lg n/ time for arbitrary times, possiblyO.n/ if the times are restricted (e.g.,
to small integers).

� Process the events inO.n/ time: Scan the2n events, doingO.1/ work for each
(moving a hall from one list to the other and possibly associating an activity
with it).

Total: O.nC time to sort/

[The idea of this algorithm is related to the rectangle-overlap algorithm in Exer-
cise 14.3-7.]

Solutions for Chapter 16: Greedy Algorithms 16-13

Solution to Exercise 16.1-5

We can no longer use the greedy algorithm to solve this problem. However, as we
show, the problem still has an optimal substructure which allows us to formulate a
dynamic programming solution. The analysis here follows closely the analysis of
Section 16.1 in the book. We define the value of a set of compatible events as the
sum of values of events in that set. LetSij be defined as in Section 16.1. Anoptimal
solutionto Sij is a subset of mutually compatible events ofSij that has maximum
value. LetAij be an optimal solution toSij . SupposeAij includes an eventak. Let
Aik andAkj be defined as in Section 16.1. Thus, we haveAij D Aik[fakg[Akj ,
and so the value of maximum-value setAij is equal to the value ofAik plus the
value ofAkj plus�k.

The usual cut-and-paste argument shows that the optimal solution Aij must also
include optimal solutions to the two subproblems forSik andSkj . If we could find
a setA0

kj
of mutually compatible activities inSkj where the value ofA0

kj
is greater

than the value ofAkj , then we could useA0
kj

, rather thanAkj , in a solution to
the subproblem forSij . We would have constructed a set of mutually compatible
activities with greater value than that ofAij , which contradicts the assumption that
Aij is an optimal solution. A symmetric argument applies to the activities in Sik.

Let us denote the value of an optimal solution for the setSij by �alŒi; j �. Then, we
would have the recurrence

�alŒi; j � D �alŒi; k�C �alŒk; j �C �k :

Of course, since we do not know that an optimal solution for the setSij includes
activity ak, we would have to examine all activities inSij to find which one to
choose, so that

�alŒi; j � D
(

0 if Sij D ; ;

max
ak2Sij

f�alŒi; k�C �alŒk; j �C �kg if Sij ¤ ; :

While implementing the recurrence, the tricky part is determining which activities
are in the setSij . If activity k is in Sij , then we must havei < k < j , which means
thatj � i � 2, but we must also have thatfi � sk andfk � sj . If we startk at
j � 1 and decrementk, we can stop oncek reachesi , but we can also stop once
we find thatfk � fi , since then activitiesi C 1 throughk cannot be compatible
with activity i .

We create two fictitious activities,a0 with f0 D 0 and anC1 with snC1 D 1.
We are interested in a maximum-size setA0;nC1 of mutually compatible activities
in S0;nC1. We’ll use tables�alŒ0 : : n C 1; 0 : : n C 1�, as in the recurrence, and
actŒ0 : : n C 1; 0 : : n C 1�, whereactŒi; j � is the activityk that we choose to put
into Aij .

We fill the tables in according to increasing differencej � i , which we denote byl
in the pseudocode. SinceSij D ; if j � i < 2, we initialize�alŒi; i � D 0 for all i

and�alŒi; i C 1� D 0 for 0 � i � n. As in RECURSIVE-ACTIVITY-SELECTOR

and GREEDY-ACTIVITY-SELECTOR, the start and finish times are given as arrayss

andf , where we assume that the arrays already include the two fictitious activities

16-14 Solutions for Chapter 16: Greedy Algorithms

and that the activities are sorted by monotonically increasing finish time. The
array� specifies the value of each activity.

MAX -VALUE-ACTIVITY-SELECTOR.s; f; �; n/

let �alŒ0 : : nC 1; 0 : : nC 1� andactŒ0 : : nC 1; 0 : : nC 1� be new tables
for i D 0 to n

�alŒi; i � D 0

�alŒi; i C 1� D 0

�alŒnC 1; nC 1� D 0

for l D 2 to nC 1

for i D 0 to n � l C 1

j D i C l

�alŒi; j � D 0

k D j � 1

while f Œi � < f Œk�

if f Œi � � sŒk� andf Œk� � sŒj � and
�alŒi; k�C �alŒk; j �C �k > �alŒi; j �

�alŒi; j � D �alŒi; k�C �alŒk; j �C �k

actŒi; j � D k

k D k � 1

print “A maximum-value set of mutually compatible activities has value ”
�alŒ0; nC 1�

print “The set contains ”
PRINT-ACTIVITIES.�al; act; 0; nC 1/

PRINT-ACTIVITIES.�al; act; i; j /

if �alŒi; j � > 0

k D actŒi; j �

print k

PRINT-ACTIVITIES.�al; act; i; k/

PRINT-ACTIVITIES.�al; act; k; j /

The PRINT-ACTIVITIES procedure recursively prints the set of activities placed
into the optimal solutionAij . It first prints the activityk that achieved the maxi-
mum value of�alŒi; j �, and then it recurses to print the activities inAik andAkj .
The recursion bottoms out when�alŒi; j � D 0, so thatAij D ;.
Whereas GREEDY-ACTIVITY-SELECTOR runs in‚.n/ time, the MAX -VALUE-
ACTIVITY-SELECTOR procedure runs inO.n3/ time.

Solution to Exercise 16.2-2
This solution is also posted publicly

The solution is based on the optimal-substructure observation in the text: Leti
be the highest-numbered item in an optimal solutionS for W pounds and items
1; : : : ; n. ThenS 0 D S � fig must be an optimal solution forW � wi pounds
and items1; : : : ; i � 1, and the value of the solutionS is �i plus the value of the
subproblem solutionS 0.

Solutions for Chapter 16: Greedy Algorithms 16-15

We can express this relationship in the following formula: DefinecŒi; w� to be the
value of the solution for items1; : : : ; i and maximum weightw. Then

cŒi; w� D

�
0 if i D 0 or w D 0 ;

cŒi � 1; w� if wi > w ;

max.�i C cŒi � 1; w � wi �; cŒi � 1; w�/ if i > 0 andw � wi :

The last case says that the value of a solution fori items either includes itemi ,
in which case it is�i plus a subproblem solution fori � 1 items and the weight
excludingwi , or doesn’t include itemi , in which case it is a subproblem solution
for i � 1 items and the same weight. That is, if the thief picks itemi , he takes�i

value, and he can choose from items1; : : : ; i � 1 up to the weight limitw � wi ,
and getcŒi � 1; w � wi � additional value. On the other hand, if he decides not to
take itemi , he can choose from items1; : : : ; i �1 up to the weight limitw, and get
cŒi � 1; w� value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weightW , the number of itemsn, and
the two sequences� D h�1; �2; : : : ; �ni andw D hw1; w2; : : : ; wni. It stores the
cŒi; j � values in a tablecŒ0 : : n; 0 : : W � whose entries are computed in row-major
order. (That is, the first row ofc is filled in from left to right, then the second row,
and so on.) At the end of the computation,cŒn; W � contains the maximum value
the thief can take.

DYNAMIC -0-1-KNAPSACK.�; w; n; W /

let cŒ0 : : n; 0 : : W � be a new array
for w D 0 to W

cŒ0; w� D 0

for i D 1 to n

cŒi; 0� D 0

for w D 1 to W

if wi � w

if �i C cŒi � 1; w � wi � > cŒi � 1; w�

cŒi; w� D �i C cŒi � 1; w � wi �

elsecŒi; w� D cŒi � 1; w�

elsecŒi; w� D cŒi � 1; w�

We can use thec table to deduce the set of items to take by starting atcŒn; W � and
tracing where the optimal values came from. IfcŒi; w� D cŒi �1; w�, then itemi is
not part of the solution, and we continue tracing withcŒi � 1; w�. Otherwise itemi

is part of the solution, and we continue tracing withcŒi � 1; w � wi �.

The above algorithm takes‚.nW / time total:

� ‚.nW / to fill in the c table:.nC1/ � .W C1/ entries, each requiring‚.1/ time
to compute.

� O.n/ time to trace the solution (since it starts in rown of the table and moves
up one row at each step).

16-16 Solutions for Chapter 16: Greedy Algorithms

Solution to Exercise 16.2-4

The optimal strategy is the obvious greedy one. Starting with both bottles full,
Professor Gekko should go to the westernmost place that he can refill his bottles
within m miles of Grand Forks. Fill up there. Then go to the westernmost refilling
location he can get to withinm miles of where he filled up, fill up there, and so on.
Looked at another way, at each refilling location, ProfessorGekko should check
whether he can make it to the next refilling location without stopping at this one.
If he can, skip this one. If he cannot, then fill up. Professor Gekko doesn’t need to
know how much water he has or how far the next refilling location is to implement
this approach, since at each fillup, he can determine which isthe next location at
which he’ll need to stop.
This problem has optimal substructure. Suppose there aren possible refilling loca-
tions. Consider an optimal solution withs refilling locations and whose first stop
is at thekth location. Then the rest of the optimal solution must be an optimal
solution to the subproblem of the remainingn � k stations. Otherwise, if there
were a better solution to the subproblem, i.e., one with fewer thans � 1 stops, we
could use it to come up with a solution with fewer thans stops for the full problem,
contradicting our supposition of optimality.
This problem also has the greedy-choice property. Suppose there arek refilling
locations beyond the start that are withinm miles of the start. The greedy solution
chooses thekth location as its first stop. No station beyond thekth works as a first
stop, since Professor Gekko would run out of water first. If a solution chooses a
locationj < k as its first stop, then Professor Gekko could choose thekth location
instead, having at least as much water when he leaves thekth location as if he’d
chosen thej th location. Therefore, he would get at least as far without filling up
again if he had chosen thekth location.
If there aren refilling locations on the map, Professor Gekko needs to inspect each
one just once. The running time isO.n/.

Solution to Exercise 16.2-6

Use a linear-time median algorithm to calculate the medianm of the �i=wi ra-
tios. Next, partition the items into three sets:G D fi W �i=wi > mg, E D
fi W �i=wi D mg, andL D fi W �i=wi < mg; this step takes linear time. Com-
puteWG D

P

i2G wi andWE D
P

i2E wi , the total weight of the items in setsG

andE, respectively.
� If WG > W , then do not yet take any items in setG, and instead recurse on the

set of itemsG and knapsack capacityW .
� Otherwise (WG � W), take all items in setG, and take as much of the items in

setE as will fit in the remaining capacityW �WG .
� If WG C WE � W (i.e., there is no capacity left after taking all the items in

setG and all the items in setE that fit in the remaining capacityW �WG), then
we are done.

Solutions for Chapter 16: Greedy Algorithms 16-17

� Otherwise (WG C WE < W), then after taking all the items in setsG andE,
recurse on the set of itemsL and knapsack capacityW �WG �WE .

To analyze this algorithm, note that each recursive call takes linear time, exclusive
of the time for a recursive call that it may make. When there isa recursive call, there
is just one, and it’s for a problem of at most half the size. Thus, the running time is
given by the recurrenceT .n/ � T .n=2/C‚.n/, whose solution isT .n/ D O.n/.

Solution to Exercise 16.2-7
This solution is also posted publicly

SortA andB into monotonically decreasing order.

Here’s a proof that this method yields an optimal solution. Consider any indicesi
andj such thati < j , and consider the termsai

bi andaj
bj . We want to show that

it is no worse to include these terms in the payoff than to includeai
bj andaj

bi , i.e.,
thatai

bi aj
bj � ai

bj aj
bi . SinceA andB are sorted into monotonically decreasing

order andi < j , we haveai � aj andbi � bj . Sinceai andaj are positive
andbi � bj is nonnegative, we haveai

bi �bj � aj
bi �bj . Multiplying both sides by

ai
bj aj

bj yieldsai
bi aj

bj � ai
bj aj

bi .

Since the order of multiplication doesn’t matter, sortingA andB into monotoni-
cally increasing order works as well.

Solution to Exercise 16.3-1

We are given thatx: freq� y: freqare the two lowest frequencies in order, and that
a: freq� b: freq. Now,

b: freq D x: freq

) a: freq � x: freq

) a: freq D x: freq (sincex: freq is the lowest frequency) ,

and sincey: freq� b: freq,

b: freq D x: freq

) y: freq � x: freq

) y: freq D x: freq (sincex: freq is the lowest frequency) .

Thus, if we assume thatx: freqD b: freq, then we have that each ofa: freq, b: freq,
andy: freqequalsx: freq, and soa: freqD b: freqD x: freqD y: freq.

Solution to Exercise 16.4-2

We need to show three things to prove that.S; 	 / is a matroid:

1. S is finite. That’s becauseS is the set of ofm columns of matrixT .

16-18 Solutions for Chapter 16: Greedy Algorithms

2. 	 is hereditary. That’s because ifB 2 	 , then the columns inB are linearly in-
dependent. IfA � B, then the columns ofA must also be linearly independent,
and soA 2 	 .

3. .S; 	 / satisfies the exchange property. To see why, let us suppose thatA; B 2 	

andjAj < jBj.
We will use the following properties of matrices:

� The rank of a matrix is the number of columns in a maximal set oflinearly
independent columns (see page 1223 of the text). The rank is also equal to
the dimension of the column space of the matrix.

� If the column space of matrixB is a subspace of the column space of ma-
trix A, then rank.B/ � rank.A/.

Because the columns inA are linearly independent, if we take just these
columns as a matrixA, we have that rank.A/ D jAj. Similarly, if we take
the columns ofB as a matrixB, we have rank.B/ D jBj. SincejAj < jBj, we
have rank.A/ < rank.B/.

We shall show that there is some columnb 2 B that is not a linear combination
of the columns inA, and soA[fbg is linearly independent. The proof proceeds
by contradiction. Assume that each column inB is a linear combination of
the columns ofA. That means that any vector that is a linear combination
of the columns ofB is also a linear combination of the columns ofA, and
so, treating the columns ofA andB as matrices, the column space ofB is a
subspace of the column space ofA. By the second property above, we have
rank.B/ � rank.A/. But we have already shown that rank.A/ < rank.B/, a
contradiction. Therefore, some column inB is not a linear combination of the
columns ofA, and.S; 	 / satisfies the exchange property.

Solution to Exercise 16.4-3

[This exercise defines what is commonly known as the dual of a matroid, and it
asks to prove that the dual of a matroid is itself a matroid. The literature contains
simpler proofs of this fact, but they depend on other (equivalent) definitions of
a matroid. The proof given here is more complicated, but it relies only on the
definition given in the text.]

We need to show three things to prove that.S; 	
0/ is a matroid:

1. S is finite. We are given that.

2. 	
0 is hereditary. Suppose thatB 0 2 	

0 andA0 � B 0. SinceB 0 2 	
0, there is

some maximal setB 2 	 such thatB � S � B 0. But A0 � B 0 implies that
S �B 0 � S �A0, and soB � S �B 0 � S �A0. Thus, there exists a maximal
setB 2 	 such thatB � S � A0, proving thatA0 2 	

0.

3. .S; 	
0/ satisfies the exchange property. We start with two preliminary facts

about sets. The proofs of these facts are omitted.

Fact 1: jX � Y j D jX j � jX \ Y j.

Solutions for Chapter 16: Greedy Algorithms 16-19

Fact 2: Let S be the universe of elements. IfX �Y � Z andZ � S �Y , then
jX \Zj D jX j � jX \ Y j.

To show that.S; 	
0/ satisfies the exchange property, let us assume thatA0 2 	

0,
B 0 2 	

0, and thatjA0j < jB 0j. We need to show that there exists somex 2
B 0 � A0 such thatA0 [fxg 2 	

0. BecauseA0 2 	
0 andB 0 2 	

0, there are
maximal setsA � S � A0 andB � S � B 0 such thatA 2 	 andB 2 	 .

Define the setX D B 0 � A0 � A, so thatX consists of elements inB 0 but not
in A0 or A.

If X is nonempty, then letx be any element ofX . By how we defined setX ,
we know thatx 2 B 0 andx 62 A0, so thatx 2 B 0 � A0. Sincex 62 A, we also
have thatA � S � A0 � fxg D S � .A0 [fxg/, and soA0 [fxg 2 	

0.

If X is empty, the situation is more complicated. BecausejA0j < jB 0j, we have
thatB 0 � A0 ¤ ;, and soX being empty means thatB 0 � A0 � A.

Claim
There is an elementy 2 B � A0 such that.A � B 0/ [fyg 2 	 .

Proof First, observe that becauseA�B 0 � A andA 2 	 , we have thatA�B 0 2
	 . Similarly, B � A0 � B and B 2 	 , and soB � A0 2 	 . If we show
that jA � B 0j < jB � A0j, the assumption that.S; 	 / is a matroid proves the
existence ofy.

BecauseB 0 � A0 � A and A � S � A0, we can apply Fact 2 to conclude
that jB 0 \ Aj D jB 0j � jB 0 \ A0j. We claim thatjB \ A0j � jA0 � B 0j. To
see why, observe thatA0 � B 0 D A0 \ .S � B 0/ and B � S � B 0, and so
B \ A0 � .S � B 0/ \ A0 D A0 \ .S � B 0/ D A0 � B 0. Applying Fact 1, we
see thatjA0 � B 0j D jA0j� jA0 \ B 0j D jA0j� jB 0 \ A0j, and hencejB \ A0j �
jA0j � jB 0 \ A0j.
Now, we have

jA0j < jB 0j (by assumption)

jA0j � jB 0 \ A0j < jB 0j � jB 0 \ A0j (subtracting same quantity)

jB \ A0j < jB 0j � jB 0 \ A0j (jB \ A0j � jA0j � jB 0 \ A0j)
jB \ A0j < jB 0 \ Aj (jB 0 \ Aj D jB 0j � jB 0 \ A0j)

jBj � jB \ A0j > jAj � jB 0 \ Aj (jAj D jBj)
jB � A0j > jA � B 0j (Fact 1) (claim)

Now we know there is an elementy 2 B � A0 such that.A � B 0/ [fyg 2 	 .
Moreover, we claim thaty 62 A. To see why, we know that by the exchange
property, we can, without loss of generality, choosey so thaty 62 A � B 0. In
order fory to be inA, it would have to be inA\ B 0. But y 2 B, which means
thaty 62 B 0, and hencey 62 A \ B 0. Thereforey 62 A.

Applying the exchange property, we add such an elementy in B�A0 to A�B 0,
maintaining that the set we get, sayC , is in 	 . Then we keep applying the
exchange property, adding a new element inA�C to C , maintaining thatC is
in 	 , until jC j D jAj. OncejC j D jAj, there must exist some elementx 2 A

16-20 Solutions for Chapter 16: Greedy Algorithms

that we have not added intoC . We know that such an element exists because
the elementy that we first added intoC was not inA, and so some elementx

in A must be left over. Also, we must havex 2 B 0 because all the elements
in A � B 0 are initially inC . Therefore, we havex 2 B 0 � A0.

The setC so constructed is maximal, because it has the same cardinality asA,
which is maximal, andC 2 	 . All the elements but one inC are also inA;
the one exception is inB � A0, and soC contains no elements inA0. Because
we never addedx to C , we have thatC � S � A0 � fxg D S � .A0 [fxg/.
Therefore,A0 [fxg 2 	

0, as we needed to show.

Solution to Problem 16-1

Before we go into the various parts of this problem, let us first prove once and for
all that the coin-changing problem has optimal substructure.

Suppose we have an optimal solution for a problem of making change forn cents,
and we know that this optimal solution uses a coin whose valueis c cents; let this
optimal solution usek coins. We claim that this optimal solution for the problem
of n cents must contain within it an optimal solution for the problem ofn�c cents.
We use the usual cut-and-paste argument. Clearly, there arek � 1 coins in the
solution to then� c cents problem used within our optimal solution to then cents
problem. If we had a solution to then� c cents problem that used fewer thank�1

coins, then we could use this solution to produce a solution to then cents problem
that uses fewer thank coins, which contradicts the optimality of our solution.

a. A greedy algorithm to make change using quarters, dimes, nickels, and pennies
works as follows:

� Give q D bn=25c quarters. That leavesnq D n mod25 cents to make
change.

� Then gived D bnq=10c dimes. That leavesnd D nq mod10 cents to make
change.

� Then givek D bnd =5c nickels. That leavesnk D nd mod5 cents to make
change.

� Finally, givep D nk pennies.

An equivalent formulation is the following. The problem we wish to solve is
making change forn cents. Ifn D 0, the optimal solution is to give no coins.
If n > 0, determine the largest coin whose value is less than or equalto n.
Let this coin have valuec. Give one such coin, and then recursively solve the
subproblem of making change forn � c cents.

To prove that this algorithm yields an optimal solution, we first need to show
that the greedy-choice property holds, that is, that some optimal solution to
making change forn cents includes one coin of valuec, wherec is the largest
coin value such thatc � n. Consider some optimal solution. If this optimal
solution includes a coin of valuec, then we are done. Otherwise, this optimal
solution does not include a coin of valuec. We have four cases to consider:

Solutions for Chapter 16: Greedy Algorithms 16-21

� If 1 � n < 5, thenc D 1. A solution may consist only of pennies, and so it
must contain the greedy choice.

� If 5 � n < 10, thenc D 5. By supposition, this optimal solution does not
contain a nickel, and so it consists of only pennies. Replacefive pennies by
one nickel to give a solution with four fewer coins.

� If 10 � n < 25, thenc D 10. By supposition, this optimal solution does not
contain a dime, and so it contains only nickels and pennies. Some subset of
the nickels and pennies in this solution adds up to10 cents, and so we can
replace these nickels and pennies by a dime to give a solutionwith (between
1 and 9) fewer coins.

� If 25 � n, thenc D 25. By supposition, this optimal solution does not
contain a quarter, and so it contains only dimes, nickels, and pennies. If
it contains three dimes, we can replace these three dimes by aquarter and
a nickel, giving a solution with one fewer coin. If it contains at most two
dimes, then some subset of the dimes, nickels, and pennies adds up to25

cents, and so we can replace these coins by one quarter to givea solution
with fewer coins.

Thus, we have shown that there is always an optimal solution that includes the
greedy choice, and that we can combine the greedy choice withan optimal solu-
tion to the remaining subproblem to produce an optimal solution to our original
problem. Therefore, the greedy algorithm produces an optimal solution.

For the algorithm that chooses one coin at a time and then recurses on sub-
problems, the running time is‚.k/, wherek is the number of coins used in
an optimal solution. Sincek � n, the running time isO.n/. For our first de-
scription of the algorithm, we perform a constant number of calculations (since
there are only 4 coin types), and the running time isO.1/.

b. When the coin denominations arec0; c1; : : : ; ck, the greedy algorithm to make
change forn cents works by finding the denominationcj such thatj D
maxf0 � i � k W ci � ng, giving one coin of denominationcj , and recurs-
ing on the subproblem of making change forn � cj cents. (An equivalent,
but more efficient, algorithm is to give

�

n=ck
˘

coins of denominationck and
b.n modciC1/=cic coins of denominationci for i D 0; 1; : : : ; k � 1.)

To show that the greedy algorithm produces an optimal solution, we start by
proving the following lemma:

Lemma
For i D 0; 1; : : : ; k, let ai be the number of coins of denominationci used
in an optimal solution to the problem of making change forn cents. Then for
i D 0; 1; : : : ; k � 1, we haveai < c.

Proof If ai � c for some0 � i < k, then we can improve the solution by using
one more coin of denominationciC1 andc fewer coins of denominationci . The
amount for which we make change remains the same, but we usec � 1 > 0

fewer coins. (lemma)

To show that the greedy solution is optimal, we show that any non-greedy so-
lution is not optimal. As above, letj D maxf0 � i � k W ci � ng, so that the

16-22 Solutions for Chapter 16: Greedy Algorithms

greedy solution uses at least one coin of denominationcj . Consider a non-
greedy solution, which must use no coins of denominationcj or higher. Let the
non-greedy solution useai coins of denominationci , for i D 0; 1; : : : ; j � 1;
thus we have

Pj �1

iD0 aic
i D n. Sincen � cj , we have that

Pj �1

iD0 aic
i � cj .

Now suppose that the non-greedy solution is optimal. By the above lemma,
ai � c � 1 for i D 0; 1; : : : ; j � 1. Thus,
j �1
X

iD0

aic
i �

j �1
X

iD0

.c � 1/ci

D .c � 1/

j �1
X

iD0

ci

D .c � 1/
cj � 1

c � 1

D cj � 1

< cj ;

which contradicts our earlier assertion that
Pj �1

iD0 aic
i � cj . We conclude that

the non-greedy solution is not optimal.

Since any algorithm that does not produce the greedy solution fails to be opti-
mal, only the greedy algorithm produces the optimal solution.

The problem did not ask for the running time, but for the more efficient greedy-
algorithm formulation, it is easy to see that the running time isO.k/, since we
have to perform at mostk each of the division, floor, and mod operations.

c. With actual U.S. coins, we can use coins of denomination 1, 10, and 25. When
n D 30 cents, the greedy solution gives one quarter and five pennies, for a total
of six coins. The non-greedy solution of three dimes is better.

The smallest integer numbers we can use are 1, 3, and 4. Whenn D 6 cents,
the greedy solution gives one 4-cent coin and two 1-cent coins, for a total of
three coins. The non-greedy solution of two 3-cent coins is better.

d. Since we have optimal substructure, dynamic programming might apply. And
indeed it does.

Let us definecŒj � to be the minimum number of coins we need to make change
for j cents. Let the coin denominations bed1; d2; : : : ; dk . Since one of the
coins is a penny, there is a way to make change for any amountj � 1.

Because of the optimal substructure, if we knew that an optimal solution for
the problem of making change forj cents used a coin of denominationdi , we
would havecŒj � D 1C cŒj � di �. As base cases, we have thatcŒj � D 0 for all
j � 0.

To develop a recursive formulation, we have to check all denominations, giving

cŒj � D
(

0 if j � 0 ;

1C min
1�i�k

fcŒj � di �g if j > 1 :

We can compute thecŒj � values in order of increasingj by using a table. The
following procedure does so, producing a tablecŒ1 : : n�. It avoids even exam-
ining cŒj � for j � 0 by ensuring thatj � di before looking upcŒj � di �. The

Solutions for Chapter 16: Greedy Algorithms 16-23

procedure also produces a tabledenomŒ1 : : n�, wheredenomŒj � is the denomi-
nation of a coin used in an optimal solution to the problem of making change
for j cents.

COMPUTE-CHANGE.n; d; k/

let cŒ1 : : n� anddenomŒ1 : : n� be new arrays
for j D 1 to n

cŒj � D 1
for i D 1 to k

if j � di and1C cŒj � di � < cŒj �

cŒj � D 1C cŒj � di �

denomŒj � D di

return c anddenom

This procedure obviously runs inO.nk/ time.

We use the following procedure to output the coins used in theoptimal solution
computed by COMPUTE-CHANGE:

GIVE-CHANGE.j; denom/

if j > 0

give one coin of denominationdenomŒj �

GIVE-CHANGE.j � denomŒj �; denom/

The initial call is GIVE-CHANGE.n; denom/. Since the value of the first pa-
rameter decreases in each recursive call, this procedure runs inO.n/ time.

Solution to Problem 16-5

a. The procedure CACHE-MANAGER is a generic procedure, which initializes a
cache by calling INITIALIZE -CACHE and then calls ACCESSwith each data
element in turn. The inputs are a sequenceR D hr1; r2; : : : ; rni of memory
requests and a cache sizek.

CACHE-MANAGER.R; k/

INITIALIZE -CACHE.R; k/

for i D 1 to n

ACCESS.ri/

The running time of CACHE-MANAGER of course depends heavily on how
ACCESS is implemented. We have several choices for how to implementthe
greedy strategy outlined in the problem. A straightforwardway of implement-
ing the greedy strategy is that when processing requestri , for each of the at
mostk elements currently in the cache, scan through requestsriC1; : : : ; rn to
find which of the elements in the cache andri has its next access furthest in
the future, and evict this element. Because each scan takesO.n/ time, each
request entailsO.k/ scans, and there aren requests, the running time of this
straightforward approach isO.kn2/.

16-24 Solutions for Chapter 16: Greedy Algorithms

Instead, we describe an asymptotically faster algorithm, which uses a red-black
tree to check whether a given element is currently in the cache, a max-priority
queue to retrieve the data element with the furthest access time, and a hash table
(resolving collisions by chaining) to map data elements to integer indices. We
assume that the data elements can be linearly ordered, so that it makes sense
to put them into a red-black tree and a max-priority queue. The following pro-
cedure INITIALIZE -CACHE creates and initializes some global data structures
that are used by ACCESS.

INITIALIZE -CACHE.R; k/

let T be a new red-black tree
let P be a new max-priority queue
let H be a new hash table
ind D 1

for i D 1 to n

j D HASH-SEARCH.ri/

if j == NIL

HASH-INSERT.ri ; ind/

let Sind be a new linked list
j D ind
ind D indC 1

appendi to Sj

In the above procedure, here is the meaning of various variables:

� The red-black treeT has at mostk nodes and holds the distinct data elements
that are currently in the cache. We assume that the red-blacktree procedures
are modified to keep track of the number of nodes currently in the tree, and
that the procedure TREE-SIZE returns this value. Because red-black treeT

has at mostk nodes, we can insert into, delete from, or search in it inO.lg k/

worst-case time.
� The max-priority queueP contains elements with two attributes:key is the

next access time of a data element, and�alue is the actual data element
for each data element in the cache.keygives the key and�alue is satellite
data in the priority queue. Like the red-black treeT , the max-priority queue
contains only elements currently in the cache. We need to maintainT andP

separately, however, becauseT is keyed on the data elements andP is keyed
on access times. Using a max-heap to implementP , we can extract the
maximum element or insert a new element inO.lg k/ time, and we can find
the maximum element in‚.1/ time.

� The hash tableH is a dictionary or a map, which maps each data element to a
unique integer. This integer is used to index linked lists, which are described
next. We assume that the HASH-INSERT procedure uses the table-expansion
technique of Section 17.4.1 to keep the hash table’s load factor to be at most
some constant̨ . In this way, the amortized cost per insertion is‚.1/ and,
under the assumption of simple uniform hashing, then by Theorems 11.1
and 11.2, the average-case search time is also‚.1/.

� For every distinct data elementri , we create a linked listSind (where
ind is obtained through the hash table) holding the indices in the in-

Solutions for Chapter 16: Greedy Algorithms 16-25

put array whereri occurs. For example, if the input sequence is
hd; b; d; b; d; a; c; d; b; a; c; bi, then we create four linked lists:S1 for a,
S2 for b, S3 for c, andS4 for d . S1 holds the indices wherea is accessed,
and soS1 D h6; 10i. Similarly, S2 D h2; 4; 9; 12i, S3 D h7; 11i and
S4 D h1; 3; 5; 8i.

For each data elementri , we first check whether there is already a linked list
associated withri and create a new linked list if not. We retrieve the linked list
associated withri and appendi to it, indicating that an access tori occurs at
accessi .

ACCESS.ri/

// Compute the next access time forri .
ind D HASH-SEARCH.ri/

timeD 1
delete the head ofSind

if Sind is not empty
timeD head ofSind

// Check to see whetherri is currently in the cache.
if TREE-SEARCH.T:root; ri / ¤ NIL

print “cache hit”
elseifTREE-SIZE.T / < k

// Insert in an empty slot in the cache.
let ´ be a new node forT
´:keyD ri

RB-INSERT.T; ´/

let e�entbe a new object forP
e�ent:keyD time
e�ent:�alueD ri

INSERT.P; e�ent/
print “cache miss, inserted ”ri “ in empty slot”

elsee�entD MAXIMUM .P /

if e�ent:key� time // ri has the furthest access time
print “cache miss, no data element evicted”

else// evict the element with furthest access time
print “cache miss, evict data element ”e�ent:�alue
e�entD EXTRACT-MAX .P /

RB-DELETE.T; TREE-SEARCH.T:root; e�ent:�alue//
e�ent:keyD time
e�ent:�alueD ri

INSERT.P; e�ent/
let ´ be a new node forT
´:keyD ri

RB-INSERT.T; ´/

The procedure ACCESStakes an inputri and decides which element to evict,
if any, from the cache. The firstif condition properly setstime to the next
access time ofri . The head of the linked list associated withri containsi ; we
remove this element from the list, and the new head contains the next access

16-26 Solutions for Chapter 16: Greedy Algorithms

time for ri . Then, we check to see whetherri is already present in the cache.
If ri is not present in the cache, we check to see whether we can store ri in
an empty slot. If there are no empty slots, we have to evict theelement with
the furthest access time. We retrieve the element with the furthest access time
from the max-priority queue and compare it with that ofri . If ri ’s next access
is sooner, we evict the element with the furthest access timefrom the cache
(deleting the element from the tree and from the priority queue) and insertri

into the tree and priority queue.

Under the assumption of simple uniform hashing, the average-case running
time of ACCESSis O.lg k/, since it performs a constant number of operations
on the red-black tree, priority queue, and hash table. Thus,the average-case
running time of CACHE-MANAGER is O.n lg k/.

b. To show that the problem exhibits optimal substructure, we define the subprob-
lem .C; i/ as the contents of the cache just before thei th request, whereC is a
subset of the set of input data elements containing at mostk of them. Asolution
to .C; i/ is a sequence of decisions that specifies which element to evict (if any)
for each requesti; i C 1; : : : ; n. An optimal solutionto .C; i/ is a solution that
minimizes the number of cache misses.

Let S be an optimal solution to.C; i/. Let S 0 be the subsolution ofS for
requestsi C 1; i C 2; : : : ; n. If a cache hit occurs on thei th request, then the
cache remains unchanged. If a cache miss occurs, then thei th request results in
the contents of the cache changing toC 0 (possibly withC 0 D C if no element
was evicted). We claim thatS 0 is an optimal solution to.C 0; iC1/. Why? If S 0

were not an optimal solution to.C 0; iC1/, then there exists another solutionS 00

to .C 0; iC1/ that makes fewer cache misses thanS 0. By combiningS 00 with the
decision ofS at thei th request, we obtain another solution that makes fewer
cache misses thanS , which contradicts our assumption thatS is an optimal
solution to.C; i/.

Suppose thei th request results in a cache miss. LetPC be the set of all cache
states that can be reached fromC through a single decision of the cache man-
ager. The setPC contains up tok C 1 states:k of them arising from different
elements of the cache being evicted and one arising from the decision of evict-
ing no element. For example, ifC D fr1; r2; r3g and the requested data element
is r4, thenPC D ffr1; r2; r3g ; fr1; r2; r4g ; fr1; r3; r4g ; fr2; r3; r4gg.
Let miss.C; i/ denote the minimum number of cache misses for.C; i/. We can
state a recurrence formiss.C; i/ as

miss.C; i/ D

†
0 if i D n andrn 2 C ;

1 if i D n andrn 62 C ;

miss.C; i C 1/ if i < n andri 2 C ;

1C min
C 02PC

fmiss.C 0; i C 1/g if i < n andri 62 C :

Thus, we conclude that the problem exhibits optimal substructure.

c. To prove that the furthest-in-future strategy yields an optimal solution, we
show that the problem exhibits the greedy-choice property.Combined with the
optimal-substructure property from part (b), the greedy-choice property will

Solutions for Chapter 16: Greedy Algorithms 16-27

prove that furthest-in-future produces the minimum possible number of cache
misses.

We use the definitions of subproblem, solution, and optimal solution from
part (b). Since we will be comparing different solutions, let us defineCAi as
the state of the cache for solutionA just before thei th request. The following
theorem is the key.

Theorem (Greedy-choice property)
Let A be some optimal solution to.C; i/. Let b be the element inCAi [frig
whose next access at the time of thei th request is furthest in the future, at
time m. Then, we can construct another solutionA0 to .C; i/ that has the fol-
lowing properties:

1. On thei th request,A0 evictsb.
2. Fori C 1 � j � m, the cachesCAj andCA0j differ by at most one element.

If they differ, thenb 2 CAj is always the element inCAj that is not inCA0j .
Equivalently, if CAj and CA0j differ, we can writeCAj D Dj [fbg and
CA0j D Dj [fxg, whereDj is a size-(k � 1) set andx ¤ b is some data
element.

3. For requestsi; : : : ; m � 1, if A has a cache hit, thenA0 has a cache hit.
4. CAj D CA0j for j > m.
5. For requestsi; : : : ; m, the number of cache misses produced byA0 is at most

the number of cache misses produced byA.

Proof If A evictsb at requesti , then the proof of the theorem is trivial. There-
fore, supposeA evicts data elementa on requesti , wherea ¤ b. We will prove
the theorem by constructingA0 inductively for each request.

(1) At requesti , A0 evictsb instead ofa.

(2) We proceed with induction onj , wherei C 1 � j � m. The construction
for property 1 establishes the base case becauseCA;iC1 andCA0;iC1 differ by
just one element andb is the element inCA;iC1 that is not inCA0;iC1.

For the induction step, suppose property 2 is true for some requestj , where
i C 1 � j < m. If A does not evict any element or evicts an element inDj ,
then constructA0 to make the same decision on requestj asA makes. IfA
evictsb on requestj , then constructA0 to evict x and keep the same element
asA keeps, namelyrj . This construction conserves property 2 forj C 1. Note
that this construction might sometimes insert duplicate elements in the cache.
This situation can easily be dealt with by introducing a dummy element forx.

(3) SupposeA has a cache hit for requestj , wherei � j � m � 1. Then,
rj 2 Dj sincerj ¤ b. Thus,rj 2 CA0j andA0 has a cache hit, too.

(4) By property 2, the cacheCAm differs from CA0m by at most one element,
with b being the element inCAm that might not be inCA0m. If CAm D CA0m,
then constructA0 to make the same decision on requestm asA. Otherwise,
CAm ¤ CA0m andb 2 CAm. ConstructA0 to evictx and keepb on requestm.
Since themth request is for elementb andb 2 CAm, A has a cache hit so that it
does not evict any element. Thus, we can ensure thatCA;mC1 D CA0;mC1. From
the.mC 1/st request on,A0 simply makes the same decisions asA.

16-28 Solutions for Chapter 16: Greedy Algorithms

(5) By property 3, for requestsi; : : : ; m � 1, whenever we have a cache hit
for A, we also have a cache hit forA0. Thus, we have to concern ourselves with
only themth request. IfA has a cache miss on themth request, we are done.
Otherwise,A has a cache hit on themth request, and we will prove that there
exists at least one requestj , whereiC1 � j � m�1, such that thej th request
results in a cache miss forA and a cache hit forA0. BecauseA evicts data
elementa in requesti , then, by our construction ofA0, CA0;iC1 D DiC1 [fag.
The mth request is for data elementb. If A has a cache hit, then because
none of the requestsi C 1; : : : ; m � 1 were forb, A could not have evictedb
and brought it back. Moreover, becauseA has a cache hit on themth request,
b 2 CAm. Therefore,A did not evictb in any of requestsi; : : : ; m � 1. By
our construction,A0 did not evicta. But a request fora occurs at least once
before themth request. Consider the first such instance. At this instance,A has
a cache miss andA0 has a cache hit.

The above theorem and the optimal-substructure property proved in part (b)
imply that furthest-in-future produces the minimum numberof cache misses.

Lecture Notes for Chapter 17:
Amortized Analysis

Chapter 17 overview

Amortized analysis

� Analyze asequenceof operations on a data structure.
� Goal: Show that although some individual operations may be expensive, on

averagethe cost per operation is small.

Averagein this context does not mean that we’re averaging over a distribution of
inputs.

� No probability is involved.
� We’re talking aboutaverage cost in the worst case.

Organization

We’ll look at 3 methods:

� aggregate analysis
� accounting method
� potential method

Using 3 examples:

� stack with multipop operation
� binary counter
� dynamic tables (later on)

Aggregate analysis

Stack operations

� PUSH.S; x/: O.1/ each) O.n/ for any sequence ofn operations.
� POP.S/: O.1/ each) O.n/ for any sequence ofn operations.

17-2 Lecture Notes for Chapter 17: Amortized Analysis

� MULTIPOP.S; k/

while S is not empty andk > 0

POP.S/

k D k � 1

Running time of MULTIPOP:

� Linear in # of POP operations.
� Let each PUSH/POP cost 1.
� # of iterations ofwhile loop is min.s; k/, wheres D # of objects on stack.
� Therefore, total costD min.s; k/.

Sequence ofn PUSH, POP, MULTIPOP operations:

� Worst-case cost of MULTIPOP is O.n/.
� Haven operations.
� Therefore, worst-case cost of sequence isO.n2/.

Observation

� Each object can be popped only once per time that it’s pushed.
� Have� n PUSHes)� n POPs, including those in MULTIPOP.
� Therefore, total costD O.n/.
� Average over then operations) O.1/ per operation on average.

Again, notice no probability.

� Showedworst-caseO.n/ cost for sequence.
� Therefore,O.1/ per operation on average.

This technique is calledaggregate analysis.

Binary counter

� k-bit binary counterAŒ0 : : k � 1� of bits, whereAŒ0� is the least significant bit
andAŒk � 1� is the most significant bit.

� Counts upward from0.

� Value of counter is
k�1
X

iD0

AŒi� � 2i .

� Initially, counter value is0, soAŒ0 : : k � 1� D 0.
� To increment, add1 .mod 2k/:

INCREMENT.A; k/

i D 0

while i < k andAŒi� == 1

AŒi� D 0

i D i C 1

if i < k

AŒi� D 1

Lecture Notes for Chapter 17: Amortized Analysis 17-3

Example:k D 3

[Underlined bits flip. Show costs later.]

counter A

value 2 1 0 cost
0 0 0 0 0
1 0 0 1 1
2 0 1 0 3
3 0 1 1 4
4 1 0 0 7
5 1 0 1 8
6 1 1 0 10
7 1 1 1 11
0 0 0 0 14
:::

::: 15

Cost of INCREMENTD ‚(# of bits flipped) .

Analysis

Each call could flipk bits, son INCREMENTs takesO.nk/ time.

Observation

Not every bit flips every time.

[Show costs from above.]

bit flips how often times inn INCREMENTs
0 every time n

1 1=2 the time bn=2c
2 1=4 the time bn=4c

:::

i 1=2i the time bn=2ic
:::

i � k never 0

Therefore, total # of flips D
k�1
X

iD0

�

n=2i
˘

< n

1
X

iD0

1=2i

D n

�
1

1� 1=2

�

D 2n :

Therefore,n INCREMENTs costsO.n/.

Average cost per operationD O.1/.

17-4 Lecture Notes for Chapter 17: Amortized Analysis

Accounting method

Assign different charges to different operations.

� Some are charged more than actual cost.
� Some are charged less.

Amortized costD amount we charge.

When amortized cost> actual cost, store the differenceon specific objectsin the
data structure ascredit.

Use credit later to pay for operations whose actual cost> amortized cost.

Differs from aggregate analysis:

� In the accounting method, different operations can have different costs.
� In aggregate analysis, all operations have same cost.

Need credit to never go negative.

� Otherwise, have a sequence of operations for which the amortized cost is not
an upper bound on actual cost.

� Amortized cost would tell usnothing.

Let ci D actual cost ofi th operation;

yci D amortized cost ofi th operation:

Then require
n
X

iD1

yci �
n
X

iD1

ci for all sequences ofn operations.

Total credit storedD
n
X

iD1

yci �
n
X

iD1

ci �
„ƒ‚…

had better be

0 .

Stack

operation actual cost amortized cost
PUSH 1 2
POP 1 0
MULTIPOP min.k; s/ 0

Intuition

When pushing an object, pay $2.

� $1 pays for the PUSH.
� $1 is prepayment for it being popped by either POP or MULTIPOP.
� Since each object has $1, which is credit, the credit can never go negative.
� Therefore, total amortized cost,D O.n/, is an upper bound on total actual cost.

Lecture Notes for Chapter 17: Amortized Analysis 17-5

Binary counter

Charge $2 to set a bit to 1.

� $1 pays for setting a bit to 1.
� $1 is prepayment for flipping it back to 0.
� Have $1 of credit for every 1 in the counter.
� Therefore, credit� 0.

Amortized cost of INCREMENT:

� Cost of resetting bits to 0 is paid by credit.
� At most 1 bit is set to 1.
� Therefore, amortized cost� $2.
� Forn operations, amortized costD O.n/.

Potential method

Like the accounting method, but think of the credit aspotential stored with the
entire data structure.

� Accounting method stores credit with specific objects.
� Potential method stores potential in the data structure as awhole.
� Can release potential to pay for future operations.
� Most flexible of the amortized analysis methods.

Let Di D data structure afteri th operation;

D0 D initial data structure;

ci D actual cost ofi th operation;

yci D amortized cost ofi th operation:

Potential functionˆ W Di ! R

ˆ.Di / is thepotentialassociated with data structureDi .
yci D ci Cˆ.Di / �ˆ.Di�1/

D ci C�ˆ.Di /
„ ƒ‚ …

:

increase in potential due toi th operation

Total amortized costD
n
X

iD1

yci

D
n
X

iD1

.ci Cˆ.Di / �ˆ.Di�1//

(telescoping sum: every term other thanD0 andDn

is added once and subtracted once)

D
n
X

iD1

ci Cˆ.Dn/ �ˆ.D0/ :

17-6 Lecture Notes for Chapter 17: Amortized Analysis

If we require that̂ .Di / � ˆ.D0/ for all i , then the amortized cost is always an
upper bound on actual cost.

In practice:ˆ.D0/ D 0, ˆ.Di / � 0 for all i .

Stack

ˆ D # of objects in stack

.D # of $1 bills in accounting method)

D0 D empty stack) ˆ.D0/ D 0.

Since # of objects in stack is always� 0, ˆ.Di / � 0 D ˆ.D0/ for all i .

operation actual cost �ˆ amortized cost
PUSH 1 .s C 1/ � s D 1 1C 1 D 2

wheres D # of objects initially
POP 1 .s � 1/ � s D �1 1 � 1 D 0

MULTIPOP k0 D min.k; s/ .s � k0/ � s D �k0 k0 � k0 D 0

Therefore, amortized cost of a sequence ofn operationsD O.n/.

Binary counter

ˆ D bi D # of 1’s afteri th INCREMENT

Supposei th operation resetsti bits to 0.

ci � ti C 1 (resetsti bits, sets� 1 bit to 1)

� If bi D 0, thei th operation reset allk bits and didn’t set one, so
bi�1 D ti D k) bi D bi�1 � ti .

� If bi > 0, thei th operation resetti bits, set one, so
bi D bi�1 � ti C 1.

� Either way,bi � bi�1 � ti C 1.
� Therefore,

�ˆ.Di / � .bi�1 � ti C 1/ � bi�1

D 1 � ti :

yci D ci C�ˆ.Di /

� .ti C 1/C .1 � ti /

D 2 :

If counter starts at 0,̂ .D0/ D 0.

Therefore, amortized cost ofn operationsD O.n/.

Dynamic tables

A nice use of amortized analysis.

Lecture Notes for Chapter 17: Amortized Analysis 17-7

Scenario

� Have a table—maybe a hash table.
� Don’t know in advance how many objects will be stored in it.
� When it fills, must reallocate with a larger size, copying allobjects into the new,

larger table.
� When it gets sufficiently small,mightwant to reallocate with a smaller size.

Details of table organization not important.

Goals

1. O.1/ amortized time per operation.

2. Unused space always� constant fraction of allocated space.

Load factor˛ D num=size, wherenumD # items stored,sizeD allocated size.

If sizeD 0, thennumD 0. Call ˛ D 1.

Never allow˛ > 1.

Keep˛ > a constant fraction) goal (2).

Table expansion

Consider only insertion.

� When the table becomes full, double its size and reinsert allexisting items.
� Guarantees that̨ � 1=2.
� Each time we actually insert an item into the table, it’s anelementary insertion.

TABLE-INSERT.T; x/

if T:size== 0

allocateT: tablewith 1 slot
T:sizeD 1

if T:num== T:size // expand?
allocatenew-tablewith 2 � T:sizeslots
insert all items inT: table into new-table // T:numelem insertions
freeT: table
T: tableD new-table
T:sizeD 2 � T:size

insertx into T: table // 1 elem insertion
T:numD T:numC 1

Initially, T:numD T:sizeD 0.

17-8 Lecture Notes for Chapter 17: Amortized Analysis

Running time

Charge 1 per elementary insertion. Count only elementary insertions, since all
other costs together are constant per call.

ci D actual cost ofi th operation

� If not full, ci D 1.
� If full, have i � 1 items in the table at the start of thei th operation. Have to

copy alli � 1 existing items, then inserti th item) ci D i .

n operations) ci D O.n/) O.n2/ time for n operations.

Of course, we don’t always expand:

ci D
(

i if i � 1 is exact power of 2;

1 otherwise:

Total cost D
n
X

iD1

ci

� nC
blg nc
X

j D0

2j

D nC 2blg ncC1 � 1

2� 1
< nC 2n

D 3n

Therefore,aggregate analysissays amortized cost per operationD 3.

Accounting method

Charge $3 per insertion ofx.

� $1 pays forx’s insertion.
� $1 pays forx to be moved in the future.
� $1 pays for some other item to be moved.

Suppose we’ve just expanded,sizeD m before next expansion,sizeD 2m after
next expansion.

� Assume that the expansion used up all the credit, so that there’s no credit stored
after the expansion.

� Will expand again after anotherm insertions.
� Each insertion will put $1 on one of them items that were in the table just after

expansion and will put $1 on the item inserted.
� Have $2m of credit by next expansion, when there are2m items to move. Just

enough to pay for the expansion, with no credit left over!

Lecture Notes for Chapter 17: Amortized Analysis 17-9

Potential method

ˆ.T / D 2 � T:num� T:size

� Initially, numD sizeD 0) ˆ D 0.
� Just after expansion,sizeD 2 � num) ˆ D 0.
� Just before expansion,sizeD num) ˆ D num) have enough potential to

pay for moving all items.
� Needˆ � 0, always.

Always have

size � num � size=2)
2 � num � size)
ˆ � 0 .

Amortized cost ofi th operation
numi D numafteri th operation ,

sizei D sizeafteri th operation ,

ˆi D ˆ afteri th operation .

� If no expansion:

sizei D sizei�1 ;

numi D numi�1 C 1 ;

ci D 1 :

Then we have

yci D ci Cˆi �ˆi�1

D 1C .2 � numi � sizei / � .2 � numi�1 � sizei�1/

D 1C .2 � numi � sizei / � .2.numi � 1/ � sizei /

D 1C 2

D 3 :

� If expansion:

sizei D 2 � sizei�1 ;

sizei�1 D numi�1 D numi � 1 ;

ci D numi�1 C 1 D numi :

Then we have

yci D ci Cˆi Cˆi�1

D numi C .2 � numi � sizei/ � .2 � numi�1 � sizei�1/

D numi C .2 � numi � 2.numi � 1// � .2.numi � 1/ � .numi � 1//

D numi C 2� .numi � 1/

D 3 :

17-10 Lecture Notes for Chapter 17: Amortized Analysis

Φi

numisizei

0 8 16 24 32
0

8

16

24

32

i

Expansion and contraction

When˛ drops too low, contract the table.

� Allocate a new, smaller one.
� Copy all items.

Still want

� ˛ bounded from below by a constant,
� amortized cost per operationD O.1/.

Measure cost in terms of elementary insertions and deletions.

“Obvious strategy”
� Double size when inserting into a full table (when˛ D 1, so that after insertion

˛ would become> 1).
� Halve size when deletion would make table less than half full(when˛ D 1=2,

so that after deletion̨ would become< 1=2).
� Then always have1=2 � ˛ � 1.
� Suppose we fill table.

Then insert) double

2 deletes) halve

2 inserts) double

2 deletes) halve

� � �

Not performing enough operations after expansion or contraction to pay for the
next one.

Lecture Notes for Chapter 17: Amortized Analysis 17-11

Simple solution
� Double as before: when inserting with̨D 1) after doubling,̨ D 1=2.
� Halve size when deleting with̨D 1=4) after halving,̨ D 1=2.
� Thus, immediately after either expansion or contraction, have˛ D 1=2.
� Always have1=4 � ˛ � 1.

Intuition
� Want to make sure that we perform enough operations between consecutive

expansions/contractions to pay for the change in table size.
� Need to delete half the items before contraction.
� Need to double number of items before expansion.
� Either way, number of operations between expansions/contractions is at least a

constant fraction of number of items copied.

ˆ.T / D
(

2 � T:num� T:size if ˛ � 1=2 ;

T:size=2 � T:num if ˛ < 1=2 :

T empty) ˆ D 0.

˛ � 1=2) num� size=2) 2 � num� size) ˆ � 0.

˛ < 1=2) num< size=2) ˆ � 0.

Further intuition
ˆ measures how far from̨ D 1=2 we are.
� ˛ D 1=2) ˆ D 2 � num� 2 � numD 0.
� ˛ D 1) ˆ D 2 � num� numD num.
� ˛ D 1=4) ˆ D size=2 � numD 4 � num=2 � numD num.
� Therefore, when we double or halve, have enough potential topay for moving

all numitems.
� Potential increases linearly between˛ D 1=2 and˛ D 1, and it also increases

linearly between̨ D 1=2 and˛ D 1=4.
� Since˛ has different distances to go to get to1 or 1=4, starting from1=2, rate

of increase of̂ differs.
� For ˛ to go from 1=2 to 1, num increases fromsize=2 to size, for a total

increase ofsize=2. ˆ increases from0 to size. Thus,ˆ needs to increase
by 2 for each item inserted. That’s why there’s a coefficient of2 on the
T:numterm in the formula for̂ when˛ � 1=2.

� For˛ to go from1=2 to 1=4, numdecreases fromsize=2 to size=4, for a total
decrease ofsize=4. ˆ increases from0 to size=4. Thus,ˆ needs to increase
by 1 for each item deleted. That’s why there’s a coefficient of�1 on the
T:numterm in the formula for̂ when˛ < 1=2.

Amortized costs: more cases
� insert, delete
� ˛ � 1=2, ˛ < 1=2 (use˛i , since˛ can vary a lot)
� sizedoes/doesn’t change

17-12 Lecture Notes for Chapter 17: Amortized Analysis

Insert
� ˛i�1 � 1=2, same analysis as before) yci D 3.
� ˛i�1 < 1=2) no expansion(only occurs when̨ i�1 D 1).

� If ˛i�1 < 1=2 and˛i < 1=2:

yci D ci Cˆi Cˆi�1

D 1C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

D 1C .sizei=2 � numi/ � .sizei=2 � .numi � 1//

D 0 :

� If ˛i�1 < 1=2 and˛i � 1=2:

yci D 1C .2 � numi � sizei / � .sizei�1=2 � numi�1/

D 1C .2.numi�1 C 1/ � sizei�1/ � .sizei�1=2 � numi�1/

D 3 � numi�1 �
3

2
� sizei�1 C 3

D 3 � ˛i�1sizei�1 �
3

2
� sizei�1 C 3

<
3

2
� sizei�1 �

3

2
� sizei�1 C 3

D 3 :

Therefore, amortized cost of insert is< 3.

Delete
� If ˛i�1 < 1=2, then˛i < 1=2.

� If no contraction:

yci D 1C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

D 1C .sizei=2 � numi/ � .sizei=2 � .numi C 1//

D 2 :

� If contraction:

yci D .numi C 1
„ ƒ‚ …

/C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

move + delete

Œsizei=2 D sizei�1=4 D numi�1 D numi C 1�

D .numi C 1/C ..numi C 1/ � numi/ � ..2 � numi C 2/ � .numi C 1//

D 1 :

� If ˛i�1 � 1=2, then no contraction.

� If ˛i � 1=2:

yci D 1C .2 � numi � sizei / � .2 � numi�1 � sizei�1/

D 1C .2 � numi � sizei / � .2 � numi C 2� sizei/

D �1 :

Lecture Notes for Chapter 17: Amortized Analysis 17-13

� If ˛i < 1=2, since˛i�1 � 1=2, have

numi D numi�1 � 1 � 1

2
� sizei�1 � 1 D 1

2
� sizei � 1 :

Thus,

yci D 1C .sizei=2 � numi / � .2 � numi�1 � sizei�1/

D 1C .sizei=2 � numi / � .2 � numi C 2� sizei/

D �1C 3

2
� sizei � 3 � numi

� �1C 3

2
� sizei � 3

�
1

2
� sizei � 1

�

D 2 :

Therefore, amortized cost of delete is� 2.

Solutions for Chapter 17:
Amortized Analysis

Solution to Exercise 17.1-3
This solution is also posted publicly

Let ci D cost ofi th operation.

ci D
(

i if i is an exact power of 2;

1 otherwise:

Operation Cost
1 1
2 2
3 1
4 4
5 1
6 1
7 1
8 8
9 1
10 1
:::

:::

n operations cost

n
X

iD1

ci � nC
lg n
X

j D0

2j D nC .2n � 1/ < 3n :

(Note: Ignoring floor in upper bound of
P

2j .)

Average cost of operationD Total cost
operations

< 3 .

By aggregate analysis, the amortized cost per operationD O.1/.

Solutions for Chapter 17: Amortized Analysis 17-15

Solution to Exercise 17.2-1

[We assume that the only way in whichCOPY is invoked is automatically, after
every sequence ofk PUSH and POP operations.]

Charge $2 for each PUSH and POP operation and $0 for each COPY. When we call
PUSH, we use $1 to pay for the operation, and we store the other $1 onthe item
pushed. When we call POP, we again use $1 to pay for the operation, and we store
the other $1 in the stack itself. Because the stack size neverexceedsk, the actual
cost of a COPY operation is at most $k, which is paid by the $k found in the items
in the stack and the stack itself. Sincek PUSH and POP operations occur between
two consecutive COPY operations, $k of credit are stored, either on individual
items (from PUSH operations) or in the stack itself (from POP operations) by the
time a COPY occurs. Since the amortized cost of each operation isO.1/ and the
amount of credit never goes negative, the total cost ofn operations isO.n/.

Solution to Exercise 17.2-2
This solution is also posted publicly

Let ci D cost ofi th operation.

ci D
(

i if i is an exact power of 2;

1 otherwise:

Charge each operation $3 (amortized costyci).

� If i is not an exact power of 2, pay $1, and store $2 as credit.
� If i is an exact power of 2, pay $i , using stored credit.

Operation Cost Actual cost Credit remaining
1 3 1 2
2 3 2 3
3 3 1 5
4 3 4 4
5 3 1 6
6 3 1 8
7 3 1 10
8 3 8 5
9 3 1 7
10 3 1 9
:::

:::
:::

:::

Since the amortized cost is $3 per operation,
n
X

iD1

yci D 3n.

17-16 Solutions for Chapter 17: Amortized Analysis

We know from Exercise 17.1-3 that
n
X

iD1

ci < 3n.

Then we have
n
X

iD1

yci �
n
X

iD1

ci) creditD amortized cost� actual cost� 0.

Since the amortized cost of each operation isO.1/, and the amount of credit never
goes negative, the total cost ofn operations isO.n/.

Solution to Exercise 17.2-3
This solution is also posted publicly

We introduce a new fieldA:maxto hold the index of the high-order1 in A. Initially,
A:maxis set to�1, since the low-order bit ofA is at index 0, and there are initially
no 1’s in A. The value ofA:max is updated as appropriate when the counter is
incremented or reset, and we use this value to limit how much of A must be looked
at to reset it. By controlling the cost of RESET in this way, we can limit it to an
amount that can be covered by credit from earlier INCREMENTs.

INCREMENT.A/

i D 0

while i < A: lengthandAŒi� == 1

AŒi� D 0

i D i C 1

if i < A: length
AŒi� D 1

// Additions to book’s INCREMENT start here.
if i > A:max

A:maxD i

elseA:maxD �1

RESET.A/

for i D 0 to A:max
AŒi� D 0

A:maxD �1

As for the counter in the book, we assume that it costs $1 to flipa bit. In addition,
we assume it costs $1 to updateA:max.

Setting and resetting of bits by INCREMENT will work exactly as for the original
counter in the book: $1 will pay to set one bit to 1; $1 will be placed on the bit
that is set to 1 as credit; the credit on each 1 bit will pay to reset the bit during
incrementing.

In addition, we’ll use $1 to pay to updatemax, and ifmaxincreases, we’ll place an
additional $1 of credit on the new high-order 1. (Ifmaxdoesn’t increase, we can
just waste that $1—it won’t be needed.) Since RESETmanipulates bits at positions
only up toA:max, and since each bit up to there must have become the high-order 1

Solutions for Chapter 17: Amortized Analysis 17-17

at some time before the high-order 1 got up toA:max, every bit seen by RESET

has $1 of credit on it. So the zeroing of bits ofA by RESETcan be completely paid
for by the credit stored on the bits. We just need $1 to pay for resettingmax.

Thus charging $4 for each INCREMENT and $1 for each RESET is sufficient, so the
sequence ofn INCREMENT and RESET operations takesO.n/ time.

Solution to Exercise 17.3-3

Let Di be the heap after thei th operation, and letDi consist ofni elements. Also,
let k be a constant such that each INSERT or EXTRACT-M IN operation takes at
mostk ln n time, wheren D max.ni�1; ni /. (We don’t want to worry about taking
the log of0, and at least one ofni�1 andni is at least1. We’ll see later why we use
the natural log.)

Define

ˆ.Di / D
(

0 if ni D 0 ;

kni ln ni if ni > 0 :

This function exhibits the characteristics we like in a potential function: if we start
with an empty heap, then̂.D0/ D 0, and we always maintain that̂.Di / � 0.

Before proving that we achieve the desired amortized times,we show that ifn � 2,
thenn ln n

n�1
� 2. We have

n ln
n

n � 1
D n ln

�

1C 1

n � 1

�

D ln

�

1C 1

n � 1

�n

� ln
�

e
1

n�1

�n

(since1C x � ex for all realx)

D ln e
n

n�1

D n

n � 1
� 2 ;

assuming thatn � 2. (The equation lne
n

n�1 D n
n�1

is why we use the natural log.)

If the i th operation is an INSERT, thenni D ni�1 C 1. If the i th operation inserts
into an empty heap, thenni D 1, ni�1 D 0, and the amortized cost is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln 1C k � 1 ln 1 � 0

D 0 :

If the i th operation inserts into a nonempty heap, thenni D ni�1 C 1, and the
amortized cost is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln ni C kni ln ni � kni�1 ln ni�1

D k ln ni C kni ln ni � k.ni � 1/ ln.ni � 1/

17-18 Solutions for Chapter 17: Amortized Analysis

D k ln ni C kni ln ni � kni ln.ni � 1/C k ln.ni � 1/

< 2k ln ni C kni ln
ni

ni � 1

� 2k ln ni C 2k

D O.lg ni/ :

If the i th operation is an EXTRACT-M IN, thenni D ni�1 � 1. If the i th operation
extracts the one and only heap item, thenni D 0, ni�1 D 1, and the amortized cost
is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln 1C 0 � k � 1 ln 1

D 0 :

If the i th operation extracts from a heap with more than1 item, thenni D ni�1� 1

andni�1 � 2, and the amortized cost is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln ni�1 C kni ln ni � kni�1 ln ni�1

D k ln ni�1 C k.ni�1 � 1/ ln.ni�1 � 1/ � kni�1 ln ni�1

D k ln ni�1 C kni�1 ln.ni�1 � 1/ � k ln.ni�1 � 1/ � kni�1 ln ni�1

D k ln
ni�1

ni�1 � 1
C kni�1 ln

ni�1 � 1

ni�1

< k ln
ni�1

ni�1 � 1
C kni�1 ln 1

D k ln
ni�1

ni�1 � 1

� k ln 2 (sinceni�1 � 2)

D O.1/ :

A slightly different potential function—which may be easier to work with—is as
follows. For each nodex in the heap, letdi .x/ be the depth ofx in Di . Define

ˆ.Di / D
X

x2Di

k.di .x/C 1/

D k

ni C
X

x2Di

di .x/

!

;

wherek is defined as before.

Initially, the heap has no items, which means that the sum is over an empty set, and
soˆ.D0/ D 0. We always havê .Di / � 0, as required.

Observe that after an INSERT, the sum changes only by an amount equal to the
depth of the new last node of the heap, which isblg nic. Thus, the change
in potential due to an INSERT is k.1 C blg nic/, and so the amortized cost is
O.lg ni/CO.lg ni/ D O.lg ni / D O.lg n/.

After an EXTRACT-M IN, the sum changes by the negative of the depth of the old
last node in the heap, and so the potentialdecreasesby k.1 C blg ni�1c/. The
amortized cost is at mostk lg ni�1 � k.1C blg ni�1c/ D O.1/.

Solutions for Chapter 17: Amortized Analysis 17-19

Solution to Problem 17-2

a. The SEARCH operation can be performed by searching each of the individually
sorted arrays. Since all the individual arrays are sorted, searching one of them
using a binary search algorithm takesO.lg m/ time, wherem is the size of the
array. In an unsuccessful search, the time is‚.lg m/. In the worst case, we may
assume that all the arraysA0; A1; : : : ; Ak�1 are full, k D dlg.nC 1/e, and we
perform an unsuccessful search. The total time taken is

T .n/ D ‚.lg 2k�1 C lg 2k�2 C � � � C lg 21 C lg 20/

D ‚..k � 1/C .k � 2/C � � � C 1C 0/

D ‚.k.k � 1/=2/

D ‚.dlg.nC 1/e .dlg.nC 1/e � 1/=2/

D ‚
�

lg2 n
�

:

Thus, the worst-case running time is‚.lg2 n/.

b. We create a new sorted array of size 1 containing the new element to be inserted.
If array A0 (which has size 1) is empty, then we replaceA0 with the new sorted
array. Otherwise, we merge sort the two arrays into another sorted array of
size 2. IfA1 is empty, then we replaceA1 with the new array; otherwise we
merge sort the arrays as before and continue. Since arrayAi is of size2i , if we
merge sort two arrays of size2i each, we obtain one of size2iC1, which is the
size ofAiC1. Thus, this method will result in another list of arrays in the same
structure that we had before.

Let us analyze its worst-case running time. We will assume that merge sort
takes2m time to merge two sorted lists of sizem each. If all the arrays
A0; A1; : : : ; Ak�2 are full, then the running time to fill arrayAk�1 would be

T .n/ D 2
�

20 C 21 C � � � C 2k�2
�

D 2.2k�1 � 1/

D 2k � 2

D ‚.n/ :

Therefore, the worst-case time to insert an element into this data structure
is ‚.n/.

However, let us now analyze the amortized running time. Using the aggregate
method, we compute the total cost of a sequence ofn inserts, starting with
the empty data structure. Letr be the position of the rightmost0 in the binary
representationhnk�1; nk�2; : : : ; n0i of n, so thatnj D 1 for j D 0; 1; : : : ; r�1.
The cost of an insertion whenn items have already been inserted is

r�1
X

j D0

2 � 2j D O.2r / :

Furthermore,r D 0 half the time,r D 1 a quarter of the time, and so on.
There are at mostdn=2re insertions for each value ofr . The total cost of then
operations is therefore bounded by

17-20 Solutions for Chapter 17: Amortized Analysis

O

 dlg.nC1/e
X

rD0

�l n

2r

m�

2r

!

D O.n lg n/ :

The amortized cost per INSERT operation, therefore isO.lg n/.

We can also use the accounting method to analyze the running time. We can
charge $k to insert an element. $1 pays for the insertion, and we put $.k � 1/

on the inserted item to pay for it being involved in merges later on. Each time
it is merged, it moves to a higher-indexed array, i.e., fromAi to AiC1. It can
move to a higher-indexed array at mostk � 1 times, and so the $.k � 1/ on the
item suffices to pay for all the times it will ever be involved in merges. Since
k D ‚.lg n/, we have an amortized cost of‚.lg n/ per insertion.

c. DELETE.x/ will be implemented as follows:

1. Find the smallestj for which the arrayAj with 2j elements is full. Lety be
the last element ofAj .

2. Let x be in the arrayAi . If necessary, find which array this is by using the
search procedure.

3. Removex from Ai and puty into Ai . Then movey to its correct place inAi .
4. DivideAj (which now has2j � 1 elements left): The first element goes into

arrayA0, the next 2 elements go into arrayA1, the next 4 elements go into
arrayA2, and so forth. Mark arrayAj as empty. The new arrays are created
already sorted.

The cost of DELETE is ‚.n/ in the worst case, wherei D k � 1 and j D
k � 2: ‚.lg n/ to find Aj , ‚.lg2 n/ to find Ai , ‚.2i/ D ‚.n/ to put y in its
correct place in arrayAi , and‚.2j / D ‚.n/ to divide arrayAj . The following
sequence ofn operations, wheren=3 is a power of2, yields an amortized cost
that is no better: performn=3 INSERT operations, followed byn=3 pairs of
DELETE and INSERT. It costsO.n lg n/ to do the firstn=3 INSERT operations.
This creates a single full array. Each subsequent DELETE/INSERT pair costs
‚.n/ for the DELETE to divide the full array and another‚.n/ for the INSERT

to recombine it. The total is then‚.n2/, or ‚.n/ per operation.

Solution to Problem 17-4

a. For RB-INSERT, consider a complete red-black tree in which the colors alter-
nate between levels. That is, the root is black, the childrenof the root are red,
the grandchildren of the root are black, the great-grandchildren of the root are
red, and so on. When a node is inserted as a red child of one of the red leaves,
then case 1 of RB-INSERT-FIXUP occurs.lg.nC 1//=2 times, so that there are
�.lg n/ color changes to fix the colors of nodes on the path from the inserted
node to the root.

For RB-DELETE, consider a complete red-black tree in which all nodes are
black. If a leaf is deleted, then the double blackness will bepushed all the way
up to the root, with a color change at each level (case 2 of RB-DELETE-FIXUP),
for a total of�.lg n/ color changes.

Solutions for Chapter 17: Amortized Analysis 17-21

b. All cases except for case 1 of RB-INSERT-FIXUP and case 2 of RB-DELETE-
FIXUP are terminating.

c. Case 1 of RB-INSERT-FIXUP reduces the number of red nodes by1. As Fig-
ure 13.5 shows, nodé’s parent and uncle change from red to black, and´’s
grandparent changes from black to red. Hence,ˆ.T 0/ D ˆ.T / � 1.

d. Lines 1–16 of RB-INSERT cause one node insertion and a unit increase in po-
tential. The nonterminating case of RB-INSERT-FIXUP (Case 1) makes three
color changes and decreases the potential by1. The terminating cases of RB-
INSERT-FIXUP (cases 2 and 3) cause one rotation each and do not affect the
potential. (Although case 3 makes color changes, the potential does not change.
As Figure 13.6 shows, nodé’s parent changes from red to black, and´’s grand-
parent changes from black to red.)

e. The number of structural modifications and amount of potential change result-
ing from lines 1–16 of RB-INSERT and from the terminating cases of RB-
INSERT-FIXUP areO.1/, and so the amortized number of structural modifica-
tions of these parts isO.1/. The nonterminating case of RB-INSERT-FIXUP

may repeatO.lg n/ times, but its amortized number of structural modifications
is 0, since by our assumption the unit decrease in the potential pays for the
structural modifications needed. Therefore, the amortizednumber of structural
modifications performed by RB-INSERT is O.1/.

f. From Figure 13.5, we see that case 1 of RB-INSERT-FIXUP makes the follow-
ing changes to the tree:

� Changes a black node with two red children (nodeC) to a red node, resulting
in a potential change of�2.

� Changes a red node (nodeA in part (a) and nodeB in part (b)) to a black
node with one red child, resulting in no potential change.

� Changes a red node (nodeD) to a black node with no red children, resulting
in a potential change of1.

The total change in potential is�1, which pays for the structural modifications
performed, and thus the amortized number of structural modifications in case 1
(the nonterminating case) is0. The terminating cases of RB-INSERT-FIXUP

causeO.1/ structural changes. Becausew.�/ is based solely on node col-
ors and the number of color changes caused by terminating cases isO.1/, the
change in potential in terminating cases isO.1/. Hence, the amortized number
of structural modifications in the terminating cases isO.1/. The overall amor-
tized number of structural modifications in RB-INSERT, therefore, isO.1/.

g. Figure 13.7 shows that case 2 of RB-DELETE-FIXUP makes the following
changes to the tree:

� Changes a black node with no red children (nodeD) to a red node, resulting
in a potential change of�1.

� If B is red, then it loses a black child, with no effect on potential.
� If B is black, then it goes from having no red children to having one red

child, resulting in a potential change of�1.

17-22 Solutions for Chapter 17: Amortized Analysis

The total change in potential is either�1 or �2, depending on the color ofB.
In either case, one unit of potential pays for the structuralmodifications per-
formed, and thus the amortized number of structural modifications in case 2
(the nonterminating case) is at most0. The terminating cases of RB-DELETE

causeO.1/ structural changes. Becausew.�/ is based solely on node col-
ors and the number of color changes caused by terminating cases isO.1/, the
change in potential in terminating cases isO.1/. Hence, the amortized number
of structural changes in the terminating cases isO.1/. The overall amortized
number of structural modifications in RB-DELETE-FIXUP, therefore, isO.1/.

h. Since the amortized number structural modification in each operation isO.1/,
the actual number of structural modifications for any sequence of m RB-
INSERT and RB-DELETE operations on an initially empty red-black tree
is O.m/ in the worst case.

Lecture Notes for Chapter 21:
Data Structures for Disjoint Sets

Chapter 21 overview

Disjoint-set data structures

� Also known as “union find.”
� Maintain collectionS D fS1; : : : ; Skg of disjoint dynamic (changing over time)

sets.
� Each set is identified by arepresentative, which is some member of the set.

Doesn’t matter which member is the representative, as long as if we ask for the
representative twice without modifying the set, we get the same answer both
times.

[We do not include notes for the proof of running time of the disjoint-set forest
implementation, which is covered in Section 21.4.]

Operations

� MAKE-SET.x/: make a new setSi D fxg, and addSi to S .
� UNION.x; y/: if x 2 Sx; y 2 Sy , thenS D S � Sx � Sy [fSx [Syg.

� Representative of new set is any member ofSx [Sy, often the representative
of one ofSx andSy.

� DestroysSx andSy (since sets must be disjoint).

� FIND-SET.x/: return representative of set containingx.

Analysis in terms of:

� n D # of elementsD # of MAKE-SET operations,
� m D total # of operations.

21-2 Lecture Notes for Chapter 21: Data Structures for Disjoint Sets

Analysis
� Since MAKE-SET counts toward total # of operations,m � n.
� Can have at mostn � 1 UNION operations, since aftern � 1 UNIONs, only 1

set remains.
� Assume that the firstn operations are MAKE-SET (helpful for analysis, usually

not really necessary).

Application

Dynamic connected components.

For a graphG D .V; E/, verticesu; � are in same connected component if and
only if there’s a path between them.

� Connected components partition vertices into equivalenceclasses.

CONNECTED-COMPONENTS.G/

for each vertex� 2 G:V
MAKE-SET.�/

for each edge.u; �/ 2 G:E
if FIND-SET.u/ ¤ FIND-SET.�/

UNION.u; �/

SAME-COMPONENT.u; �/

if FIND-SET.u/ == FIND-SET.�/

return TRUE

else return FALSE

Note

If actually implementing connected components,

� each vertex needs a handle to its object in the disjoint-set data structure,
� each object in the disjoint-set data structure needs a handle to its vertex.

Linked list representation

� Each set is a singly linked list, represented by an object with attributes

� head: the first element in the list, assumed to be the set’s representative, and
� tail: the last element in the list.

Objects may appear within the list in any order.
� Each object in the list has attributes for

� the set member,
� pointer to the set object, and
� next.

Lecture Notes for Chapter 21: Data Structures for Disjoint Sets 21-3

MAKE-SET: create a singleton list.

FIND-SET: follow the pointer back to the list object, and then follow the head
pointer to the representative.

UNION: a couple of ways to do it.

1. UNION.x; y/: appendy’s list onto end ofx’s list. Usex’s tail pointer to find
the end.

� Need to update the pointer back to the set object for every node ony’s list.
� If appending a large list onto a small list, it can take a while.

Operation # objects updated
UNION.x2; x1/ 1
UNION.x3; x2/ 2
UNION.x4; x3/ 3
UNION.x5; x4/ 4

:::
:::

UNION.xn; xn�1/ n � 1

‚.n2/ total

Amortized time per operationD ‚.n/.

2. Weighted-union heuristic: Always append the smaller list to the larger list.
(Break ties arbitrarily.)

A single union can still take�.n/ time, e.g., if both sets haven=2 members.

Theorem
With weighted union, a sequence ofm operations onn elements takes
O.mC n lg n/ time.

Sketch of proof Each MAKE-SET and FIND-SET still takesO.1/. How many
times can each object’s representative pointer be updated?It must be in the
smaller set each time.

times updated size of resulting set
1 � 2

2 � 4

3 � 8
:::

:::

k � 2k

:::
:::

lg n � n

Therefore, each representative is updated� lg n times. (theorem)

Seems pretty good, but we can do much better.

21-4 Lecture Notes for Chapter 21: Data Structures for Disjoint Sets

Disjoint-set forest

Forest of trees.

� 1 tree per set. Root is representative.
� Each node points only to its parent.

c

h e

b

f

d

g

f

c

h e

b

d

g

UNION(e,g)

� MAKE-SET: make a single-node tree.
� UNION: make one root a child of the other.
� FIND-SET: follow pointers to the root.

Not so good—could get a linear chain of nodes.

Great heuristics

� Union by rank: make the root of the smaller tree (fewer nodes) a child of the
root of the larger tree.

� Don’t actually usesize.
� Userank, which is an upper bound on height of node.
� Make the root with the smaller rank into a child of the root with the larger

rank.

� Path compression: Find pathD nodes visited during FIND-SET on the trip to
the root. Make all nodes on the find path direct children of root.

a

b

c

d

d

a b c

Each node has two attributes,p (parent) andrank.

Lecture Notes for Chapter 21: Data Structures for Disjoint Sets 21-5

MAKE-SET.x/

x:p D x

x:rank D 0

UNION.x; y/

L INK .FIND-SET.x/; FIND-SET.y//

L INK .x; y/

if x:rank > y:rank
y:p D x

elsex:p D y

// If equal ranks, choosey as parent and increment its rank.
if x:rank == y:rank

y:rank D y:rankC 1

FIND-SET.x/

if x ¤ x:p
x:p D FIND-SET.x:p/

return x:p

FIND-SET makes a pass up to find the root, and a pass down as recursion unwinds
to update each node on find path to point directly to root.

Running time

If use both union by rank and path compression,O.m ˛.n//.

n ˛.n/

0–2 0
3 1

4–7 2
8–2047 3

2048–A4.1/ 4

What’sA4.1/? See Section 21.4, if you dare. It’s� 1080 � # of atoms in observ-
able universe.

This bound is tight—there exists a sequence of operations that takes�.m ˛.n//

time.

Solutions for Chapter 21:
Data Structures for Disjoint Sets

Solution to Exercise 21.2-3
This solution is also posted publicly

We want to show that we can assignO.1/ charges to MAKE-SET and FIND-SET

and anO.lg n/ charge to UNION such that the charges for a sequence of these
operations are enough to cover the cost of the sequence—O.mCn lg n/, according
to the theorem. When talking about the charge for each kind ofoperation, it is
helpful to also be able to talk about the number of each kind ofoperation.

Consider the usual sequence ofm MAKE-SET, UNION, and FIND-SET operations,
n of which are MAKE-SET operations, and letl < n be the number of UNION

operations. (Recall the discussion in Section 21.1 about there being at mostn � 1

UNION operations.) Then there aren MAKE-SET operations,l UNION operations,
andm � n � l FIND-SET operations.

The theorem didn’t separately name the numberl of UNIONs; rather, it bounded
the number byn. If you go through the proof of the theorem withl UNIONs, you
get the time boundO.m�lCl lg l/ D O.mCl lg l/ for the sequence of operations.
That is, the actual time taken by the sequence of operations is at mostc.mC l lg l/,
for some constantc.

Thus, we want to assign operation charges such that

(MAKE-SET charge) � n

C(FIND-SET charge) � .m � n � l/

C(UNION charge) � l

� c.mC l lg l/ ;

so that the amortized costs give an upper bound on the actual costs.

The following assignments work, wherec 0 is some constant� c:

� MAKE-SET: c 0

� FIND-SET: c 0

� UNION: c 0.lg nC 1/

Substituting into the above sum, we get
c 0nC c 0.m� n � l/C c 0.lg nC 1/l D c 0mC c 0l lg n

D c 0.mC l lg n/

> c.mC l lg l/ :

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-7

Solution to Exercise 21.2-5

As the hint suggests, make the representative of each set be the tail of its linked
list. Except for the tail element, each element’s representative pointer points to the
tail. The tail’s representative pointer points to the head.An element is the tail if
its next pointer isNIL . Now we can get to the tail inO.1/ time: if x:next== NIL ,
thentail D x, elsetail D x:rep. We can get to the head inO.1/ time as well: if
x:next== NIL , thenheadD x:rep, elseheadD x:rep:rep. The set object needs
only to store a pointer to the tail, though a pointer to any list element would suffice.

Solution to Exercise 21.2-6
This solution is also posted publicly

Let’s call the two listsA andB, and suppose that the representative of the new list
will be the representative ofA. Rather than appendingB to the end ofA, instead
spliceB into A right after the first element ofA. We have to traverseB to update
pointers to the set object anyway, so we can just make the lastelement ofB point
to the second element ofA.

Solution to Exercise 21.3-3

You need to find a sequence ofm operations onn elements that takes�.m lg n/

time. Start withn MAKE-SETs to create singleton setsfx1g ; fx2g ; : : : ; fxng. Next
perform then� 1 UNION operations shown below to create a single set whose tree
has depth lgn.

21-8 Solutions for Chapter 21: Data Structures for DisjointSets

UNION.x1; x2/ n=2 of these
UNION.x3; x4/

UNION.x5; x6/
:::

UNION.xn�1; xn/

UNION.x2; x4/ n=4 of these
UNION.x6; x8/

UNION.x10; x12/
:::

UNION.xn�2; xn/

UNION.x4; x8/ n=8 of these
UNION.x12; x16/

UNION.x20; x24/
:::

UNION.xn�4; xn/
:::

UNION.xn=2; xn/ 1 of these

Finally, performm � 2nC 1 FIND-SET operations on the deepest element in the
tree. Each of these FIND-SET operations takes�.lg n/ time. Lettingm � 3n, we
have more thanm=3 FIND-SET operations, so that the total cost is�.m lg n/.

Solution to Exercise 21.3-4

Maintain a circular, singly linked list of the nodes of each set. To print, just follow
the list until you get back to nodex, printing each member of the list. The only
other operations that change are FIND-SET, which setsx:next D x, and LINK ,
which exchanges the pointersx:nextandy:next.

Solution to Exercise 21.3-5

With the path-compression heuristic, the sequence ofm MAKE-SET, FIND-SET,
and LINK operations, where all the LINK operations take place before any of the
FIND-SET operations, runs inO.m/ time. The key observation is that once a
nodex appears on a find path,x will be either a root or a child of a root at all times
thereafter.

We use the accounting method to obtain theO.m/ time bound. We charge a
MAKE-SET operation two dollars. One dollar pays for the MAKE-SET, and one
dollar remains on the nodex that is created. The latter pays for the first time that
x appears on a find path and is turned into a child of a root.

We charge one dollar for a LINK operation. This dollar pays for the actual linking
of one node to another.

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-9

We charge one dollar for a FIND-SET. This dollar pays for visiting the root and
its child, and for the path compression of these two nodes, during the FIND-SET.
All other nodes on the find path use their stored dollar to pay for their visitation
and path compression. As mentioned, after the FIND-SET, all nodes on the find
path become children of a root (except for the root itself), and so whenever they
are visited during a subsequent FIND-SET, the FIND-SET operation itself will pay
for them.

Since we charge each operation either one or two dollars, a sequence ofm opera-
tions is charged at most2m dollars, and so the total time isO.m/.

Observe that nothing in the above argument requires union byrank. Therefore, we
get anO.m/ time bound regardless of whether we use union by rank.

Solution to Exercise 21.4-4

Clearly, each MAKE-SET and LINK operation takesO.1/ time. Because the rank
of a node is an upper bound on its height, each find path has length O.lg n/, which
in turn implies that each FIND-SET takesO.lg n/ time. Thus, any sequence of
m MAKE-SET, L INK , and FIND-SET operations onn elements takesO.m lg n/

time. It is easy to prove an analogue of Lemma 21.7 to show thatif we convert a
sequence ofm0 MAKE-SET, UNION, and FIND-SET operations into a sequence of
m MAKE-SET, L INK , and FIND-SET operations that takeO.m lg n/ time, then the
sequence ofm0 MAKE-SET, UNION, and FIND-SET operations takesO.m0 lg n/

time.

Solution to Exercise 21.4-5

Professor Dante is mistaken. Take the following scenario. Let n D 16, and make
16 separate singleton sets using MAKE-SET. Then do 8 UNION operations to link
the sets into 8 pairs, where each pair has a root with rank 0 anda child with rank 1.
Now do 4 UNIONs to link pairs of these trees, so that there are 4 trees, each with a
root of rank 2, children of the root of ranks 1 and 0, and a node of rank 0 that is the
child of the rank-1 node. Now link pairs of these trees together, so that there are
two resulting trees, each with a root of rank 3 and each containing a path from a
leaf to the root with ranks 0, 1, and 3. Finally, link these twotrees together, so that
there is a path from a leaf to the root with ranks 0, 1, 3, and 4. Let x andy be the
nodes on this path with ranks 1 and 3, respectively. SinceA1.1/ D 3, level.x/ D 1,
and sinceA0.3/ D 4, level.y/ D 0. Yet y follows x on the find path.

Solution to Exercise 21.4-6

First,˛0.22047 � 1/ D minfk W Ak.1/ � 2047g D 3, and22047 � 1� 1080.

21-10 Solutions for Chapter 21: Data Structures for Disjoint Sets

Second, we need that0 � level.x/ � ˛0.n/ for all nonrootsx with x:rank � 1.
With this definition of˛0.n/, we haveA˛0.n/.x:rank/ � A˛0.n/.1/ � lg.n C 1/ >

lg n � x:p:rank. The rest of the proof goes through with˛0.n/ replacing˛.n/.

Solution to Problem 21-1

a. For the input sequence

4; 8; E; 3; E; 9; 2; 6; E; E; E; 1; 7; E; 5 ;

the values in theextractedarray would be4; 3; 2; 6; 8; 1.

The following table shows the situation after thei th iteration of thefor loop
when we use OFF-L INE-M INIMUM on the same input. (For this input,n D 9

andm—the number of extractions—is6).

i K1 K2 K3 K4 K5 K6 K7 extracted
1 2 3 4 5 6

0 f4; 8g f3g f9; 2; 6g fg fg f1; 7g f5g
1 f4; 8g f3g f9; 2; 6g fg fg f5; 1; 7g 1
2 f4; 8g f3g f9; 2; 6g fg f5; 1; 7g 2 1
3 f4; 8g f9; 2; 6; 3g fg f5; 1; 7g 3 2 1
4 f9; 2; 6; 3; 4; 8g fg f5; 1; 7g 4 3 2 1
5 f9; 2; 6; 3; 4; 8g fg f5; 1; 7g 4 3 2 1
6 f9; 2; 6; 3; 4; 8g f5; 1; 7g 4 3 2 6 1
7 f9; 2; 6; 3; 4; 8g f5; 1; 7g 4 3 2 6 1
8 f5; 1; 7; 9; 2; 6; 3; 4; 8g 4 3 2 6 8 1

Becausej D mC 1 in the iterations fori D 5 andi D 7, no changes occur in
these iterations.

b. We want to show that the arrayextractedreturned by OFF-L INE-M INIMUM is
correct, meaning that fori D 1; 2; : : : ; m, extractedŒj � is the key returned by
thej th EXTRACT-M IN call.

We start withn INSERT operations andm EXTRACT-M IN operations. The
smallest of all the elements will be extracted in the first EXTRACT-M IN after
its insertion. So we findj such that the minimum element is inKj , and put the
minimum element inextractedŒj �, which corresponds to the EXTRACT-M IN

after the minimum element insertion.

Now we reduce to a similar problem withn � 1 INSERT operations andm � 1

EXTRACT-M IN operations in the following way: the INSERT operations are
the same but without the insertion of the smallest that was extracted, and the
EXTRACT-M IN operations are the same but without the extraction that ex-
tracted the smallest element.

Conceptually, we unite Ij and Ij C1, removing the extraction between them and
also removing the insertion of the minimum element from Ij [Ij C1. Uniting Ij
and Ij C1 is accomplished by line 6. We need to determine which set isKl , rather
than just usingKj C1 unconditionally, becauseKj C1 may have been destroyed
when it was united into a higher-indexed set by a previous execution of line 6.

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-11

Because we process extractions in increasing order of the minimum value
found, the remaining iterations of thefor loop correspond to solving the re-
duced problem.

There are two other points worth making. First, if the smallest remaining ele-
ment had been inserted after the last EXTRACT-M IN (i.e., j D m C 1), then
no changes occur, because this element is not extracted. Second, there may be
smaller elements within theKj sets than the the one we are currently looking
for. These elements do not affect the result, because they correspond to ele-
ments that were already extracted, and their effect on the algorithm’s execution
is over.

c. To implement this algorithm, we place each element in a disjoint-set forest.
Each root has a pointer to itsKi set, and eachKi set has a pointer to the root of
the tree representing it. All the valid setsKi are in a linked list.

Before OFF-L INE-MINIMUM , there is initialization that builds the initial setsKi

according to the Ii sequences.

� Line 2 (“determinej such thati 2 Kj ”) turns intoj D FIND-SET.i/.
� Line 5 (“let l be the smallest value greater thanj for which setKl exists”)

turns intoKl D Kj :next.
� Line 6 (“Kl D Kj [Kl , destroyingKj ”) turns into l D L INK .j; l/ and

removeKj from the linked list.

To analyze the running time, we note that there aren elements and that we have
the following disjoint-set operations:

� n MAKE-SET operations
� at mostn � 1 UNION operations before starting
� n FIND-SET operations
� at mostn L INK operations

Thus the numberm of overall operations isO.n/. The total running time is
O.m ˛.n// D O.n ˛.n//.

[The “tight bound” wording that this question uses does not refer to an “asymp-
totically tight” bound. Instead, the question is merely asking for a bound that is
not too “loose.”]

Solution to Problem 21-2

a. Denote the number of nodes byn, and letn D .m C 1/=3, so thatm D
3n � 1. First, perform then operations MAKE-TREE.�1/, MAKE-TREE.�2/,
. . . , MAKE-TREE.�n/. Then perform the sequence ofn � 1 GRAFT operations
GRAFT.�1; �2/, GRAFT.�2; �3/, . . . , GRAFT.�n�1; �n/; this sequence produces
a single disjoint-set tree that is a linear chain ofn nodes with�n at the root
and�1 as the only leaf. Then perform FIND-DEPTH.�1/ repeatedly,n times.
The total number of operations isnC .n � 1/C n D 3n � 1 D m.

21-12 Solutions for Chapter 21: Data Structures for Disjoint Sets

Each MAKE-TREE and GRAFT operation takesO.1/ time. Each FIND-DEPTH

operation has to follow ann-node find path, and so each of then FIND-DEPTH

operations takes‚.n/ time. The total time isn � ‚.n/ C .2n � 1/ � O.1/ D
‚.n2/ D ‚.m2/.

b. MAKE-TREE is like MAKE-SET, except that it also sets thed value to0:

MAKE-TREE.�/

�:p D �

�:rank D 0

�:d D 0

It is correct to set�:d to 0, because the depth of the node in the single-node
disjoint-set tree is0, and the sum of the depths on the find path for� consists
only of �:d.

c. FIND-DEPTH will call a procedure FIND-ROOT:

FIND-ROOT.�/

if �:p¤ �:p:p
y D �:p
�:p D FIND-ROOT.y/

�:d D �:dC y:d
return �:p

FIND-DEPTH.�/

FIND-ROOT.�/ // no need to save the return value
if � == �:p

return �:d
else return �:dC �:p:d

FIND-ROOT performs path compression and updates pseudodistances along the
find path from�. It is similar to FIND-SET on page 571, but with three changes.
First, when� is either the root or a child of a root (one of these conditions
holds if and only if�:p D �:p:p) in the disjoint-set forest, we don’t have to
recurse; instead, we just return�:p. Second, when we do recurse, we save
the pointer�:p into a new variabley. Third, when we recurse, we update�:d
by adding into it thed values of all nodes on the find path that are no longer
proper ancestors of� after path compression; these nodes are precisely the
proper ancestors of� other than the root. Thus, as long as� does not start out
the FIND-ROOT call as either the root or a child of the root, we addy:d into �:d.
Note thaty:d has been updated prior to updating�:d, if y is also neither the
root nor a child of the root.

FIND-DEPTH first calls FIND-ROOT to perform path compression and update
pseudodistances. Afterward, the find path from� consists of either just� (if �

is a root) or just� and�:p (if � is not a root, in which case it is a child of the
root after path compression). In the former case, the depth of � is just�:d, and
in the latter case, the depth is�:dC �:p:d.

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-13

d. Our procedure for GRAFT is a combination of UNION and LINK :

GRAFT.r; �/

r 0 D FIND-ROOT.r/

� 0 D FIND-ROOT.�/

´ D FIND-DEPTH.�/

if r 0:rank > � 0:rank
� 0:p D r 0

r 0:d D r 0:dC ´C 1

� 0:d D � 0:d� r 0:d
elser 0:p D � 0

r 0:d D r 0:dC ´C 1 � � 0:d
if r 0:rank == � 0:rank

� 0:rank D � 0:rankC 1

This procedure works as follows. First, we call FIND-ROOT on r and � in
order to find the rootsr 0 and� 0, respectively, of their trees in the disjoint-set
forest. As we saw in part (c), these FIND-ROOT calls also perform path com-
pression and update pseudodistances on the find paths fromr and�. We then
call FIND-DEPTH.�/, saving the depth of� in the variablé . (Since we have
just compressed�’s find path, this call of FIND-DEPTH takesO.1/ time.) Next,
we emulate the action of LINK , by making the root (r 0 or � 0) of smaller rank a
child of the root of larger rank; in case of a tie, we maker 0 a child of� 0.

If � 0 has the smaller rank, then all nodes inr ’s tree will have their depths in-
creased by the depth of� plus1 (becauser is to become a child of�). Altering
the psuedodistance of the root of a disjoint-set tree changes the computed depth
of all nodes in that tree, and so adding´ C 1 to r 0:d accomplishes this update
for all nodes inr ’s disjoint-set tree. Since� 0 will become a child ofr 0 in the
disjoint-set forest, we have just increased the computed depth of all nodes in
the disjoint-set tree rooted at� 0 by r 0:d. These computed depths should not
have changed, however. Thus, we subtract offr 0:d from � 0:d, so that the sum
� 0:dC r 0:d after making� 0 a child of r 0 equals� 0:d before making� 0 a child
of r 0.

On the other hand, ifr 0 has the smaller rank, or if the ranks are equal, thenr 0

becomes a child of� 0 in the disjoint-set forest. In this case,� 0 remains a root
in the disjoint-set forest afterward, and we can leave� 0:d alone. We have to
updater 0:d, however, so that after makingr 0 a child of � 0, the depth of each
node inr ’s disjoint-set tree is increased by´C 1. We add́ C 1 to r 0:d, but we
also subtract out� 0:d, since we have just mader 0 a child of� 0. Finally, if the
ranks ofr 0 and� 0 are equal, we increment the rank of� 0, as is done in the LINK

procedure.

e. The asymptotic running times of MAKE-TREE, FIND-DEPTH, and GRAFT are
equivalent to those of MAKE-SET, FIND-SET, and UNION, respectively. Thus,
a sequence ofm operations,n of which are MAKE-TREE operations, takes
‚.m ˛.n// time in the worst case.

Lecture Notes for Chapter 22:
Elementary Graph Algorithms

Graph representation

Given graphG D .V; E/. In pseudocode, represent vertex set byG:V and edge set
by G:E.

� G may be either directed or undirected.
� Two common ways to represent graphs for algorithms:

1. Adjacency lists.
2. Adjacency matrix.

When expressing the running time of an algorithm, it’s oftenin terms of bothjV j
andjEj. In asymptotic notation—andonly in asymptotic notation—we’ll drop the
cardinality. Example:O.V CE/.

[The introduction to Part VI talks more about this.]

Adjacency lists

Array Adj of jV j lists, one per vertex.

Vertexu’s list has all vertices� such that.u; �/ 2 E. (Works for both directed and
undirected graphs.)

In pseudocode, denote the array as attributeG:Adj, so will see notation such as
G:AdjŒu�.

Example

For an undirected graph:

1 2

3

45

1

2

3

4

5

2 5

1

2

2

4 1 2

5 3

4

5

Adj

4 3

22-2 Lecture Notes for Chapter 22: Elementary Graph Algorithms

If edges haveweights, can put the weights in the lists.

Weight: w W E ! R

We’ll use weights later on for spanning trees and shortest paths.

Space: ‚.V C E/.

Time: to list all vertices adjacent tou: ‚.degree.u//.

Time: to determine whether.u; �/ 2 E: O.degree.u//.

Example

For a directed graph:

1 2

3

1

2

3

4

2

4

1 2

4

Adj

34

Same asymptotic space and time.

Adjacency matrix

jV j � jV jmatrix A D .aij /

aij D
(

1 if .i; j / 2 E ;

0 otherwise:

1 0 0 1

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

0

1

0

0

1

1 2 3 4 5

1

2

3

4

5

1 0 0

0 0 1

1 0 0

0 1 1

0

0

1

0

1 2 3 4

1

2

3

4

Space: ‚.V 2/.

Time: to list all vertices adjacent tou: ‚.V /.

Time: to determine whether.u; �/ 2 E: ‚.1/.

Can store weights instead of bits for weighted graph.

We’ll use both representations in these lecture notes.

Representing graph attributes

Graph algorithms usually need to maintain attributes for vertices and/or edges. Use
the usual dot-notation: denote attributed of vertex� by �:d.

Use the dot-notation for edges, too: denote attributef of edge.u; �/ by .u; �/: f .

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-3

Implementing graph attributes

No one best way to implement. Depends on the programming language, the algo-
rithm, and how the rest of the program interacts with the graph.

If representing the graph with adjacency lists, can represent vertex attributes in
additional arrays that parallel theAdj array, e.g.,dŒ1 : : jV j�, so that if vertices
adjacent tou are inAdjŒu�, storeu:d in array entrydŒu�.

But can represent attributes in other ways. Example: represent vertex attributes as
instance variables within a subclass of aVertex class.

Breadth-first search

Input: GraphG D .V; E/, either directed or undirected, andsource vertexs 2 V .

Output: �:dD distance (smallest # of edges) froms to �, for all � 2 V .
In book, also�:� such that.u; �/ is last edge on shortest paths ; �.

� u is �’s predecessor.
� set of edgesf.�:�; �/ W � ¤ sg forms a tree.

Later, we’ll see a generalization of breadth-first search, with edge weights. For
now, we’ll keep it simple.

� Compute only�:d, not�:� . [See book for�:� .]
� Omitting colors of vertices.[Used in book to reason about the algorithm. We’ll

skip them here.]

Idea

Send a wave out froms.

� First hits all vertices 1 edge froms.
� From there, hits all vertices 2 edges froms.
� Etc.

Use FIFO queueQ to maintain wavefront.

� � 2 Q if and only if wave has hit� but has not come out of� yet.

BFS.V; E; s/

for eachu 2 V � fsg
u:d D 1

s:d D 0

Q D ;
ENQUEUE.Q; s/

while Q ¤ ;
u D DEQUEUE.Q/

for each� 2 G:AdjŒu�

if �:d ==1
�:d D u:dC 1

ENQUEUE.Q; �/

22-4 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example

directed graph[undirected example in book].

a

b

s

e

c

i

g

h

f
0

1

3

2

1

2

3

3

3

Can show thatQ consists of vertices withd values.

i i i : : : i i C 1 i C 1 : : : i C 1

� Only 1 or 2 values.
� If 2, differ by 1 and all smallest are first.

Since each vertex gets a finited value at most once, values assigned to vertices are
monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.

BFS may not reach all vertices.

TimeD O.V C E/.

� O.V / because every vertex enqueued at most once.
� O.E/ because every vertex dequeued at most once and we examine.u; �/ only

whenu is dequeued. Therefore, every edge examined at most once if directed,
at most twice if undirected.

Depth-first search

Input: G D .V; E/, directed or undirected. No source vertex given!

Output: 2 timestampson each vertex:

� �:dD discovery time
� �: f D finishing time

These will be useful for other algorithms later on.

Can also compute�:� . [See book.]

Will methodically exploreeveryedge.

� Start over from different vertices as necessary.

As soon as we discover a vertex, explore from it.

� Unlike BFS, which puts a vertex on a queue so that we explore from it later.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-5

As DFS progresses, every vertex has acolor:

� WHITE D undiscovered
� GRAY D discovered, but not finished (not done exploring from it)
� BLACK D finished (have found everything reachable from it)

Discovery and finishing times:

� Unique integers from 1 to2 jV j.
� For all �, �:d < �: f .

In other words,1 � �:d < �: f � 2 jV j.

Pseudocode

Uses a global timestamptime.

DFS.G/

for eachu 2 G:V
u:color D WHITE

timeD 0

for eachu 2 G:V
if u:color == WHITE

DFS-VISIT.G; u/

DFS-VISIT.G; u/

timeD timeC 1

u:d D time
u:color D GRAY // discoveru
for each� 2 G:AdjŒu� // explore.u; �/

if �:color == WHITE

DFS-VISIT.�/

u:color D BLACK

timeD timeC 1

u: f D time // finish u

Example

[Go through this example, adding in thed andf values as they’re computed. Show
colors as they change. Don’t put in the edge types yet.]

121

43

118

65

1613

1514

72 109

T

T

T

T

T

TB F

C C

C

C

C

C

d f

22-6 Lecture Notes for Chapter 22: Elementary Graph Algorithms

TimeD ‚.V CE/.

� Similar to BFS analysis.
� ‚, not justO, since guaranteed to examine every vertex and edge.

DFS forms adepth-first forestcomprised of> 1 depth-first trees. Each tree is
made of edges.u; �/ such thatu is gray and� is white when.u; �/ is explored.

Theorem (Parenthesis theorem)
[Proof omitted.]

For all u; �, exactly one of the following holds:

1. u:d < u: f < �:d < �: f or �:d < �: f < u:d < u: f (i.e., the intervalsŒu:d; u: f �
andŒ�:d; �: f � are disjoint) and neither ofu and� is a descendant of the other.

2. u:d < �:d < �: f < u: f and� is a descendant ofu.

3. �:d < u:d < u: f < �: f andu is a descendant of�.

Sou:d < �:d < u: f < �: f cannothappen.

Like parentheses:

� OK: () [] ([]) [()]
� Not OK: ([)] [(])

Corollary
� is a proper descendant ofu if and only if u:d < �:d < �: f < u: f .

Theorem (White-path theorem)
[Proof omitted.]

� is a descendant ofu if and only if at timeu:d, there is a pathu ; � consisting
of only white vertices. (Except foru, which wasjust colored gray.)

Classification of edges

� Tree edge:in the depth-first forest. Found by exploring.u; �/.
� Back edge:.u; �/, whereu is a descendant of�.
� Forward edge:.u; �/, where� is a descendant ofu, but not a tree edge.
� Cross edge:any other edge. Can go between vertices in same depth-first tree

or in different depth-first trees.

[Now label the example from above with edge types.]

In an undirected graph, there may be some ambiguity since.u; �/ and.�; u/ are
the same edge. Classify by the first type above that matches.

Theorem
[Proof omitted.]

In DFS of anundirected graph, we get only tree and back edges. No forward or
cross edges.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-7

Topological sort

Directed acyclic graph (dag)

A directed graph with no cycles.

Good for modeling processes and structures that have apartial order:

� a > b andb > c) a > c.
� But may havea andb such that neithera > b nor b > c.

Can always make atotal order(eithera > b or b > a for all a ¤ b) from a partial
order. In fact, that’s what a topological sort will do.

Example

Dag of dependencies for putting on goalie equipment:[Leave on board, but show
without discovery and finishing times. Will put them in later.]

shorts

17/22 pants

T-shirt

leg pads

hose

socks

16/23

25/26 15/24

skates18/21

19/20

batting glove

chest pad

sweater

mask

catch glove

7/14

8/13

9/12

10/11

2/5

blocker3/4

1/6

Lemma
A directed graphG is acyclic if and only if a DFS ofG yields no back edges.

Proof) : Show that back edge) cycle.

Suppose there is a back edge.u; �/. Then� is ancestor ofu in depth-first forest.

v

B

T

T

T

u

22-8 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Therefore, there is a path� ; u, so� ; u! � is a cycle.

(: Show that cycle) back edge.

SupposeG contains cyclec. Let � be the first vertex discovered inc, and let.u; �/

be the preceding edge inc. At time �:d, vertices ofc form a white path� ; u

(since� is the first vertex discovered inc). By white-path theorem,u is descendant
of � in depth-first forest. Therefore,.u; �/ is a back edge. (lemma)

Topological sortof a dag: a linear ordering of vertices such that if.u; �/ 2 E,
thenu appears somewhere before�. (Not like sorting numbers.)

TOPOLOGICAL-SORT.G/

call DFS.G/ to compute finishing times�: f for all � 2 G:V
output vertices in order ofdecreasingfinishing times

Don’t need to sort by finishing times.

� Can just output vertices as they’re finished and understand that we want the
reverseof this list.

� Or put them onto thefront of a linked list as they’re finished. When done, the
list contains vertices in topologically sorted order.

Time

‚.V C E/.

Do example.[Now write discovery and finishing times in goalie equipmentexam-
ple.]

Order:

26 socks
24 shorts
23 hose
22 pants
21 skates
20 leg pads
14 t-shirt
13 chest pad
12 sweater
11 mask
6 batting glove
5 catch glove
4 blocker

Correctness

Just need to show if.u; �/ 2 E, then�: f < u: f .
When we explore.u; �/, what are the colors ofu and�?

� u is gray.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-9

� Is � gray, too?
� No, because then� would be ancestor ofu.
) .u; �/ is a back edge.
) contradiction of previous lemma (dag has no back edges).

� Is � white?
� Then becomes descendant ofu.

By parenthesis theorem,u:d < �:d <�: f < u: f .
� Is � black?

� Then� is already finished.
Since we’re exploring.u; �/, we have not yet finishedu.
Therefore,�: f < u: f .

Strongly connected components

Given directed graphG D .V; E/.
A strongly connected component(SCC) of G is a maximal set of verticesC � V

such that for allu; � 2 C , bothu ; � and� ; u.

Example
[Just show SCC’s at first. Do DFS a little later.]

14/19 15/16

17/18 13/20

3/4

2/5

1/12

10/11

6/9

7/8

Algorithm usesGT D transposeof G.
� GT D .V; ET/, ET D f.u; �/ W .�; u/ 2 Eg.
� GT is G with all edges reversed.

Can createGT in ‚.V CE/ time if using adjacency lists.

Observation
G andGT have thesameSCC’s. (u and� are reachable from each other inG if
and only if reachable from each other inGT.)

Component graph

� GSCCD .V SCC; ESCC/.
� V SCC has one vertex for each SCC inG.
� ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

22-10 Lecture Notes for Chapter 22: Elementary Graph Algorithms

For our example:

Lemma
GSCC is a dag. More formally, letC andC 0 be distinct SCC’s inG, let u; � 2 C ,
u0; � 0 2 C 0, and suppose there is a pathu ; u0 in G. Then there cannot also be a
path� 0

; � in G.

Proof Suppose there is a path� 0
; � in G. Then there are pathsu ; u0

; � 0

and� 0
; � ; u in G. Therefore,u and� 0 are reachable from each other, so they

are not in separate SCC’s. (lemma)

SCC.G/

call DFS.G/ to compute finishing timesu: f for all u

computeGT

call DFS.GT/, but in the main loop, consider vertices in order of decreasing u: f
(as computed in first DFS)

output the vertices in each tree of the depth-first forest formed in second DFS
as a separate SCC

Example:

1. Do DFS

2. GT

3. DFS (roots blackened)

Time: ‚.V CE/.

How can this possibly work?

Idea

By considering vertices in second DFS in decreasing order offinishing times from
first DFS, we are visiting vertices of the component graph in topological sort order.

To prove that it works, first deal with 2 notational issues:

� Will be discussingu:d andu: f . These always refer tofirst DFS.
� Extend notation ford andf to sets of verticesU � V :

� d.U / D minu2U fu:dg (earliest discovery time)
� f .U / D maxu2U fu: f g (latest finishing time)

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-11

Lemma
Let C andC 0 be distinct SCC’s inG D .V; E/. Suppose there is an edge.u; �/ 2
E such thatu 2 C and� 2 C 0.

vuC
C′

Thenf .C / > f .C 0/.

Proof Two cases, depending on which SCC had the first discovered vertex during
the first DFS.

� If d.C / < d.C 0/, let x be the first vertex discovered inC . At time x:d, all
vertices inC andC 0 are white. Thus, there exist paths of white vertices fromx

to all vertices inC andC 0.

By the white-path theorem, all vertices inC andC 0 are descendants ofx in
depth-first tree.

By the parenthesis theorem,x: f D f .C / > f .C 0/.
� If d.C / > d.C 0/, let y be the first vertex discovered inC 0. At time y:d, all

vertices inC 0 are white and there is a white path fromy to each vertex inC 0

) all vertices inC 0 become descendants ofy. Again,y: f D f .C 0/.

At time y:d, all vertices inC are white.

By earlier lemma, since there is an edge.u; �/, we cannot have a path fromC 0

to C .

So no vertex inC is reachable fromy.

Therefore, at timey: f , all vertices inC are still white.

Therefore, for allw 2 C , w: f > y: f , which implies thatf .C / > f .C 0/.
(lemma)

Corollary
Let C and C 0 be distinct SCC’s inG D .V; E/. Suppose there is an edge
.u; �/ 2 ET, whereu 2 C and� 2 C 0. Thenf .C / < f .C 0/.

Proof .u; �/ 2 ET) .�; u/ 2 E. Since SCC’s ofG and GT are the same,
f .C 0/ > f .C /. (corollary)

Corollary
Let C andC 0 be distinct SCC’s inG D .V; E/, and suppose thatf .C / > f .C 0/.
Then there cannot be an edge fromC to C 0 in GT.

Proof It’s the contrapositive of the previous corollary.

Now we have the intuition to understand why the SCC procedureworks.

When we do the second DFS, onGT, start with SCCC such thatf .C / is max-
imum. The second DFS starts from somex 2 C , and it visits all vertices inC .

22-12 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Corollary says that sincef .C / > f .C 0/ for all C 0 ¤ C , there are no edges fromC
to C 0 in GT.

Therefore, DFS will visitonly vertices inC .

Which means that the depth-first tree rooted atx containsexactlythe vertices ofC .

The next root chosen in the second DFS is in SCCC 0 such thatf .C 0/ is maximum
over all SCC’s other thanC . DFS visits all vertices inC 0, but the only edges out
of C 0 go toC , which we’ve already visited.

Therefore, the only tree edges will be to vertices inC 0.

We can continue the process.

Each time we choose a root for the second DFS, it can reach only

� vertices in its SCC—get tree edges to these,
� vertices in SCC’salready visitedin second DFS—getno tree edges to these.

We are visiting vertices of.GT/SCC in reverse of topologically sorted order.

[The book has a formal proof.]

Solutions for Chapter 22:
Elementary Graph Algorithms

Solution to Exercise 22.1-6

We start by observing that ifaij D 1, so that.i; j / 2 E, then vertexi cannot
be a universal sink, for it has an outgoing edge. Thus, if rowi contains a1, then
vertexi cannot be a universal sink. This observation also means thatif there is a
self-loop .i; i/, then vertexi is not a universal sink. Now suppose thataij D 0,
so that.i; j / 62 E, and also thati ¤ j . Then vertexj cannot be a universal sink,
for either its in-degree must be strictly less thanjV j � 1 or it has a self-loop. Thus
if column j contains a0 in any position other than the diagonal entry.j; j /, then
vertexj cannot be a universal sink.

Using the above observations, the following procedure returns TRUE if vertex k

is a universal sink, andFALSE otherwise. It takes as input ajV j � jV j adjacency
matrix A D .aij /.

IS-SINK .A; k/

let A bejV j � jV j
for j D 1 to jV j // check for a1 in row k

if akj == 1

return FALSE

for i D 1 to jV j // check for an off-diagonal0 in columnk

if aik == 0 andi ¤ k

return FALSE

return TRUE

Because this procedure runs inO.V / time, we may call it onlyO.1/ times in
order to achieve ourO.V /-time bound for determining whether directed graphG

contains a universal sink.

Observe also that a directed graph can have at most one universal sink. This prop-
erty holds because if vertexj is a universal sink, then we would have.i; j / 2 E

for all i ¤ j and so no other vertexi could be a universal sink.

The following procedure takes an adjacency matrixA as input and returns either a
message that there is no universal sink or a message containing the identity of the
universal sink. It works by eliminating all but one vertex asa potential universal
sink and then checking the remaining candidate vertex by a single call to IS-SINK .

22-14 Solutions for Chapter 22: Elementary Graph Algorithms

UNIVERSAL-SINK .A/

let A be jV j � jV j
i D j D 1

while i � jV j andj � jV j
if aij == 1

i D i C 1

elsej D j C 1

if i > jV j
return “there is no universal sink”

elseif IS-SINK .A; i/ == FALSE

return “there is no universal sink”
else return i “is a universal sink”

UNIVERSAL-SINK walks through the adjacency matrix, starting at the upper left
corner and always moving either right or down by one position, depending on
whether the current entryaij it is examining is0 or 1. It stops once eitheri or j

exceedsjV j.
To understand why UNIVERSAL-SINK works, we need to show that after thewhile
loop terminates, the only vertex that might be a universal sink is vertexi . The call
to IS-SINK then determines whether vertexi is indeed a universal sink.

Let us fix i andj to be values of these variables at the termination of thewhile
loop. We claim that every vertexk such that1 � k < i cannot be a universal
sink. That is because the way thati achieved its final value at loop termination was
by finding a1 in each rowk for which 1 � k < i . As we observed above, any
vertexk whose row contains a1 cannot be a universal sink.

If i > jV j at loop termination, then we have eliminated all vertices from consid-
eration, and so there is no universal sink. If, on the other hand, i � jV j at loop
termination, we need to show that every vertexk such thati < k � jV j cannot
be a universal sink. Ifi � jV j at loop termination, then thewhile loop terminated
becausej > jV j. That means that we found a0 in every column. Recall our earlier
observation that if columnk contains a0 in an off-diagonal position, then vertexk
cannot be a universal sink. Since we found a0 in every column, we found a0 in
every columnk such thati < k � jV j. Moreover, we never examined any matrix
entries in rows greater thani , and so we never examined the diagonal entry in any
columnk such thati < k � jV j. Therefore, all the0s that we found in columnsk
such thati < k � jV j were off-diagonal. We conclude that every vertexk such
that i < k � jV j cannot be a universal sink.

Thus, we have shown that every vertex less thani and every vertex greater thani

cannot be a universal sink. The only remaining possibility is that vertexi might be
a universal sink, and the call to IS-SINK checks whether it is.

To see that UNIVERSAL-SINK runs inO.V / time, observe that eitheri or j is
incremented in each iteration of thewhile loop. Thus, thewhile loop makes at
most2 jV j � 1 iterations. Each iteration takesO.1/ time, for a totalwhile loop
time of O.V / and, combined with theO.V /-time call to IS-SINK , we get a total
running time ofO.V /.

Solutions for Chapter 22: Elementary Graph Algorithms 22-15

Solution to Exercise 22.1-7
This solution is also posted publicly

BBT .i; j / D
X

e2E

biebT
ej D

X

e2E

biebje

� If i D j , thenbiebje D 1 (it is 1 � 1 or .�1/ � .�1/) whenevere enters or leaves
vertexi , and 0 otherwise.

� If i ¤ j , thenbiebje D �1 whene D .i; j / or e D .j; i/, and 0 otherwise.

Thus,

BBT .i; j / D
(

degree ofi D in-degreeC out-degree ifi D j ;

�.# of edges connectingi andj / if i ¤ j :

Solution to Exercise 22.2-3

Note:This exercise changed in the third printing. This solution reflects the change.

The BFS procedure cares only whether a vertex is white or not.A vertex� must
become non-white at the same time that�:d is assigned a finite value so that we do
not attempt to assign to�:d again, and so we need to change vertex colors in lines
5 and 14. Once we have changed a vertex’s color to non-white, we do not need to
change it again.

Solution to Exercise 22.2-5
This solution is also posted publicly

The correctness proof for the BFS algorithm shows thatu:d D ı.s; u/, and the
algorithm doesn’t assume that the adjacency lists are in anyparticular order.

In Figure 22.3, ift precedesx in AdjŒw�, we can get the breadth-first tree shown
in the figure. But ifx precedest in AdjŒw� andu precedesy in AdjŒx�, we can get
edge.x; u/ in the breadth-first tree.

Solution to Exercise 22.2-6

The edges inE� are shaded in the following graph:

s

u w

v x

22-16 Solutions for Chapter 22: Elementary Graph Algorithms

To see thatE� cannot be a breadth-first tree, let’s suppose thatAdjŒs� containsu

before�. BFS adds edges.s; u/ and .s; �/ to the breadth-first tree. Sinceu is
enqueued before�, BFS then adds edges.u; w/ and.u; x/. (The order ofw andx

in AdjŒu� doesn’t matter.) Symmetrically, ifAdjŒs� contains� beforeu, then BFS
adds edges.s; �/ and.s; u/ to the breadth-first tree,� is enqueued beforeu, and
BFS adds edges.�; w/ and.�; x/. (Again, the order ofw andx in AdjŒ�� doesn’t
matter.) BFS will never put both edges.u; w/ and.�; x/ into the breadth-first tree.
In fact, it will also never put both edges.u; x/ and.�; w/ into the breadth-first tree.

Solution to Exercise 22.2-7

Create a graphG where each vertex represents a wrestler and each edge represents
a rivalry. The graph will containn vertices andr edges.

Perform as many BFS’s as needed to visit all vertices. Assignall wrestlers whose
distance is even to be babyfaces and all wrestlers whose distance is odd to be
heels. Then check each edge to verify that it goes between a babyface and a heel.
This solution would takeO.nC r/ time for the BFS,O.n/ time to designate each
wrestler as a babyface or heel, andO.r/ time to check edges, which isO.n C r/

time overall.

Solution to Exercise 22.3-4

Note:This exercise changed in the third printing. This solution reflects the change.

The DFS and DFS-VISIT procedures care only whether a vertex is white or not.
By coloring vertexu gray when it is first visited, in line 3 of DFS-VISIT, we
ensure thatu will not be visited again. Once we have changed a vertex’s color to
non-white, we do not need to change it again.

Solution to Exercise 22.3-5

a. Edge.u; �/ is a tree edge or forward edge if and only if� is a descendant ofu
in the depth-first forest. (If.u; �/ is a back edge, thenu is a descendant of�,
and if .u; �/ is a cross edge, then neither ofu or � is a descendant of the other.)
By Corollary 22.8, therefore,.u; �/ is a tree edge or forward edge if and only if
u:d < �:d < �: f < u: f .

b. First, suppose that.u; �/ is a back edge. A self-loop is by definition a back
edge. If.u; �/ is a self-loop, then clearly�:d D u:d < u: f D �: f . If .u; �/

is not a self-loop, thenu is a descendant of� in the depth-first forest, and by
Corollary 22.8,�:d < u:d < u: f < �: f .

Now, suppose that�:d � u:d < u: f � �: f . If u and� are the same vertex, then
�:d D u:d < u: f D �: f , and.u; �/ is a self-loop and hence a back edge. Ifu

Solutions for Chapter 22: Elementary Graph Algorithms 22-17

and� are distinct, then�:d < u:d < u: f < �: f . By the parenthesis theorem,
interval Œu:d; u: f � is contained entirely within the intervalŒ�:d; �: f �, andu is a
descendant of� in a depth-first tree. Thus,.u; �/ is a back edge.

c. First, suppose that.u; �/ is a cross edge. Since neitheru nor� is an ancestor of
the other, the parenthesis theorem says that the intervalsŒu:d; u: f � andŒ�:d; �: f �
are entirely disjoint. Thus, we must have eitheru:d < u: f < �:d < �: f or
�:d < �: f < u:d < u: f . We claim that we cannot haveu:d < �:d if .u; �/ is a
cross edge. Why? Ifu:d < �:d, then� is white at timeu:d. By the white-path
theorem,� is a descendant ofu, which contradicts.u; �/ being a cross edge.
Thus, we must have�:d < �: f < u:d < u: f .

Now suppose that�:d < �: f < u:d < u: f . By the parenthesis theorem, neither
u nor � is a descendant of the other, which means that.u; �/ must be a cross
edge.

Solution to Exercise 22.3-8

Let us consider the example graph and depth-first search below.

d f

w 1 6
u 2 3
� 4 5

u v

w

Clearly, there is a path fromu to � in G. The bold edges are in the depth-first
forest produced. We can see thatu:d < �:d in the depth-first search but� is not a
descendant ofu in the forest.

Solution to Exercise 22.3-9

Let us consider the example graph and depth-first search below.

d f

w 1 6
u 2 3
� 4 5

u v

w

Clearly, there is a path fromu to � in G. The bold edges ofG are in the depth-first
forest produced by the search. However,�:d > u: f and the conjecture is false.

Solution to Exercise 22.3-11

Let us consider the example graph and depth-first search below.

22-18 Solutions for Chapter 22: Elementary Graph Algorithms

d f

w 1 2
u 3 4
� 5 6

w vu

Clearlyu has both incoming and outgoing edges inG but a depth-first search ofG

produced a depth-first forest whereu is in a tree by itself.

Solution to Exercise 22.3-12
This solution is also posted publicly

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign
values to thecc attributes of vertices.

DFS.G/

for each vertexu 2 G:V
u:color D WHITE

u:� D NIL

timeD 0

counterD 0

for each vertexu 2 G:V
if u:color == WHITE

counterD counterC 1

DFS-VISIT.G; u; counter/

DFS-VISIT.G; u; counter/

u:cc D counter // label the vertex
timeD timeC 1

u:d D time
u:color D GRAY

for each� 2 G:AdjŒu�

if �:color == WHITE

�:� D u

DFS-VISIT.G; �; counter/
u:color D BLACK

timeD timeC 1

u: f D time

This DFS increments a counter each time DFS-VISIT is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is
labeled with that same counter value. Thusu:ccD �:cc if and only if u and� are
visited in the same call to DFS-VISIT from DFS, and the final value of the counter
is the number of calls that were made to DFS-VISIT by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected componentof G.

Solutions for Chapter 22: Elementary Graph Algorithms 22-19

� All vertices in a connected component are visited by one callto DFS-VISIT

from DFS:

Let u be the first vertex in componentC visited by DFS-VISIT. Since a vertex
becomes non-white only when it is visited, all vertices inC are white when
DFS-VISIT is called foru. Thus, by the white-path theorem, all vertices inC

become descendants ofu in the forest, which means that all vertices inC are
visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

� All vertices visited by one call to DFS-VISIT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in
the same connected component, because vertices are visitedonly by following
paths inG (by following edges found in adjacency lists, starting fromsome
vertex).

Solution to Exercise 22.4-3
This solution is also posted publicly

An undirected graph is acyclic (i.e., a forest) if and only ifa DFS yields no back
edges.

� If there’s a back edge, there’s a cycle.
� If there’s no back edge, then by Theorem 22.10, there are onlytree edges.

Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

� Time: O.V /. (Not O.V CE/!)
If we ever seejV j distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1174) in an acyclic (undirected) forest,jEj � jV j � 1.

22-20 Solutions for Chapter 22: Elementary Graph Algorithms

Solution to Exercise 22.4-5

TOPOLOGICAL-SORT.G/

// Initialize in-degree, ‚.V / time.
for each vertexu 2 G:V

u: in-degreeD 0

// Computein-degree, ‚.V CE/ time.
for each vertexu 2 G:V

for each� 2 G:AdjŒu�

�: in-degreeD �: in-degreeC 1

// Initialize Queue,‚.V / time.
Q D ;
for each vertexu 2 G:V

if u: in-degree== 0

ENQUEUE.Q; u/

// while loop takesO.V CE/ time.
while Q ¤ ;

u D DEQUEUE.Q/

outputu
// for loop executesO.E/ times total.
for each� 2 G:AdjŒu�

�: in-degreeD �: in-degree� 1

if �: in-degree== 0

ENQUEUE.Q; �/

// Check for cycles,O.V / time.
for each vertexu 2 G:V

if u: in-degree¤ 0

report that there’s a cycle
// Another way to check for cycles would be to count the vertices
// that are output and report a cycle if that number is< jV j.

To find and output vertices of in-degree 0, we first compute allvertices’ in-degrees
by making a pass through all the edges (by scanning the adjacency lists of all the
vertices) and incrementing the in-degree of each vertex an edge enters.

� Computing all in-degrees takes‚.V C E/ time (jV j adjacency lists accessed,
jEj edges total found in those lists,‚.1/ work for each edge).

We keep the vertices with in-degree 0 in a FIFO queue, so that they can be en-
queued and dequeued inO.1/ time. (The order in which vertices in the queue are
processed doesn’t matter, so any kind of FIFO queue works.)

� Initializing the queue takes one pass over the vertices doing ‚.1/ work, for total
time‚.V /.

As we process each vertex from the queue, we effectively remove its outgoing
edges from the graph by decrementing the in-degree of each vertex one of those
edges enters, and we enqueue any vertex whose in-degree goesto 0. We do not need
to actually remove the edges from the adjacency list, because that adjacency list

Solutions for Chapter 22: Elementary Graph Algorithms 22-21

will never be processed again by the algorithm: Each vertex is enqueued/dequeued
at most once because it is enqueued only if it starts out with in-degree 0 or if its in-
degree becomes 0 after being decremented (and never incremented) some number
of times.

� The processing of a vertex from the queue happensO.V / times because no
vertex can be enqueued more than once. The per-vertex work (dequeue and
output) takesO.1/ time, for a total ofO.V / time.

� Because the adjacency list of each vertex is scanned only when the vertex is
dequeued, the adjacency list of each vertex is scanned at most once. Since the
sum of the lengths of all the adjacency lists is‚.E/, at mostO.E/ time is spent
in total scanning adjacency lists. For each edge in an adjacency list,‚.1/ work
is done, for a total ofO.E/ time.

Thus the total time taken by the algorithm isO.V C E/.

The algorithm outputs vertices in the right order (u before� for every edge.u; �/)
because� will not be output until its in-degree becomes 0, which happens only
when every edge.u; �/ leading into� has been “removed” due to the processing
(including output) ofu.

If there are no cycles, all vertices are output.

� Proof: Assume that some vertex�0 is not output. Vertex�0 cannot start out
with in-degree 0 (or it would be output), so there are edges into �0. Since�0’s
in-degree never becomes 0, at least one edge.�1; �0/ is never removed, which
means that at least one other vertex�1 was not output. Similarly,�1 not output
means that some vertex�2 such that.�2; �1/ 2 E was not output, and so on.
Since the number of vertices is finite, this path (� � � ! �2 ! �1 ! �0) is finite,
so we must have�i D �j for somei andj in this sequence, which means there
is a cycle.

If there are cycles, not all vertices will be output, becausesome in-degrees never
become 0.

� Proof: Assume that a vertex in a cycle is output (its in-degree becomes 0). Let�
be the first vertex in its cycle to be output, and letu be�’s predecessor in the
cycle. In order for�’s in-degree to become 0, the edge.u; �/ must have been
“removed,” which happens only whenu is processed. But this cannot have
happened, because� is the first vertex in its cycle to be processed. Thus no
vertices in cycles are output.

Solution to Exercise 22.5-5

We have at our disposal anO.V CE/-time algorithm that computes strongly con-
nected components. Let us assume that the output of this algorithm is a map-
ping u:scc, giving the number of the strongly connected component containing
vertexu, for each vertexu. Without loss of generality, assume thatu:scc is an
integer in the setf1; 2; : : : ; jV jg.

22-22 Solutions for Chapter 22: Elementary Graph Algorithms

Construct the multiset (a set that can contain the same object more than once)
T D fu:sccW u 2 V g, and sort it by using counting sort. Since the values we are
sorting are integers in the range1 to jV j, the time to sort isO.V /. Go through the
sorted multisetT and every time we find an elementx that is distinct from the one
before it, addx to V SCC. (Consider the first element of the sorted set as “distinct
from the one before it.”) It takesO.V / time to constructV SCC.

Construct the set of ordered pairs

S D f.x; y/ W there is an edge.u; �/ 2 E; x D u:scc; andy D �:sccg :

We can easily construct this set in‚.E/ time by going through all edges inE and
looking upu:sccand�:sccfor each edge.u; �/ 2 E.

Having constructedS , remove all elements of the form.x; x/. Alternatively, when
we constructS , do not put an element inS when we find an edge.u; �/ for which
u:sccD �:scc. S now has at mostjEj elements.

Now sort the elements ofS using radix sort. Sort on one component at a time. The
order does not matter. In other words, we are performing two passes of counting
sort. The time to do so isO.V CE/, since the values we are sorting on are integers
in the range1 to jV j.
Finally, go through the sorted setS , and every time we find an element.x; y/

that is distinct from the element before it (again considering the first element of
the sorted set as distinct from the one before it), add.x; y/ to ESCC. Sorting and
then adding.x; y/ only if it is distinct from the element before it ensures thatwe
add.x; y/ at most once. It takesO.E/ time to go throughS in this way, onceS
has been sorted.

The total time isO.V C E/.

Solution to Exercise 22.5-6

The basic idea is to replace the edges within each SCC by one simple, directed
cycle and then remove redundant edges between SCC’s. Since there must be at
leastk edges within an SCC that hask vertices, a single directed cycle ofk edges
gives thek-vertex SCC with the fewest possible edges.

The algorithm works as follows:

1. Identify all SCC’s ofG. Time: ‚.V C E/, using the SCC algorithm in Sec-
tion 22.5.

2. Form the component graphGSCC. Time: O.V CE/, by Exercise 22.5-5.
3. Start withE 0 D ;. Time: O.1/.
4. For each SCC ofG, let the vertices in the SCC be�1; �2; : : : ; �k , and add toE 0

the directed edges.�1; �2/; .�2; �3/; : : : ; .�k�1; �k/; .�k; �1/. These edges form
a simple, directed cycle that includes all vertices of the SCC. Time for all
SCC’s:O.V /.

5. For each edge.u; �/ in the component graphGSCC, select any vertexx in u’s
SCC and any vertexy in �’s SCC, and add the directed edge.x; y/ to E 0.
Time:O.E/.

Thus, the total time is‚.V CE/.

Solutions for Chapter 22: Elementary Graph Algorithms 22-23

Solution to Exercise 22.5-7

To determine whetherG D .V; E/ is semiconnected, do the following:

1. Call STRONGLY-CONNECTED-COMPONENTS.

2. Form the component graph. (By Exercise 22.5-5, you may assume that this
takesO.V CE/ time.)

3. Topologically sort the component graph. (Recall that it’s a dag.) Assuming that
G containsk SCC’s, the topological sort gives a linear orderingh�1; �2; : : : ; �ki
of the vertices.

4. Verify that the sequence of verticesh�1; �2; : : : ; �ki given by topological sort
forms a linear chain in the component graph. That is, verify that the edges
.�1; �2/; .�2; �3/; : : : ; .�k�1; �k/ exist in the component graph. If the vertices
form a linear chain, then the original graph is semiconnected; otherwise it is
not.

Because we know that all vertices in each SCC are mutually reachable from each
other, it suffices to show that the component graph is semiconnected if and only if
it contains a linear chain. We must also show that if there’s alinear chain in the
component graph, it’s the one returned by topological sort.

We’ll first show that if there’s a linear chain in the component graph, then it’s the
one returned by topological sort. In fact, this is trivial. Atopological sort has to
respect every edge in the graph. So if there’s a linear chain,a topological sortmust
give us the vertices in order.

Now we’ll show that the component graph is semiconnected if and only if it con-
tains a linear chain.

First, suppose that the component graph contains a linear chain. Then for every
pair of verticesu; � in the component graph, there is a path between them. Ifu

precedes� in the linear chain, then there’s a pathu ; �. Otherwise,� precedesu,
and there’s a path� ; u.

Conversely, suppose that the component graph does not contain a linear chain.
Then in the list returned by topological sort, there are two consecutive vertices�i

and�iC1, but the edge.�i ; �iC1/ is not in the component graph. Any edges out of�i

are to vertices�j , wherej > i C 1, and so there is no path from�i to �iC1 in the
component graph. And since�iC1 follows �i in the topological sort, there cannot be
any paths at all from�iC1 to �i . Thus, the component graph is not semiconnected.

Running time of each step:

1. ‚.V C E/.

2. O.V CE/.

3. Since the component graph has at mostjV j vertices and at mostjEj edges,
O.V CE/.

4. Also O.V C E/. We just check the adjacency list of each vertex�i in the
component graph to verify that there’s an edge.�i ; �iC1/. We’ll go through
each adjacency list once.

Thus, the total running time is‚.V CE/.

22-24 Solutions for Chapter 22: Elementary Graph Algorithms

Solution to Problem 22-1
This solution is also posted publicly

a. 1. Suppose.u; �/ is a back edge or a forward edge in a BFS of an undirected
graph. Then one ofu and�, sayu, is a proper ancestor of the other (�) in
the breadth-first tree. Since we explore all edges ofu before exploring any
edges of any ofu’s descendants, we must explore the edge.u; �/ at the time
we exploreu. But then.u; �/ must be a tree edge.

2. In BFS, an edge.u; �/ is a tree edge when we set�:� D u. But we only
do so when we set�:d D u:dC 1. Since neitheru:d nor �:d ever changes
thereafter, we have�:dD u:dC 1 when BFS completes.

3. Consider a cross edge.u; �/ where, without loss of generality,u is visited
before�. At the time we visitu, vertex� must already be on the queue, for
otherwise.u; �/ would be a tree edge. Because� is on the queue, we have
�:d � u:dC 1 by Lemma 22.3. By Corollary 22.4, we have�:d � u:d.
Thus, either�:dD u:d or �:dD u:dC 1.

b. 1. Suppose.u; �/ is a forward edge. Then we would have explored it while
visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.
3. For any edge.u; �/, whether or not it’s a cross edge, we cannot have

�:d > u:dC 1, since we visit� at the latest when we explore edge.u; �/.
Thus,�:d � u:dC 1.

4. Clearly,�:d � 0 for all vertices�. For a back edge.u; �/, � is an ancestor
of u in the breadth-first tree, which means that�:d � u:d. (Note that since
self-loops are considered to be back edges, we could haveu D �.)

Solution to Problem 22-3

a. An Euler tour is a single cycle that traverses each edge ofG exactly once, but
it might not be a simple cycle. An Euler tour can be decomposedinto a set of
edge-disjoint simple cycles, however.

If G has an Euler tour, therefore, we can look at the simple cyclesthat, together,
form the tour. In each simple cycle, each vertex in the cycle has one entering
edge and one leaving edge. In each simple cycle, therefore, each vertex� has
in-degree.�/ D out-degree.�/, where the degrees are either1 (if � is on the
simple cycle) or0 (if � is not on the simple cycle). Adding the in- and out-
degrees over all edges proves that ifG has an Euler tour, then in-degree.�/ D
out-degree.�/ for all vertices�.

We prove the converse—that if in-degree.�/ D out-degree.�/ for all vertices�,
thenG has an Euler tour—in two different ways. One proof is nonconstructive,
and the other proof will help us design the algorithm for part(b).

First, we claim that if in-degree.�/ D out-degree.�/ for all vertices�, then we
can pick any vertexu for which in-degree.u/ D out-degree.u/ � 1 and create

Solutions for Chapter 22: Elementary Graph Algorithms 22-25

a cycle (not necessarily simple) that containsu. To prove this claim, let us start
by placing vertexu on the cycle, and choose any leaving edge ofu, say.u; �/.
Now we put� on the cycle. Since in-degree.�/ D out-degree.�/ � 1, we can
pick some leaving edge of� and continue visiting edges and vertices. Each time
we pick an edge, we can remove it from further consideration.At each vertex
other thanu, at the time we visit an entering edge, there must be an unvisited
leaving edge, since in-degree.�/ D out-degree.�/ for all vertices�. The only
vertex for which there might not be an unvisited leaving edgeis u, since we
started the cycle by visiting one ofu’s leaving edges. Since there’s always a
leaving edge we can visit from all vertices other thanu, eventually the cycle
must return tou, thus proving the claim.

The nonconstructive proof proves the contrapositive—thatif G does not have
an Euler tour, then in-degree.�/ ¤ out-degree.�/ for some vertex�—by con-
tradiction. Choose a graphG D .V; E/ that does not have an Euler tour but
has at least one edge and for which in-degree.�/ D out-degree.�/ for all ver-
tices�, and letG have the fewest edges of any such graph. By the above claim,
G contains a cycle. LetC be a cycle ofG with the greatest number of edges,
and letVC be the set of vertices visited by cycleC . By our assumption,C is
not an Euler tour, and so the set of edgesE 0 D E � C is nonempty. If we use
the setV of vertices and the setE 0 of edges, we get the graphG0 D .V; E 0/;
this graph has in-degree.�/ D out-degree.�/ for all vertices�, since we have
removed one entering edge and one leaving edge for each vertex on cycleC .
Consider any componentG00 D .V 00; E 00/ of G0, and observe thatG00 also has
in-degree.�/ D out-degree.�/ for all vertices�. SinceE 00 � E 0 ¨ E, it fol-
lows from how we choseG thatG00 must have an Euler tour, sayC 0. Because
the original graphG is connected, there must be some vertexx 2 V 00[VC and,
without loss of generality, considerx to be the first and last vertex on bothC

andC 0. But then the cycleC 00 formed by first traversingC and then travers-
ing C 0 is a cycle ofG with more edges thanC , contradicting our choice ofC .
We conclude thatC must have been an Euler tour.

The constructive proof uses the same ideas. Let us start at a vertexu and, via
random traversal of edges, create a cycle. We know that once we take any edge
entering a vertex� ¤ u, we can find an edge leaving� that we have not yet
taken. Eventually, we get back to vertexu, and if there are still edges leavingu

that we have not taken, we can continue the cycle. Eventually, we get back to
vertexu and there are no untaken edges leavingu. If we have visited every
edge in the graphG, we are done. Otherwise, sinceG is connected, there must
be some unvisited edge leaving a vertex, say�, on the cycle. We can traverse
a new cycle starting at�, visiting only previously unvisited edges, and we can
splice this cycle into the cycle we already know. That is, if the original cycle
is hu; : : : ; �; w; : : : ; ui, and the new cycle ish�; x; : : : ; �i, then we can create
the cyclehu; : : : ; �; x; : : : ; �; w; : : : ; ui. We continue this process of finding a
vertex with an unvisited leaving edge on a visited cycle, visiting a cycle starting
and ending at this vertex, and splicing in the newly visited cycle, until we have
visited every edge.

b. The algorithm is based on the idea in the constructive proof above.

22-26 Solutions for Chapter 22: Elementary Graph Algorithms

We assume thatG is represented by adjacency lists, and we work with a copy
of the adjacency lists, so that as we visit each edge, we can remove it from
its adjacency list. The singly linked form of adjacency listwill suffice. The
output of this algorithm is a doubly linked listT of vertices which, read in list
order, will give an Euler tour. The algorithm constructsT by finding cycles
(also represented by doubly linked lists) and splicing theminto T . By using
doubly linked lists for cycles and the Euler tour, splicing acycle into the Euler
tour takes constant time.

We also maintain a singly linked listL, in which each list element consists of
two parts:

1. a vertex�, and
2. a pointer to some appearance of� in T .

Initially, L contains one vertex, which may be any vertex ofG.

Here is the algorithm:

EULER-TOUR.G/

T D empty list
L D .any vertex� 2 G:V; NIL /

while L is not empty
remove.�; location-in-T/ from L

C D V ISIT.G; L; �/

if location-in-T == NIL

T D C

elsespliceC into T just beforelocation-in-T
return T

V ISIT.G; L; �/

C D empty sequence of vertices
u D �

while out-degree.u/ > 0

let w be the first vertex inG:AdjŒu�

removew from G:AdjŒu�, decrementing out-degree.u/

addu onto the end ofC
if out-degree.u/ > 0

add.u; u’s location inC / to L

u D w

return C

The use ofNIL in the initial assignment toL ensures that the first cycleC
returned by VISIT becomes the current version of the Euler tourT . All cycles
returned by VISIT thereafter are spliced intoT . We assume that whenever an
empty cycle is returned by VISIT, splicing it intoT leavesT unchanged.

Each time that EULER-TOUR removes a vertex� from the list L, it calls
V ISIT.G; L; �/ to find a cycleC , possibly empty and possibly not simple, that
starts and ends at�; the cycleC is represented by a list that starts with� and
ends with the last vertex on the cycle before the cycle ends at�. EULER-TOUR

Solutions for Chapter 22: Elementary Graph Algorithms 22-27

then splices this cycleC into the Euler tourT just before some appearance of�

in T .

When VISIT is at a vertexu, it looks for some vertexw such that the edge.u; w/

has not yet been visited. Removingw from AdjŒu� ensures that we will never
visit .u; w/ again. VISIT addsu onto the cycleC that it constructs. If, after
removing edge.u; w/, vertexu still has any leaving edges, thenu, along with
its location inC , is added toL. The cycle construction continues fromw, and
it ceases once a vertex with no unvisited leaving edges is found. Using the
argument from part (a), at that point, this vertex must closeup a cycle. At that
point, therefore, the cycleC is returned.

It is possible that a vertexu has unvisited leaving edges at the time it is added to
list L in V ISIT, but that by the time thatu is removed fromL in EULER-TOUR,
all of its leaving edges have been visited. In this case, thewhile loop of VISIT

executes 0 iterations, and VISIT returns an empty cycle.

Once the listL is empty, every edge has been visited. The resulting cycleT is
then an Euler tour.

To see that EULER-TOUR takesO.E/ time, observe that because we remove
each edge from its adjacency list as it is visited, no edge is visited more than
once. Since each edge is visited at some time, the number of times that a vertex
is added toL, and thus removed fromL, is at mostjEj. Thus, thewhile loop in
EULER-TOUR executes at mostE iterations. Thewhile loop in VISIT executes
one iteration per edge in the graph, and so it executes at mostE iterations as
well. Since adding vertexu to the doubly linked listC takes constant time and
splicingC into T takes constant time, the entire algorithm takesO.E/ time.

Solution to Problem 22-4

ComputeGT in the usual way, so thatGT is G with its edges reversed. Then do
a depth-first search onGT, but in the main loop of DFS, consider the vertices in
order of increasing values ofL.�/. If vertexu is in the depth-first tree with root�,
then min.u/ D �. Clearly, this algorithm takesO.V C E/ time.

To show correctness, first note that ifu is in the depth-first tree rooted at� in GT,
then there is a path� ; u in GT, and so there is a pathu ; � in G. Thus, the
minimum vertex label of all vertices reachable fromu is at mostL.�/, or in other
words,L.�/ � minfL.w/ W w 2 R.u/g.
Now suppose thatL.�/ > minfL.w/ W w 2 R.u/g, so that there is a vertex
w 2 R.u/ such thatL.w/ < L.�/. At the time�:d that we started the depth-
first search from�, we would have already discoveredw, so thatw:d < �:d.
By the parenthesis theorem, either the intervalsŒ�:d; �: f �, andŒw:d; w: f � are dis-
joint and neither� nor w is a descendant of the other, or we have the ordering
w:d < �:d < �: f < w: f and � is a descendant ofw. The latter case cannot
occur, since� is a root in the depth-first forest (which means that� cannot be a de-
scendant of any other vertex). In the former case, sincew:d < �:d, we must have
w:d < w: f < �:d < �: f . In this case, sinceu is reachable fromw in GT, we would

22-28 Solutions for Chapter 22: Elementary Graph Algorithms

have discoveredu by the timew: f , so thatu:d < w: f . Since we discoveredu dur-
ing a search that started at�, we have�:d � u:d. Thus,�:d � u:d < w: f < �:d,
which is a contradiction. We conclude that no such vertexw can exist.

Lecture Notes for Chapter 23:
Minimum Spanning Trees

Chapter 23 overview

Problem

� A town has a set of houses and a set of roads.
� A road connects 2 and only 2 houses.
� A road connecting housesu and� has a repair costw.u; �/.
� Goal: Repair enough (and no more) roads such that

1. everyone stays connected: can reach every house from all other houses, and
2. total repair cost is minimum.

Model as a graph:

� Undirected graphG D .V; E/.
� Weightw.u; �/ on each edge.u; �/ 2 E.
� Find T � E such that

1. T connects all vertices (T is aspanning tree), and

2. w.T / D
X

.u;�/2T

w.u; �/ is minimized.

A spanning tree whose weight is minimum over all spanning trees is called amin-
imum spanning tree, or MST.

Example of such a graph[edges in MST are shaded]:

10

12

9

8 8

2

11

9
5

61

7

3 3

b

a

c

d

f

e

g

h

i

In this example, there is more than one MST. Replace edge.e; f / in the MST
by .c; e/. Get a different spanning tree with the same weight.

23-2 Lecture Notes for Chapter 23: Minimum Spanning Trees

Growing a minimum spanning tree

Some properties of an MST:

� It hasjV j � 1 edges.
� It has no cycles.
� It might not be unique.

Building up the solution

� We will build a setA of edges.
� Initially, A has no edges.
� As we add edges toA, maintain a loop invariant:

Loop invariant: A is a subset of some MST.

� Add only edges that maintain the invariant. IfA is a subset of some MST, an
edge.u; �/ is safe for A if and only if A [f.u; �/g is also a subset of some
MST. So we will add only safe edges.

Generic MST algorithm

GENERIC-MST.G; w/

A D ;
while A is not a spanning tree

find an edge.u; �/ that is safe forA
A D A [f.u; �/g

return A

Use the loop invariant to show that this generic algorithm works.

Initialization: The empty set trivially satisfies the loop invariant.

Maintenance: Since we add only safe edges,A remains a subset of some MST.

Termination: All edges added toA are in an MST, so when we stop,A is a span-
ning tree that is also an MST.

Finding a safe edge

How do we find safe edges?

Let’s look at the example. Edge.c; f / has the lowest weight of any edge in the
graph. Is it safe forA D ;?
Intuitively: Let S � V be any set of vertices that includesc but notf (so that
f is in V � S). In any MST, there has to be one edge (at least) that connectsS

with V � S . Why not choose the edge with minimum weight? (Which would be
.c; f / in this case.)

Some definitions: LetS � V andA � E.

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-3

� A cut .S; V � S/ is a partition of vertices into disjoint setsV andS � V .
� Edge.u; �/ 2 E crossescut .S; V � S/ if one endpoint is inS and the other is

in V � S .
� A cut respectsA if and only if no edge inA crosses the cut.
� An edge is alight edgecrossing a cut if and only if its weight is minimum over

all edges crossing the cut. For a given cut, there can be> 1 light edge crossing
it.

Theorem
Let A be a subset of some MST,.S; V � S/ be a cut that respectsA, and.u; �/ be
a light edge crossing.S; V � S/. Then.u; �/ is safe forA.

Proof Let T be an MST that includesA.

If T contains.u; �/, done.

So now assume thatT does not contain.u; �/. We’ll construct a different MSTT 0

that includesA[f.u; �/g.
Recall: a tree has unique path between each pair of vertices.SinceT is an MST, it
contains a unique pathp betweenu and�. Pathp must cross the cut.S; V � S/

at least once. Let.x; y/ be an edge ofp that crosses the cut. From how we
chose.u; �/, must havew.u; �/ � w.x; y/.

u

v
y

x

S

V–S

[Except for the dashed edge.u; �/, all edges shown are inT . A is some subset of
the edges ofT , butA cannot contain any edges that cross the cut.S; V �S/, since
this cut respectsA. Shaded edges are the pathp.]

Since the cut respectsA, edge.x; y/ is not inA.

To form T 0 from T :

� Remove.x; y/. BreaksT into two components.
� Add .u; �/. Reconnects.

23-4 Lecture Notes for Chapter 23: Minimum Spanning Trees

SoT 0 D T � f.x; y/g [f.u; �/g.
T 0 is a spanning tree.

w.T 0/ D w.T / � w.x; y/Cw.u; �/

� w.T / ;

sincew.u; �/ � w.x; y/. SinceT 0 is a spanning tree,w.T 0/ � w.T /, andT is an
MST, thenT 0 must be an MST.

Need to show that.u; �/ is safe forA:

� A � T and.x; y/ 62 A) A � T 0.
� A [f.u; �/g � T 0.
� SinceT 0 is an MST,.u; �/ is safe forA. (theorem)

So, in GENERIC-MST:

� A is a forest containing connected components. Initially, each component is a
single vertex.

� Any safe edge merges two of these components into one. Each component is a
tree.

� Since an MST has exactlyjV j � 1 edges, thefor loop iteratesjV j � 1 times.
Equivalently, after addingjV j�1 safe edges, we’re down to just one component.

Corollary
If C D .VC ; EC / is a connected component in the forestGA D .V; A/ and.u; �/

is a light edge connectingC to some other component inGA (i.e., .u; �/ is a light
edge crossing the cut.VC ; V � VC /), then.u; �/ is safe forA.

Proof SetS D VC in the theorem. (corollary)

This idea naturally leads to the algorithm known as Kruskal’s algorithm to solve
the minimum-spanning-tree problem.

Kruskal’s algorithm

G D .V; E/ is a connected, undirected, weighted graph.w W E ! R.

� Starts with each vertex being its own component.
� Repeatedly merges two components into one by choosing the light edge that

connects them (i.e., the light edge crossing the cut betweenthem).
� Scans the set of edges in monotonically increasing order by weight.
� Uses a disjoint-set data structure to determine whether an edge connects ver-

tices in different components.

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-5

KRUSKAL.G; w/

A D ;
for each vertex� 2 G:V

MAKE-SET.�/

sort the edges ofG:E into nondecreasing order by weightw

for each.u; �/ taken from the sorted list
if FIND-SET.u/ ¤ FIND-SET.�/

A D A [f.u; �/g
UNION.u; �/

return A

Run through the above example to see how Kruskal’s algorithmworks on it:

.c; f / W safe
.g; i/ W safe

.e; f / W safe
.c; e/ W reject
.d; h/ W safe
.f; h/ W safe
.e; d/ W reject
.b; d/ W safe
.d; g/ W safe
.b; c/ W reject
.g; h/ W reject
.a; b/ W safe

At this point, we have only one component, so all other edges will be rejected.[We
could add a test to the main loop ofKRUSKAL to stop oncejV j � 1 edges have
been added toA.]

Get the shaded edges shown in the figure.

Suppose we had examined.c; e/ before.e; f /. Then would have found.c; e/ safe
and would have rejected.e; f /.

Analysis

Initialize A: O.1/

First for loop: jV j MAKE-SETs
SortE: O.E lg E/

Secondfor loop: O.E/ FIND-SETs and UNIONs

� Assuming the implementation of disjoint-set data structure, already seen in
Chapter 21, that uses union by rank and path compression:

O..V CE/ ˛.V //CO.E lg E/ :

� SinceG is connected,jEj � jV j � 1) O.E ˛.V //CO.E lg E/.
� ˛.jV j/ D O.lg V / D O.lg E/.
� Therefore, total time isO.E lg E/.
� jEj � jV j2) lg jEj D O.2 lg V / D O.lg V /.

23-6 Lecture Notes for Chapter 23: Minimum Spanning Trees

� Therefore,O.E lg V / time. (If edges are already sorted,O.E ˛.V //, which is
almost linear.)

Prim’s algorithm

� Builds one tree, soA is always a tree.
� Starts from an arbitrary “root”r .
� At each step, find a light edge crossing cut.VA; V � VA/, whereVA D vertices

thatA is incident on. Add this edge toA.

light edge

VA

[Edges ofA are shaded.]

How to find the light edge quickly?

Use a priority queueQ:

� Each object is a vertex inV � VA.
� Key of � is minimum weight of any edge.u; �/, whereu 2 VA.
� Then the vertex returned by EXTRACT-M IN is � such that there existsu 2 VA

and.u; �/ is light edge crossing.VA; V � VA/.
� Key of � is1 if � is not adjacent to any vertices inVA.

The edges ofA will form a rooted tree with rootr :

� r is given as an input to the algorithm, but it can be any vertex.
� Each vertex knows its parent in the tree by the attribute�:� D parent of�.

�:� D NIL if � D r or � has no parent.
� As algorithm progresses,A D f.�; �:�/ W � 2 V � frg �Qg.
� At termination,VA D V)Q D ;, so MST isA D f.�; �:�/ W � 2 V � frgg.
[The pseudocode that follows differs from the book in that itexplicitly callsINSERT

and DECREASE-KEY to operate onQ.]

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-7

PRIM.G; w; r/

Q D ;
for eachu 2 G:V

u:keyD 1
u:� D NIL

INSERT.Q; u/

DECREASE-KEY.Q; r; 0/ // r:keyD 0

while Q ¤ ;
u D EXTRACT-M IN .Q/

for each� 2 G:AdjŒu�

if � 2 Q andw.u; �/ < �:key
�:� D u

DECREASE-KEY.Q; �; w.u; �//

Do example from previous graph.[Let a student pick the root.]

Analysis

Depends on how the priority queue is implemented:

� SupposeQ is a binary heap.

Initialize Q and firstfor loop: O.V lg V /

Decrease key ofr : O.lg V /

while loop: jV j EXTRACT-M IN calls) O.V lg V /

� jEj DECREASE-KEY calls) O.E lg V /

Total: O.E lg V /

� Suppose we could do DECREASE-KEY in O.1/ amortizedtime.

Then� jEj DECREASE-KEY calls takeO.E/ time altogether) total time
becomesO.V lg V CE/.

In fact, there is a way to do DECREASE-KEY in O.1/ amortized time: Fi-
bonacci heaps, in Chapter 19.

Solutions for Chapter 23:
Minimum Spanning Trees

Solution to Exercise 23.1-1
This solution is also posted publicly

Theorem 23.1 shows this.

Let A be the empty set andS be any set containingu but not�.

Solution to Exercise 23.1-4
This solution is also posted publicly

A triangle whose edge weights are all equal is a graph in whichevery edge is a light
edge crossing some cut. But the triangle is cyclic, so it is not a minimum spanning
tree.

Solution to Exercise 23.1-6
This solution is also posted publicly

Suppose that for every cut ofG, there is a unique light edge crossing the cut. Let us
consider two distinct minimum spanning trees,T andT 0, of G. BecauseT andT 0

are distinct,T contains some edge.u; �/ that is not inT 0. If we remove.u; �/

from T , thenT becomes disconnected, resulting in a cut.S; V � S/. The edge
.u; �/ is a light edge crossing the cut.S; V � S/ (by Exercise 23.1-3) and, by our
assumption, it’s the only light edge crossing this cut. Because.u; �/ is the only
light edge crossing.S; V � S/ and.u; �/ is not inT 0, each edge inT 0 that crosses
.S; V � S/ must have weight strictly greater thanw.u; �/. As in the proof of
Theorem 23.1, we can identify the unique edge.x; y/ in T 0 that crosses.S; V �S/

and lies on the cycle that results if we add.u; �/ to T 0. By our assumption, we
know thatw.u; �/ < w.x; y/. Then, we can then remove.x; y/ from T 0 and
replace it by.u; �/, giving a spanning tree with weight strictly less thanw.T 0/.
Thus,T 0 was not a minimum spanning tree, contradicting the assumption that the
graph had two unique minimum spanning trees.

Solutions for Chapter 23: Minimum Spanning Trees 23-9

Here’s a counterexample for the converse:

x

y

z

1

1

Here, the graph is its own minimum spanning tree, and so the minimum spanning
tree is unique. Consider the cut.fxg ; fy; ´g/. Both of the edges.x; y/ and.x; ´/

are light edges crossing the cut, and they are both light edges.

Solution to Exercise 23.1-10

Let w.T / D
P

.x;y/2T w.x; y/. We havew0.T / D w.T / � k. Consider any other
spanning treeT 0, so thatw.T / � w.T 0/.

If .x; y/ 62 T 0, thenw0.T 0/ D w.T 0/ � w.T / > w0.T /.

If .x; y/ 2 T 0, thenw0.T 0/ D w.T 0/ � k � w.T / � k D w0.T /.

Either way,w0.T / � w0.T 0/, and soT is a minimum spanning tree for weight
functionw0.

Solution to Exercise 23.2-4

We know that Kruskal’s algorithm takesO.V / time for initialization,O.E lg E/

time to sort the edges, andO.E ˛.V // time for the disjoint-set operations, for a
total running time ofO.V CE lg E CE ˛.V // D O.E lg E/.

If we knew that all of the edge weights in the graph were integers in the range
from 1 to jV j, then we could sort the edges inO.V C E/ time using counting
sort. Since the graph is connected,V D O.E/, and so the sorting time is reduced
to O.E/. This would yield a total running time ofO.V C E C E ˛.V // D
O.E ˛.V //, again sinceV D O.E/, and sinceE D O.E ˛.V //. The time to
process the edges, not the time to sort them, is now the dominant term. Knowledge
about the weights won’t help speed up any other part of the algorithm, since nothing
besides the sort uses the weight values.

If the edge weights were integers in the range from 1 toW for some constantW ,
then we could again use counting sort to sort the edges more quickly. This time,
sorting would takeO.ECW / D O.E/ time, sinceW is a constant. As in the first
part, we get a total running time ofO.E ˛.V //.

23-10 Solutions for Chapter 23: Minimum Spanning Trees

Solution to Exercise 23.2-5

The time taken by Prim’s algorithm is determined by the speedof the queue oper-
ations. With the queue implemented as a Fibonacci heap, it takesO.E C V lg V /

time.

Since the keys in the priority queue are edge weights, it might be possible to im-
plement the queue even more efficiently when there are restrictions on the possible
edge weights.

We can improve the running time of Prim’s algorithm ifW is a constant by imple-
menting the queue as an arrayQŒ0 : : W C 1� (using theW C 1 slot for keyD 1),
where each slot holds a doubly linked list of vertices with that weight as their
key. Then EXTRACT-M IN takes onlyO.W / D O.1/ time (just scan for the first
nonempty slot), and DECREASE-KEY takes onlyO.1/ time (just remove the ver-
tex from the list it’s in and insert it at the front of the list indexed by the new key).
This gives a total running time ofO.E/, which is the best possible asymptotic time
(since�.E/ edges must be processed).

However, if the range of edge weights is 1 tojV j, then EXTRACT-M IN takes
‚.V / time with this data structure. So the total time spent doing EXTRACT-M IN

is ‚.V 2/, slowing the algorithm to‚.E C V 2/ D ‚.V 2/. In this case, it is better
to keep the Fibonacci-heap priority queue, which gave the‚.E C V lg V / time.

Other data structures yield better running times:

� van Emde Boas trees (see Chapter 20) give an upper bound ofO.ECV lg lg V /

time for Prim’s algorithm.
� A redistributive heap (used in the single-source shortest-paths algorithm of

Ahuja, Mehlhorn, Orlin, and Tarjan, and mentioned in the chapter notes for
Chapter 24) gives an upper bound ofO

�

E C V
p

lg V
�

for Prim’s algorithm.

Solution to Exercise 23.2-7

We start with the following lemma.

Lemma
Let T be a minimum spanning tree ofG D .V; E/, and consider a graphG0 D
.V 0; E 0/ for which G is a subgraph, i.e.,V � V 0 andE � E 0. Let T D E � T be
the edges ofG that are not inT . Then there is a minimum spanning tree ofG0 that
includes no edges inT .

Proof By Exercise 23.2-1, there is a way to order the edges ofE so that Kruskal’s
algorithm, when run onG, produces the minimum spanning treeT . We will show
that Kruskal’s algorithm, run onG0, produces a minimum spanning treeT 0 that
includes no edges inT . We assume that the edges inE are considered in the same
relative order when Kruskal’s algorithm is run onG and onG0. We first state and
prove the following claim.

Solutions for Chapter 23: Minimum Spanning Trees 23-11

Claim
For any pair of verticesu; � 2 V , if these vertices are in the same set after Kruskal’s
algorithm run onG considers any edge.x; y/ 2 E, then they are in the same set
after Kruskal’s algorithm run onG0 considers.x; y/.

Proof of claim Let us order the edges ofE by nondecreasing weight ash.x1; y1/;

.x2; y2/; : : : ; .xk; yk/i, wherek D jEj. This sequence gives the order in which the
edges ofE are considered by Kruskal’s algorithm, whether it is run onG or onG0.
We will use induction, with the inductive hypothesis that ifu and� are in the same
set after Kruskal’s algorithm run onG considers an edge.xi ; yi /, then they are in
the same set after Kruskal’s algorithm run onG0 considers the same edge. We use
induction oni .

Basis: For the basis,i D 0. Kruskal’s algorithm run onG has not considered
any edges, and so all vertices are in different sets. The inductive hypothesis holds
trivially.

Inductive step: We assume that any vertices that are in the same set after Kruskal’s
algorithm run onG has considered edgesh.x1; y1/; .x2; y2/; : : : ; .xi�1; yi�1/i
are in the same set after Kruskal’s algorithm run onG0 has considered the same
edges. When Kruskal’s algorithm runs onG0, after it considers.xi�1; yi�1/, it may
consider some edges inE 0�E before considering.xi ; yi /. The edges inE 0�E may
cause UNION operations to occur, but sets are never divided. Hence, any vertices
that are in the same set after Kruskal’s algorithm run onG0 considers.xi�1; yi�1/

are still in the same set when.xi ; yi / is considered.

When Kruskal’s algorithm run onG considers.xi ; yi /, eitherxi andyi are found
to be in the same set or they are not.
� If Kruskal’s algorithm run onG finds xi and yi to be in the same set, then

no UNION operation occurs. The sets of vertices remain the same, and so the
inductive hypothesis continues to hold after considering.xi ; yi /.

� If Kruskal’s algorithm run onG finds xi and yi to be in different sets, then
the operation UNION.xi ; yi / will occur. Kruskal’s algorithm run onG0 will
find that eitherxi and yi are in the same set or they are not. By the induc-
tive hypothesis, when edge.xi ; yi / is considered, all vertices inxi ’s set when
Kruskal’s algorithm runs onG are inxi ’s set when Kruskal’s algorithm runs
on G0, and the same holds foryi . Regardless of whether Kruskal’s algorithm
run onG0 findsxi andyi to already be in the same set, their sets are united af-
ter considering.xi ; yi /, and so the inductive hypothesis continues to hold after
considering.xi ; yi /. (claim)

With the claim in hand, we suppose that some edge.u; �/ 2 T is placed intoT 0.
That means that Kruskal’s algorithm run onG found u and� to be in the same
set (since.u; �/ 2 T) but Kruskal’s algorithm run onG0 found u and� to be in
different sets (since.u; �/ is placed intoT 0). This fact contradicts the claim, and we
conclude that no edge inT is placed intoT 0. Thus, by running Kruskal’s algorithm
onG andG0, we demonstrate that there exists a minimum spanning tree ofG0 that
includes no edges inT . (lemma)

We use this lemma as follows. LetG0 D .V 0; E 0/ be the graphG D .V; E/ with
the one new vertex and its incident edges added. Suppose thatwe have a minimum

23-12 Solutions for Chapter 23: Minimum Spanning Trees

spanning treeT for G. We compute a minimum spanning tree forG0 by creating
the graphG00 D .V 0; E 00/, whereE 00 consists of the edges ofT and the edges
in E 0 � E (i.e., the edges added toG that madeG0), and then finding a minimum
spanning treeT 0 for G00. By the lemma, there is a minimum spanning tree forG0

that includes no edges ofE � T . In other words,G0 has a minimum spanning tree
that includes only edges inT andE 0�E; these edges comprise exactly the setE 00.
Thus, the the minimum spanning treeT 0 of G00 is also a minimum spanning tree
of G0.

Even though the proof of the lemma uses Kruskal’s algorithm,we are not required
to use this algorithm to findT 0. We can find a minimum spanning tree by any
means we choose. Let us use Prim’s algorithm with a Fibonacci-heap priority
queue. SincejV 0j D jV j C 1 and jE 00j � 2 jV j � 1 (E 00 contains thejV j � 1

edges ofT and at mostjV j edges inE 0 �E), it takesO.V / time to constructG00,
and the run of Prim’s algorithm with a Fibonacci-heap priority queue takes time
O.E 00 C V 0 lg V 0/ D O.V lg V /. Thus, if we are given a minimum spanning tree
of G, we can compute a minimum spanning tree ofG0 in O.V lg V / time.

Solution to Problem 23-1

a. To see that the minimum spanning tree is unique, observe thatsince the graph
is connected and all edge weights are distinct, then there isa unique light edge
crossing every cut. By Exercise 23.1-6, the minimum spanning tree is unique.

To see that the second-best minimum spanning tree need not beunique, here is
a weighted, undirected graph with a unique minimum spanningtree of weight7
and two second-best minimum spanning trees of weight8:

1

2 4

3 5

minimum
spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

b. Since any spanning tree has exactlyjV j � 1 edges, any second-best minimum
spanning tree must have at least one edge that is not in the (best) minimum
spanning tree. If a second-best minimum spanning tree has exactly one edge,
say.x; y/, that is not in the minimum spanning tree, then it has the sameset of
edges as the minimum spanning tree, except that.x; y/ replaces some edge, say
.u; �/, of the minimum spanning tree. In this case,T 0 D T �f.u; �/g[f.x; y/g,
as we wished to show.

Thus, all we need to show is that by replacing two or more edgesof the min-
imum spanning tree, we cannot obtain a second-best minimum spanning tree.
Let T be the minimum spanning tree ofG, and suppose that there exists a
second-best minimum spanning treeT 0 that differs fromT by two or more

Solutions for Chapter 23: Minimum Spanning Trees 23-13

edges. There are at least two edges inT � T 0, and let.u; �/ be the edge in
T � T 0 with minimum weight. If we were to add.u; �/ to T 0, we would get a
cycle c. This cycle contains some edge.x; y/ in T 0 � T (since otherwise,T
would contain a cycle).

We claim thatw.x; y/ > w.u; �/. We prove this claim by contradiction,
so let us assume thatw.x; y/ < w.u; �/. (Recall the assumption that
edge weights are distinct, so that we do not have to concern ourselves with
w.x; y/ D w.u; �/.) If we add.x; y/ to T , we get a cyclec 0, which contains
some edge.u0; � 0/ in T �T 0 (since otherwise,T 0 would contain a cycle). There-
fore, the set of edgesT 00 D T �f.u0; � 0/g[f.x; y/g forms a spanning tree, and
we must also havew.u0; � 0/ < w.x; y/, since otherwiseT 00 would be a span-
ning tree with weight less thanw.T /. Thus,w.u0; � 0/ < w.x; y/ < w.u; �/,
which contradicts our choice of.u; �/ as the edge inT �T 0 of minimum weight.

Since the edges.u; �/ and.x; y/ would be on a common cyclec if we were
to add .u; �/ to T 0, the set of edgesT 0 � f.x; y/g [f.u; �/g is a spanning
tree, and its weight is less thanw.T 0/. Moreover, it differs fromT (because
it differs from T 0 by only one edge). Thus, we have formed a spanning tree
whose weight is less thanw.T 0/ but is notT . Hence,T 0 was not a second-best
minimum spanning tree.

c. We can fill inmaxŒu; �� for all u; � 2 V in O.V 2/ time by simply doing a search
from each vertexu, having restricted the edges visited to those of the spanning
treeT . It doesn’t matter what kind of search we do: breadth-first, depth-first,
or any other kind.

We’ll give pseudocode for both breadth-first and depth-firstapproaches. Each
approach differs from the pseudocode given in Chapter 22 in that we don’t need
to computed or f values, and we’ll use themaxtable itself to record whether a
vertex has been visited in a given search. In particular,maxŒu; �� D NIL if and
only if u D � or we have not yet visited vertex� in a search from vertexu. Note
also that since we’re visiting via edges in a spanning tree ofan undirected graph,
we are guaranteed that the search from each vertexu—whether breadth-first or
depth-first—will visit all vertices. There will be no need to“restart” the search
as is done in the DFS procedure of Section 22.3. Our pseudocode assumes that
the adjacency list of each vertex consists only of edges in the spanning treeT .

Here’s the breadth-first search approach:

23-14 Solutions for Chapter 23: Minimum Spanning Trees

BFS-FILL -MAX .G; T; w/

let maxbe a new table with an entrymaxŒu; �� for eachu; � 2 G:V
for each vertexu 2 G:V

for each vertex� 2 G:V
maxŒu; �� D NIL

Q D ;
ENQUEUE.Q; u/

while Q ¤ ;
x D DEQUEUE.Q/

for each� 2 G:AdjŒx�

if maxŒu; �� == NIL and� ¤ u

if x == u or w.x; �/ > maxŒu; x�

maxŒu; �� D .x; �/

elsemaxŒu; �� D maxŒu; x�

ENQUEUE.Q; �/

return max

Here’s the depth-first search approach:

DFS-FILL -MAX .G; T; w/

let maxbe a new table with an entrymaxŒu; �� for eachu; � 2 G:V
for each vertexu 2 G:V

for each vertex� 2 G:V
maxŒu; �� D NIL

DFS-FILL -MAX -V ISIT.G; u; u; max/
return max

DFS-FILL -MAX -V ISIT.G; u; x; max/

for each vertex� 2 G:AdjŒx�

if maxŒu; �� == NIL and� ¤ u

if x == u or w.x; �/ > maxŒu; x�

maxŒu; �� D .x; �/

elsemaxŒu; �� D maxŒu; x�

DFS-FILL -MAX -V ISIT.G; u; �; max/

For either approach, we are filling injV j rows of themax table. Since the
number of edges in the spanning tree isjV j � 1, each row takesO.V / time to
fill in. Thus, the total time to fill in themaxtable isO.V 2/.

d. In part (b), we established that we can find a second-best minimum spanning
tree by replacing just one edge of the minimum spanning treeT by some
edge.u; �/ not in T . As we know, if we create spanning treeT 0 by replacing
edge.x; y/ 2 T by edge.u; �/ 62 T , thenw.T 0/ D w.T /�w.x; y/Cw.u; �/.
For a given edge.u; �/, the edge.x; y/ 2 T that minimizesw.T 0/ is the edge
of maximum weight on the unique path betweenu and� in T . If we have al-
ready computed themaxtable from part (c) based onT , then the identity of this
edge is precisely what is stored inmaxŒu; ��. All we have to do is determine an
edge.u; �/ 62 T for which w.maxŒu; ��/ � w.u; �/ is minimum.

Solutions for Chapter 23: Minimum Spanning Trees 23-15

Thus, our algorithm to find a second-best minimum spanning tree goes as fol-
lows:

1. Compute the minimum spanning treeT . Time: O.ECV lg V /, using Prim’s
algorithm with a Fibonacci-heap implementation of the priority queue. Since
jEj < jV j2, this running time isO.V 2/.

2. Given the minimum spanning treeT , compute themaxtable, as in part (c).
Time: O.V 2/.

3. Find an edge.u; �/ 62 T that minimizesw.maxŒu; ��/ � w.u; �/. Time:
O.E/, which isO.V 2/.

4. Having found an edge.u; �/ in step 3, returnT 0 D T �fmaxŒu; ��g[f.u; �/g
as a second-best minimum spanning tree.

The total time isO.V 2/.

Lecture Notes for Chapter 24:
Single-Source Shortest Paths

Shortest paths

How to find the shortest route between two points on a map.

Input:

� Directed graphG D .V; E/
� Weight functionw W E ! R

Weight of pathp D h�0; �1; : : : ; �ki

D
k
X

iD1

w.�i�1; �i /

D sum of edge weights on pathp :

Shortest-path weightu to �:

ı.u; �/ D
(

min
n

w.p/ W u p
; �

o

if there exists a pathu ; � ;

1 otherwise:

Shortest pathu to � is any pathp such thatw.p/ D ı.u; �/.

Example

shortest paths froms

[ı values appear inside vertices. Shaded edges show shortest paths.]

6

5

3

s

t x

y z

0

3 9

5 11

2

3

1

6

4 2 7

6

5

3

s

t x

y z

0

3 9

5 11

2

3

1

6

4 2 7

This example shows that the shortest path might not be unique.

It also shows that when we look at shortest paths from one vertex to all other
vertices, the shortest paths are organized as a tree.

24-2 Lecture Notes for Chapter 24: Single-Source Shortest Paths

Can think of weights as representing any measure that

� accumulates linearly along a path, and
� we want to minimize.

Examples: time, cost, penalties, loss.

Generalization of breadth-first search to weighted graphs.

Variants

� Single-source:Find shortest paths from a givensourcevertexs 2 V to every
vertex� 2 V .

� Single-destination:Find shortest paths to a given destination vertex.
� Single-pair: Find shortest path fromu to �. No way known that’s better in

worst case than solving single-source.
� All-pairs: Find shortest path fromu to � for all u; � 2 V . We’ll see algorithms

for all-pairs in the next chapter.

Negative-weight edges

OK, as long as no negative-weight cycles are reachable from the source.

� If we have a negative-weight cycle, we can just keep going around it, and get
w.s; �/ D �1 for all � on the cycle.

� But OK if the negative-weight cycle is not reachable from thesource.
� Some algorithms work only if there are no negative-weight edges in the graph.

We’ll be clear when they’re allowed and not allowed.

Optimal substructure

Lemma
Any subpath of a shortest path is a shortest path.

Proof Cut-and-paste.

u x y v
pux pxy pyv

Suppose this pathp is a shortest path fromu to �.

Thenı.u; �/ D w.p/ D w.pux/Cw.pxy/C w.py�/.

Now suppose there exists a shorter pathx
p0

xy
; y.

Thenw.p0
xy/ < w.pxy/.

Constructp0:

u x y v
pux p'xy pyv

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-3

Then

w.p0/ D w.pux/Cw.p0
xy/Cw.py�/

< w.pux/Cw.pxy/Cw.py�/

D w.p/ :

Contradicts the assumption thatp is a shortest path. (lemma)

Cycles

Shortest paths can’t contain cycles:

� Already ruled out negative-weight cycles.
� Positive-weight) we can get a shorter path by omitting the cycle.
� Zero-weight: no reason to use them) assume that our solutions won’t use

them.

Output of single-source shortest-path algorithm

For each vertex� 2 V :

� �:dD ı.s; �/.

� Initially, �:dD1.
� Reduces as algorithms progress. But always maintain�:d � ı.s; �/.
� Call �:d ashortest-path estimate.

� �:� D predecessor of� on a shortest path froms.

� If no predecessor,�:� D NIL .
� � induces a tree—shortest-path tree.
� We won’t prove properties of� in lecture—see text.

Initialization

All the shortest-paths algorithms start with INIT-SINGLE-SOURCE.

INIT-SINGLE-SOURCE.G; s/

for each� 2 G:V
�:d D 1
�:� D NIL

s:d D 0

Relaxing an edge.u; �/

Can we improve the shortest-path estimate for� by going throughu and taking
.u; �/?

24-4 Lecture Notes for Chapter 24: Single-Source Shortest Paths

RELAX .u; �; w/

if �:d > u:dCw.u; �/

�:d D u:dCw.u; �/

�:� D u

3 3

RELAX

u v

4 10

4 7

RELAX

4 6

4 6

For all the single-source shortest-paths algorithms we’lllook at,

� start by calling INIT-SINGLE-SOURCE,
� then relax edges.

The algorithms differ in the order and how many times they relax each edge.

Shortest-paths properties

Based on calling INIT-SINGLE-SOURCE once and then calling RELAX zero or
more times.

Triangle inequality

For all .u; �/ 2 E, we haveı.s; �/ � ı.s; u/C w.u; �/.

Proof Weight of shortest paths ; � is � weight of any paths ; �. Path
s ; u! � is a paths ; �, and if we use a shortest paths ; u, its weight is
ı.s; u/Cw.u; �/.

Upper-bound property

Always have�:d � ı.s; �/ for all �. Once�:dD ı.s; �/, it never changes.

Proof Initially true.

Suppose there exists a vertex such that�:d < ı.s; �/.

Without loss of generality,� is first vertex for which this happens.

Let u be the vertex that causes�:d to change.

Then�:dD u:dCw.u; �/.

So,

�:d < ı.s; �/

� ı.s; u/Cw.u; �/ (triangle inequality)

� u:dC w.u; �/ (� is first violation)

) �:d < u:dC w.u; �/ :

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-5

Contradicts�:dD u:dC w.u; �/.

Once�:d reachesı.s; �/, it never goes lower. It never goes up, since relaxations
only lower shortest-path estimates.

No-path property

If ı.s; �/ D1, then�:dD 1 always.

Proof �:d � ı.s; �/ D1) �:dD 1.

Convergence property

If s ; u! � is a shortest path,u:d D ı.s; u/, and we call RELAX .u; �; w/, then
�:dD ı.s; �/ afterward.

Proof After relaxation:

�:d � u:dCw.u; �/ (RELAX code)

D ı.s; u/C w.u; �/

D ı.s; �/ (lemma—optimal substructure)

Since�:d � ı.s; �/, must have�:dD ı.s; �/.

Path relaxation property

Let p D h�0; �1; : : : ; �ki be a shortest path froms D �0 to �k. If we relax,
in order, .�0; �1/; .�1; �2/; : : : ; .�k�1; �k/, even intermixed with other relaxations,
then�k:dD ı.s; �k/.

Proof Induction to show that�i :dD ı.s; �i / after.�i�1; �i / is relaxed.

Basis: i D 0. Initially, �0:dD 0 D ı.s; �0/ D ı.s; s/.

Inductive step: Assume�i�1:d D ı.s; �i�1/. Relax.�i�1; �i /. By convergence
property,�i :dD ı.s; �i / afterward and�i :d never changes.

The Bellman-Ford algorithm

� Allows negative-weight edges.
� Computes�:d and�:� for all � 2 V .
� ReturnsTRUE if no negative-weight cycles reachable froms, FALSE otherwise.

24-6 Lecture Notes for Chapter 24: Single-Source Shortest Paths

BELLMAN -FORD.G; w; s/

INIT-SINGLE-SOURCE.G; s/

for i D 1 to jG:Vj � 1

for each edge.u; �/ 2 G:E
RELAX .u; �; w/

for each edge.u; �/ 2 G:E
if �:d > u:dCw.u; �/

return FALSE

return TRUE

Core: The nestedfor loops relax all edgesjV j � 1 times.

Time: ‚.VE/.

Example

s

r

x

yz

0

–1

1

2 –2

–1

4

3

5

2

–3

21

Values you get on each pass and how quickly it converges depends on order of
relaxation.

But guaranteed to converge afterjV j � 1 passes, assuming no negative-weight
cycles.

Proof Use path-relaxation property.

Let � be reachable froms, and letp D h�0; �1; : : : ; �ki be a shortest path froms
to �, where�0 D s and�k D �. Sincep is acyclic, it has� jV j � 1 edges, so
k � jV j � 1.

Each iteration of thefor loop relaxes all edges:

� First iteration relaxes.�0; �1/.
� Second iteration relaxes.�1; �2/.
� kth iteration relaxes.�k�1; �k/.

By the path-relaxation property,�:dD �k:dD ı.s; �k/ D ı.s; �/.

How about theTRUE/FALSE return value?

� Suppose there is no negative-weight cycle reachable froms.

At termination, for all.u; �/ 2 E,
�:d D ı.s; �/

� ı.s; u/Cw.u; �/ (triangle inequality)

D u:dCw.u; �/ :

So BELLMAN -FORD returnsTRUE.

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-7

� Now suppose there exists negative-weight cyclec D h�0; �1; : : : ; �ki, where
�0 D �k, reachable froms.

Then
k
X

iD1

.�i�1; �i / < 0 :

Suppose (for contradiction) that BELLMAN -FORD returnsTRUE.

Then�i :d � �i�1:dCw.�i�1; �i / for i D 1; 2; : : : ; k.

Sum aroundc:
k
X

iD1

�i :d �
k
X

iD1

.�i�1:dC w.�i�1; �i//

D
k
X

iD1

�i�1:dC
k
X

iD1

w.�i�1; �i/

Each vertex appears once in each summation
Pk

iD1 �i :d and
Pk

iD1 �i�1:d)

0 �
k
X

iD1

w.�i�1; �i / :

Contradictsc being a negative-weight cycle.

Single-source shortest paths in a directed acyclic graph

Since a dag, we’re guaranteed no negative-weight cycles.

DAG-SHORTEST-PATHS.G; w; s/

topologically sort the vertices
INIT-SINGLE-SOURCE.G; s/

for each vertexu, taken in topologically sorted order
for each vertex� 2 G:AdjŒu�

RELAX .u; �; w/

Example

s t x y z

2

6

2

–2–1

4

2 7

1

0 6 5 3

Time

‚.V CE/.

24-8 Lecture Notes for Chapter 24: Single-Source Shortest Paths

Correctness

Because we process vertices in topologically sorted order,edges ofanypath must
be relaxed in order of appearance in the path.
) Edges on any shortest path are relaxed in order.
) By path-relaxation property, correct.

Dijkstra’s algorithm

No negative-weightedges.

Essentially a weighted version of breadth-first search.

� Instead of a FIFO queue, uses a priority queue.
� Keys are shortest-path weights (�:d).

Have two sets of vertices:

� S D vertices whose final shortest-path weights are determined,
� Q D priority queueD V � S .

DIJKSTRA.G; w; s/

INIT-SINGLE-SOURCE.G; s/

S D ;
Q D G:V // i.e., insert all vertices intoQ
while Q ¤ ;

u D EXTRACT-M IN.Q/

S D S [fug
for each vertex� 2 G:AdjŒu�

RELAX .u; �; w/

� Looks a lot like Prim’s algorithm, but computing�:d, and using shortest-path
weights as keys.

� Dijkstra’s algorithm can be viewed as greedy, since it always chooses the “light-
est” (“closest”?) vertex inV � S to add toS .

Example

s

x

y

z

2

3 4

10

1

0

8

5

6

5

Order of adding toS : s; y; ´; x.

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-9

Correctness

Loop invariant: At the start of each iteration of thewhile loop, �:d D
ı.s; �/ for all � 2 S .

Initialization: Initially, S D ;, so trivially true.

Termination: At end,Q D ;) S D V) �:dD ı.s; �/ for all � 2 V .

Maintenance: Need to show thatu:d D ı.s; u/ whenu is added toS in each
iteration.

Suppose there existsu such thatu:d¤ ı.s; u/. Without loss of generality, letu
be the first vertex for whichu:d¤ ı.s; u/ whenu is added toS .

Observations:

� u ¤ s, sinces:d D ı.s; s/ D 0.
� Therefore,s 2 S , soS ¤ ;.
� There must be some paths ; u, since otherwiseu:d D ı.s; u/ D 1 by

no-path property.

So, there’s a paths ; u.

Then there’s a shortest paths
p
; u.

Just beforeu is added toS , pathp connects a vertex inS (i.e.,s) to a vertex in
V � S (i.e.,u).

Let y be first vertex alongp that’s inV � S , and letx 2 S bey’s predecessor.

y
p1

S
s

x
u

p2

Decomposep into s
p1
; x ! y

p2
; u. (Could havex D s or y D u, so thatp1

or p2 may have no edges.)

Claim
y:dD ı.s; y/ whenu is added toS .

Proof x 2 S andu is the first vertex such thatu:d ¤ ı.s; u/ whenu is added
to S) x:dD ı.s; x/ whenx is added toS . Relaxed.x; y/ at that time, so by
the convergence property,y:dD ı.s; y/. (claim)

Now can get a contradiction tou:d¤ ı.s; u/:

y is on shortest paths ; u, and all edge weights are nonnegative
) ı.s; y/ � ı.s; u/)
y:d D ı.s; y/

� ı.s; u/

� u:d (upper-bound property) .

24-10 Lecture Notes for Chapter 24: Single-Source ShortestPaths

Also, bothy andu were inQ when we choseu, so

u:d � y:d) u:d D y:d :

Therefore,y:dD ı.s; y/ D ı.s; u/ D u:d.

Contradicts assumption thatu:d ¤ ı.s; u/. Hence, Dijkstra’s algorithm is cor-
rect.

Analysis

Like Prim’s algorithm, depends on implementation of priority queue.

� If binary heap, each operation takesO.lg V / time) O.E lg V /.
� If a Fibonacci heap:

� Each EXTRACT-M IN takesO.1/ amortized time.
� There areO.V / other operations, takingO.lg V / amortized time each.
� Therefore, time isO.V lg V CE/.

Difference constraints

Given a set of inequalities of the formxj � xi � bk.

� x’s are variables,1 � i; j � n,
� b’s are constants,1 � k � m.

Want to find a set of values for thex’s that satisfy allm inequalities, or determine
that no such values exist. Call such a set of values afeasible solution.

Example

x1 � x2 � 5

x1 � x3 � 6

x2 � x4 � �1

x3 � x4 � �2

x4 � x1 � �3

Solution:x D .0;�4;�5;�3/

Also: x D .5; 1; 0; 2/ D [above solution]C 5

Lemma
If x is a feasible solution, then so isx C d for any constantd .

Proof x is a feasible solution) xj � xi � bk for all i; j; k

) .xj C d/ � .xi C d/ � bk. (lemma)

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-11

Constraint graph

G D .V; E/, weighted, directed.
� V D f�0; �1; �2; : : : ; �ng: one vertex per variableC �0

� E D f.�i ; �j / W xj � xi � bk is a constraintg [f.�0; �1/; .�0; �2/; : : : ; .�0; �n/g
� w.�0; �j / D 0 for all j
� w.�i ; �j / D bk if xj � xi � bk

v0

v2

v3

0

0 –4

–3 –5

–3

6

–2

5

–1

v1

v4

0

0

0

0

Theorem
Given a system of difference constraints, letG D .V; E/ be the corresponding
constraint graph.

1. If G has no negative-weight cycles, then

x D .ı.�0; �1/; ı.�0; �2/; : : : ; ı.�0; �n//

is a feasible solution.
2. If G has a negative-weight cycle, then there is no feasible solution.

Proof

1. Show no negative-weight cycles) feasible solution.

Need to show thatxj � xi � bk for all constraints. Use
xj D ı.�0; �j /

xi D ı.�0; �i /

bk D w.�i ; �j / :

By the triangle inequality,
ı.�0; �j / � ı.�0; �i /Cw.�i ; �j /

xj � xi C bk

xj � xi � bk :

Therefore, feasible.
2. Show negative-weight cycles) no feasible solution.

Without loss of generality, let a negative-weight cycle bec D h�1; �2; : : : ;

�ki, where�1 D �k. (�0 can’t be onc, since�0 has no entering edges.)c
corresponds to the constraints

x2 � x1 � w.�1; �2/ ;

x3 � x2 � w.�2; �3/ ;

:::

xk�1 � xk�2 � w.�k�2; �k�1/ ;

xk � xk�1 � w.�k�1; �k/ :

24-12 Lecture Notes for Chapter 24: Single-Source ShortestPaths

If x is a solution satisfying these inequalities, it must satisfy their sum.

So add them up.

Eachxi is added once and subtracted once. (�1 D �k) x1 D xk.)

We get0 � w.c/.

But w.c/ < 0, sincec is a negative-weight cycle.

Contradiction) no such feasible solutionx exists. (theorem)

How to find a feasible solution

1. Form constraint graph.

� nC 1 vertices.
� mC n edges.
� ‚.mC n/ time.

2. Run BELLMAN -FORD from �0.

� O..nC 1/.mC n// D O.n2 C nm/ time.

3. If BELLMAN -FORD returnsFALSE) no feasible solution.

If B ELLMAN -FORD returnsTRUE) setxi D ı.�0; �i/ for all i .

Solutions for Chapter 24:
Single-Source Shortest Paths

Solution to Exercise 24.1-3
This solution is also posted publicly

If the greatest number of edges on any shortest path from the source ism, then the
path-relaxation property tells us that afterm iterations of BELLMAN -FORD, every
vertex� has achieved its shortest-path weight in�:d. By the upper-bound property,
afterm iterations, nod values will ever change. Therefore, nod values will change
in the.mC 1/st iteration. Because we do not knowm in advance, we cannot make
the algorithm iterate exactlym times and then terminate. But if we just make the
algorithm stop when nothing changes any more, it will stop after mC 1 iterations.

BELLMAN -FORD-(M+1).G; w; s/

INITIALIZE -SINGLE-SOURCE.G; s/

changesD TRUE

while changes== TRUE

changesD FALSE

for each edge.u; �/ 2 G:E
RELAX -M.u; �; w/

RELAX -M.u; �; w/

if �:d > u:dC w.u; �/

�:d D u:dCw.u; �/

�:� D u

changesD TRUE

The test for a negative-weight cycle (based on there being ad value that would
change if another relaxation step was done) has been removedabove, because this
version of the algorithm will never get out of thewhile loop unless alld values
stop changing.

Solution to Exercise 24.2-3

Instead of modifying the DAG-SHORTEST-PATHS procedure, we’ll modify the
structure of the graph so that we can run DAG-SHORTEST-PATHS on it. In fact,

24-14 Solutions for Chapter 24: Single-Source Shortest Paths

we’ll give two ways to transform a PERT chartG D .V; E/ with weights on ver-
tices to a PERT chartG0 D .V 0; E 0/ with weights on edges. In each way, we’ll
have thatjV 0j � 2 jV j and jE 0j � jV j C jEj. We can then run onG0 the same
algorithm to find a longest path through a dag as is given in Section 24.2 of the
text.

In the first way, we transform each vertex� 2 V into two vertices� 0 and� 00 in V 0.
All edges inE that enter� will enter � 0 in E 0, and all edges inE that leave� will
leave� 00 in E 0. In other words, if.u; �/ 2 E, then.u00; � 0/ 2 E 0. All such edges
have weight0. We also put edges.� 0; � 00/ into E 0 for all vertices� 2 V , and these
edges are given the weight of the corresponding vertex� in G. Thus,jV 0j D 2 jV j,
jE 0j D jV j C jEj, and the edge weight of each path inG0 equals the vertex weight
of the corresponding path inG.

In the second way, we leave vertices inV alone, but we add one new source vertexs

to V 0, so thatV 0 D V [fsg. All edges ofE are inE 0, andE 0 also includes an
edge.s; �/ for every vertex� 2 V that has in-degree0 in G. Thus, the only vertex
with in-degree0 in G0 is the new sources. The weight of edge.u; �/ 2 E 0 is the
weight of vertex� in G. In other words, the weight of each entering edge inG0 is
the weight of the vertex it enters inG. In effect, we have “pushed back” the weight
of each vertex onto the edges that enter it. Here,jV 0j D jV j C 1, jE 0j � jV j C jEj
(since no more thanjV j vertices have in-degree0 in G), and again the edge weight
of each path inG0 equals the vertex weight of the corresponding path inG.

Solution to Exercise 24.3-3
This solution is also posted publicly

Yes, the algorithm still works. Letu be the leftover vertex that does not
get extracted from the priority queueQ. If u is not reachable froms, then
u:dD ı.s; u/ D 1. If u is reachable froms, then there is a shortest path
p D s ; x ! u. When the vertexx was extracted,x:d D ı.s; x/ and then the
edge.x; u/ was relaxed; thus,u:dD ı.s; u/.

Solution to Exercise 24.3-4

1. Verify thats:d D 0 ands:� D NIL .

2. Verify that�:dD �:�:Cw.�:�; �/ for all � ¤ s.

3. Verify that�:dD1 if and only if �:ßD NIL for all � ¤ s.

4. If any of the above verification tests fail, declare the output to be incorrect.
Otherwise, run one pass of Bellman-Ford, i.e., relax each edge .u; �/ 2 E

one time. If any values of�:d change, then declare the output to be incorrect;
otherwise, declare the output to be correct.

Solutions for Chapter 24: Single-Source Shortest Paths 24-15

Solution to Exercise 24.3-5

Let the graph have verticess; x; y; ´ and edges.s; x/; .x; y/; .y; ´/; .s; y/, and
let every edge have weight0. Dijkstra’s algorithm could relax edges in the or-
der .s; y/; .s; x/; .y; ´/; .x; y/. The graph has two shortest paths froms to ´:
hs; x; y; ´i and hs; y; ´i, both with weight0. The edges on the shortest path
hs; x; y; ´i are relaxed out of order, because.x; y/ is relaxed after.y; ´/.

Solution to Exercise 24.3-6
This solution is also posted publicly

To find the most reliable path betweens andt , run Dijkstra’s algorithm with edge
weightsw.u; �/ D � lg r.u; �/ to find shortest paths froms in O.ECV lg V / time.
The most reliable path is the shortest path froms to t , and that path’s reliability is
the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilities areindependent, the
probability that a path will not fail is the product of the probabilities that its edges
will not fail. We want to find a paths

p
; t such that

Q

.u;�/2p r.u; �/ is maximized.
This is equivalent to maximizing lg.

Q

.u;�/2p r.u; �// DP.u;�/2p lg r.u; �/, which
is in turn equivalent to minimizing

P

.u;�/2p � lg r.u; �/. (Note: r.u; �/ can be 0,
and lg0 is undefined. So in this algorithm, define lg0 D �1.) Thus if we assign
weightsw.u; �/ D � lg r.u; �/, we have a shortest-path problem.

Since lg1 = 0, lgx < 0 for 0 < x < 1, and we have defined lg0 D �1, all the
weightsw are nonnegative, and we can use Dijkstra’s algorithm to find the shortest
paths froms in O.E C V lg V / time.

Alternative solution

You can also work with the original probabilities by runninga modified version of
Dijkstra’s algorithm that maximizes the product of reliabilities along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weights and substitute
� max (and EXTRACT-MAX) for min (and EXTRACT-M IN) in relaxation and the

queue,
� � for C in relaxation,
� 1 (identity for �) for 0 (identity forC) and�1 (identity for min) for1 (identity

for max).

For example, we would use the following instead of the usual RELAX procedure:

RELAX -RELIABILITY .u; �; r/

if �:d < u:d � r.u; �/

�:d D u:d � r.u; �/

�:� D u

24-16 Solutions for Chapter 24: Single-Source Shortest Paths

This algorithm is isomorphic to the one above: it performs the same operations
except that it is working with the original probabilities instead of the transformed
ones.

Solution to Exercise 24.3-8

Observe that if a shortest-path estimate is not1, then it’s at most.jV j � 1/W .
Why? In order to have�:d < 1, we must have relaxed an edge.u; �/ with
u:d < 1. By induction, we can show that if we relax.u; �/, then�:d is at most
the number of edges on a path froms to � times the maximum edge weight. Since
any acyclic path has at mostjV j � 1 edges and the maximum edge weight isW ,
we see that�:d � .jV j � 1/W . Note also that�:d must also be an integer, unless
it is1.

We also observe that in Dijkstra’s algorithm, the values returned by the EXTRACT-
M IN calls are monotonically increasing over time. Why? After wedo our initial
jV j INSERT operations, we never do another. The only other way that a keyvalue
can change is by a DECREASE-KEY operation. Since edge weights are nonneg-
ative, when we relax an edge.u; �/, we have thatu:d � �:d. Sinceu is the
minimum vertex that we just extracted, we know that any othervertex we extract
later has a key value that is at leastu:d.

When keys are known to be integers in the range 0 tok and the key values extracted
are monotonically increasing over time, we can implement a min-priority queue so
that any sequence ofm INSERT, EXTRACT-M IN, and DECREASE-KEY operations
takesO.m C k/ time. Here’s how. We use an array, sayAŒ0 : : k�, whereAŒj � is
a linked list of each element whose key isj . Think of AŒj � as a bucket for all
elements with keyj . We implement each bucket by a circular, doubly linked list
with a sentinel, so that we can insert into or delete from eachbucket inO.1/ time.
We perform the min-priority queue operations as follows:

� INSERT: To insert an element with keyj , just insert it into the linked list
in AŒj �. Time: O.1/ per INSERT.

� EXTRACT-M IN: We maintain an indexmin of the value of the smallest key
extracted. Initially,min is 0. To find the smallest key, look inAŒmin� and, if
this list is nonempty, use any element in it, removing the element from the list
and returning it to the caller. Otherwise, we rely on the monotonicity property
and incrementminuntil we either find a listAŒmin� that is nonempty (using any
element inAŒmin� as before) or we run off the end of the arrayA (in which case
the min-priority queue is empty).

Since there are at mostm INSERT operations, there are at mostm elements in
the min-priority queue. We incrementminat mostk times, and we remove and
return some element at mostm times. Thus, the total time over all EXTRACT-
M IN operations isO.mC k/.

� DECREASE-KEY: To decrease the key of an element fromj to i , first check
whetheri � j , flagging an error if not. Otherwise, we remove the element
from its list AŒj � in O.1/ time and insert it into the listAŒi� in O.1/ time.
Time: O.1/ per DECREASE-KEY.

Solutions for Chapter 24: Single-Source Shortest Paths 24-17

To apply this kind of min-priority queue to Dijkstra’s algorithm, we need to let
k D .jV j � 1/W , and we also need a separate list for keys with value1. The num-
ber of operationsm is O.V CE/ (since there arejV j INSERT andjV j EXTRACT-
M IN operations and at mostjEj DECREASE-KEY operations), and so the total time
is O.V CE C V W / D O.V W CE/.

Solution to Exercise 24.3-9

First, observe that at any time, there are at mostW C 2 distinct key values in the
priority queue. Why? A key value is either1 or it is not. Consider what happens
whenever a key value�:d becomes finite. It must have occurred due to the relax-
ation of an edge.u; �/. At that time,u was being placed intoS , andu:d � y:d for
all verticesy 2 V �S . After relaxing edge.u; �/, we have�:d � u:dCW . Since
any other vertexy 2 V �S with y:d <1 also had its estimate changed by a relax-
ation of some edgex with x:d � u:d, we must havey:d � x:dCW � u:dCW .
Thus, at the time that we are relaxing edges from a vertexu, we must have, for all
vertices� 2 V � S , thatu:d � �:d � u:dCW or �:d D 1. Since shortest-path
estimates are integer values (except for1), at any given moment we have at most
W C 2 different ones:u:d; u:dC 1; u:dC 2; : : : ; u:dCW and1.

Therefore, we can maintain the min-priorty queue as a binarymin-heap in which
each node points to a doubly linked list of all vertices with agiven key value. There
are at mostW C 2 nodes in the heap, and so EXTRACT-M IN runs in O.lg W /

time. To perform DECREASE-KEY, we need to be able to find the heap node
corresponding to a given key inO.lg W / time. We can do so inO.1/ time as
follows. First, keep a pointerinf to the node containing all the1 keys. Second,
maintain an arraylocŒ0 : : W �, wherelocŒi � points to the unique heap entry whose
key value is congruent toi .mod .W C 1//. As keys move around in the heap, we
can update this array inO.1/ time per movement.

Alternatively, instead of using a binary min-heap, we coulduse a red-black tree.
Now INSERT, DELETE, M INIMUM , and SEARCH—from which we can construct
the priority-queue operations—each run inO.lg W / time.

Solution to Exercise 24.4-4

Let ı.u/ be the shortest-path weight froms to u. Then we want to findı.t/.

ı must satisfy

ı.s/ D 0

ı.�/� ı.u/ � w.u; �/ for all .u; �/ 2 E (Lemma 24.10);

wherew.u; �/ is the weight of edge.u; �/.

Thusx� D ı.�/ is a solution to

xs D 0

x� � xu � w.u; �/ :

24-18 Solutions for Chapter 24: Single-Source Shortest Paths

To turn this into a set of inequalities of the required form, replacexs D 0 by xs � 0

and�xs � 0 (i.e.,xs � 0). The constraints are now

xs � 0 ;

�xs � 0 ;

x� � xu � w.u; �/ ;

which still hasx� D ı.�/ as a solution.

However,ı isn’t the only solution to this set of inequalities. (For example, if all
edge weights are nonnegative, allxi D 0 is a solution.) To forcext D ı.t/ as
required by the shortest-path problem, add the requirementto maximize (the ob-
jective function)xt . This is correct because

� max.xt / � ı.t/ becausext D ı.t/ is part of one solution to the set of inequali-
ties,

� max.xt / � ı.t/ can be demonstrated by a technique similar to the proof of
Theorem 24.9:

Let p be a shortest path froms to t . Then by definition,

ı.t/ D
X

.u;�/2p

w.u; �/ :

But for each edge.u; �/ we have the inequalityx� � xu � w.u; �/, so

ı.t/ D
X

.u;�/2p

w.u; �/ �
X

.u;�/2p

.x� � xu/ D xt � xs :

But xs D 0, soxt � ı.t/.

Note: Maximizing xt subject to the above inequalities solves the single-pair
shortest-path problem whent is reachable froms and there are no negative-weight
cycles. But if there’s a negative-weight cycle, the inequalities have no feasible so-
lution (as demonstrated in the proof of Theorem 24.9); and ift is not reachable
from s, thenxt is unbounded.

Solution to Exercise 24.4-7
This solution is also posted publicly

Observe that after the first pass, alld values are at most0, and that relaxing
edges.�0; �i / will never again change ad value. Therefore, we can eliminate�0 by
running the Bellman-Ford algorithm on the constraint graphwithout the�0 vertex
but initializing all shortest path estimates to0 instead of1.

Solution to Exercise 24.4-10

To allow for single-variable constraints, we add the variable x0 and let it correspond
to the source vertex�0 of the constraint graph. The idea is that, if there are no

Solutions for Chapter 24: Single-Source Shortest Paths 24-19

negative-weight cycles containing�0, we will find thatı.�0; �0/ D 0. In this case,
we setx0 D 0, and so we can treat any single-variable constraint usingxi as if it
were a 2-variable constraint withx0 as the other variable.

Specifically, we treat the constraintxi � bk as if it werexi � x0 � bk , and we
add the edge.�0; �i/ with weightbk to the constraint graph. We treat the constraint
�xi � bk as if it werex0 � xi � bk, and we add the edge.�i ; �0/ with weightbk

to the constraint graph.

Once we find shortest-path weights from�0, we set xi D ı.�0; �i / for all
i D 0; 1; : : : ; n; that is, we do as before but also includex0 as one of the vari-
ables that we set to a shortest-path weight. Since�0 is the source vertex, either
x0 D 0 or x0 < 0.

If ı.�0; �0/ D 0, so thatx0 D 0, then settingxi D ı.�0; �i / for all i D 0; 1; : : : ; n

gives a feasible solution for the system. The only new constraints beyond those in
the text are those involvingx0. For constraintsxi � bk, we usexi � x0 � bk. By
the triangle inequality,ı.�0; �i / � ı.�0; �0/ C w.�0; �i / D bk , and soxi � bk.
For constraints�xi � bk, we usex0 � xi � bk. By the triangle inequality,0 D
ı.�0; �0/ � ı.�0; �i /Cw.�i ; �0/; thus,0 � xi C bk or, equivalently,�xi � bk.

If ı.�0; �0/ < 0, so thatx0 < 0, then there is a negative-weight cycle containing�0.
The portion of the proof of Theorem 24.9 that deals with negative-weight cycles
carries through but with�0 on the negative-weight cycle, and we see that there is
no feasible solution.

Solution to Exercise 24.5-4
This solution is also posted publicly

Whenever RELAX sets� for some vertex, it also reduces the vertex’sd value.
Thus if s:� gets set to a non-NIL value,s:d is reduced from its initial value of0 to
a negative number. Buts:d is the weight of some path froms to s, which is a cycle
includings. Thus, there is a negative-weight cycle.

Solution to Exercise 24.5-7

Suppose we have a shortest-paths treeG� . Relax edges inG� according to the
order in which a BFS would visit them. Then we are guaranteed that the edges
along each shortest path are relaxed in order. By the path-relaxation property, we
would then have�:d D ı.s; �/ for all � 2 V . SinceG� contains at mostjV j � 1

edges, we need to relax onlyjV j � 1 edges to get�:dD ı.s; �/ for all � 2 V .

Solution to Exercise 24.5-8

Suppose that there is a negative-weight cyclec D h�0; �1; : : : ; �ki, where�0 D �k,
that is reachable from the source vertexs; thus,w.c/ < 0. Without loss of general-

24-20 Solutions for Chapter 24: Single-Source Shortest Paths

ity, c is simple. There must be an acyclic path froms to some vertex ofc that uses
no other vertices inc. Without loss of generality let this vertex ofc be�0, and let
this path froms to �0 bep D hu0; u1; : : : ; uli, whereu0 D s andul D �0 D �k.
(It may be the case thatul D s, in which case pathp has no edges.) After the call
to INITIALIZE -SINGLE-SOURCE sets�:d D 1 for all � 2 V � fsg, perform the
following sequence of relaxations. First, relax every edgein pathp, in order. Then
relax every edge in cyclec, in order, and repeatedly relax the cycle. That is, we
relax the edges.u0; u1/, .u1; u2/, . . . , .ul�1; �0/, .�0; �1/, .�1; �2/, . . . , .�k�1; �0/,
.�0; �1/, .�1; �2/, . . . ,.�k�1; �0/, .�0; �1/, .�1; �2/, . . . ,.�k�1; �0/,

We claim that every edge relaxation in this sequence reducesa shortest-path es-
timate. Clearly, the first time we relax an edge.ui�1; ui / or .�j �1; �j /, for
i D 1; 2; : : : ; l andj D 1; 2; : : : ; k � 1 (note that we have not yet relaxed the last
edge of cyclec), we reduceui :d or �j :d from1 to a finite value. Now consider
the relaxation of any edge.�j �1; �j / after this opening sequence of relaxations.
We use induction on the number of edge relaxations to show that this relaxation
reduces�j :d.

Basis: The next edge relaxed after the opening sequence is.�k�1; �k/. Before
relaxation,�k:d D w.p/, and after relaxation,�k:d D w.p/ C w.c/ < w.p/,
sincew.c/ < 0.

Inductive step: Consider the relaxation of edge.�j �1; �j /. Sincec is a sim-
ple cycle, the last time�j :d was updated was by a relaxation of this same
edge. By the inductive hypothesis,�j �1:d has just been reduced. Thus,
�j �1:dCw.�j �1; �j / < �j :d, and so the relaxation will reduce the value of�j :d.

Solution to Problem 24-1

a. Assume for the purpose contradiction thatGf is not acyclic; thusGf has a
cycle. A cycle must have at least one edge.u; �/ in which u has higher index
than�. This edge is not inEf (by the definition ofEf), in contradition to the
assumption thatGf has a cycle. ThusGf is acyclic.

The sequenceh�1; �2; : : : ; �jV ji is a topological sort forGf , because from the
definition of Ef we know that all edges are directed from smaller indices to
larger indices.

The proof forEb is similar.

b. For all vertices� 2 V , we know that eitherı.s; �/ D 1 or ı.s; �/ is finite.
If ı.s; �/ D 1, then �:d will be 1. Thus, we need to consider only the
case where�:d is finite. There must be some shortest path froms to �. Let
p D h�0; �1; : : : ; �k�1; �ki be that path, where�0 D s and�k D �. Let us now
consider how many times there is a change in direction inp, that is, a situation
in which .�i�1; �i / 2 Ef and.�i ; �iC1/ 2 Eb or vice versa. There can be at
mostjV j�1 edges inp, so there can be at mostjV j�2 changes in direction. Any
portion of the path where there is no change in direction is computed with the
correctd values in the first or second half of a single pass once the vertex that
begins the no-change-in-direction sequence has the correct d value, because the
edges are relaxed in the order of the direction of the sequence. Each change in

Solutions for Chapter 24: Single-Source Shortest Paths 24-21

direction requires a half pass in the new direction of the path. The following
table shows the maximum number of passes needed depending onthe parity of
jV j � 1 and the direction of the first edge:

jV j � 1 first edge direction passes
even forward .jV j � 1/=2

even backward .jV j � 1/=2C 1

odd forward jV j =2

odd backward jV j =2

In any case, the maximum number of passes that we will need isdjV j =2e.
c. This scheme does not affect the asymptotic running time of the algorithm be-

cause even though we perform onlydjV j =2e passes instead ofjV j � 1 passes,
it is still O.V / passes. Each pass still takes‚.E/ time, so the running time
remainsO.VE/.

Solution to Problem 24-2

a. Consider boxes with dimensionsx D .x1; : : : ; xd /, y D .y1; : : : ; yd /, and
´ D .´1; : : : ; ´d /. Suppose there exists a permutation� such thatx�.i/ < yi

for i D 1; : : : ; d and there exists a permutation� 0 such thaty� 0.i/ < ´i for
i D 1; : : : ; d , so thatx nests insidey and y nests insidé . Construct a
permutation� 00, where� 00.i/ D � 0.�.i//. Then for i D 1; : : : ; d , we have
x� 00.i/ D x� 0.�.i// < y� 0.i/ < ´i , and sox nests insidé .

b. Sort the dimensions of each box from longest to shortest. A box X with
sorted dimensions.x1; x2; : : : ; xd / nests inside a boxY with sorted dimensions
.y1; y2; : : : ; yd / if and only if xi < yi for i D 1; 2; : : : ; d . The sorting can
be done inO.d lg d/ time, and the test for nesting can be done inO.d/ time,
and so the algorithm runs inO.d lg d/ time. This algorithm works because a
d -dimensional box can be oriented so that every permutation of its dimensions
is possible. (Experiment with a3-dimensional box if you are unsure of this).

c. Construct a dagG D .V; E/, where each vertex�i corresponds to boxBi , and
.�i ; �j / 2 E if and only if boxBi nests inside boxBj . GraphG is indeed a dag,
because nesting is transitive and antireflexive (i.e., no box nests inside itself).
The time to construct the dag isO.dn2Cdn lg d/, from comparing each of the
�

n

2

�

pairs of boxes after sorting the dimensions of each.

Add a supersource vertexs and a supersink vertext to G, and add edges.s; �i /

for all vertices�i with in-degree0 and .�j ; t/ for all vertices�j with out-
degree0. Call the resulting dagG0. The time to do so isO.n/.

Find a longest path froms to t in G0. (Section 24.2 discusses how to find a
longest path in a dag.) This path corresponds to a longest sequence of nesting
boxes. The time to find a longest path isO.n2/, sinceG0 hasnC 2 vertices and
O.n2/ edges.

Overall, this algorithm runs inO.dn2 C dn lg d/ time.

24-22 Solutions for Chapter 24: Single-Source Shortest Paths

Solution to Problem 24-3
This solution is also posted publicly

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph
G D .V; E/, which we form as follows. There is one vertex inV for each
currency, and for each pair of currenciesci and cj , there are directed edges
.�i ; �j / and.�j ; �i /. (Thus,jV j D n andjEj D n.n � 1/.)

We are looking for a cyclehi1; i2; i3; : : : ; ik ; i1i such that

RŒi1; i2� � RŒi2; i3� � � �RŒik�1; ik � �RŒik; i1� > 1 :

Taking logarithms of both sides of this inequality gives

lg RŒi1; i2�C lg RŒi2; i3�C � � � C lg RŒik�1; ik �C lg RŒik; i1� > 0 :

If we negate both sides, we get

.� lg RŒi1; i2�/C .� lg RŒi2; i3�/C � � � C .lgRŒik�1; ik�/C .� lg RŒik; i1�/ < 0 ;

and so we want to determine whetherG contains a negative-weight cycle with
these edge weights.

We can determine whether there exists a negative-weight cycle in G by adding
an extra vertex�0 with 0-weight edges.�0; �i / for all �i 2 V , running
BELLMAN -FORD from �0, and using the boolean result of BELLMAN -FORD

(which is TRUE if there are no negative-weight cycles andFALSE if there is a
negative-weight cycle) to guide our answer. That is, we invert the boolean result
of BELLMAN -FORD.

This method works because adding the new vertex�0 with 0-weight edges
from �0 to all other vertices cannot introduce any new cycles, yet itensures
that all negative-weight cycles are reachable from�0.

It takes‚.n2/ time to createG, which has‚.n2/ edges. Then it takesO.n3/

time to run BELLMAN -FORD. Thus, the total time isO.n3/.

Another way to determine whether a negative-weight cycle exists is to createG
and, without adding�0 and its incident edges, run either of the all-pairs shortest-
paths algorithms. If the resulting shortest-path distancematrix has any negative
values on the diagonal, then there is a negative-weight cycle.

b. Note: The solution to this part also serves as a solution to Exercise 24.1-6.

Assuming that we ran BELLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so as follows. Go through the
edges once again. Once we find an edge.u; �/ for whichu:dCw.u; �/ < �:d,
then we know that either vertex� is on a negative-weight cycle or is reachable
from one. We can find a vertex on the negative-weight cycle by tracing back the
� values from�, keeping track of which vertices we’ve visited until we reach
a vertexx that we’ve visited before. Then we can trace back� values fromx

until we get back tox, and all vertices in between, along withx, will constitute
a negative-weight cycle. We can use the recursive method given by the PRINT-
PATH procedure of Section 22.2, but stop it when it returns to vertex x.

Solutions for Chapter 24: Single-Source Shortest Paths 24-23

The running time isO.n3/ to run BELLMAN -FORD, plusO.m/ to check all the
edges andO.n/ to print the vertices of the cycle, for a total ofO.n3/ time.

Solution to Problem 24-4

a. Since all weights are nonnegative, use Dijkstra’s algorithm. Implement the
priority queue as an arrayQŒ0 : : jEj C 1�, whereQŒi� is a list of vertices� for
which �:d D i . Initialize �:d for � ¤ s to jEj C 1 instead of to1, so that all
vertices have a place inQ. (Any initial �:d > ı.s; �/ works in the algorithm,
since�:d decreases until it reachesı.s; �/.)

The jV jEXTRACT-M INs can be done inO.E/ total time, and decreasing a
d value during relaxation can be done inO.1/ time, for a total running time
of O.E/.

� When�:d decreases, just add� to the front of the list inQŒ�:d�.
� EXTRACT-M IN removes the head of the list in the first nonempty slot ofQ.

To do EXTRACT-M IN without scanning all ofQ, keep track of the small-
esti for which QŒi� is not empty. The key point is that when�:d decreases
due to relaxation of edge.u; �/, �:d remains� u:d, so it never moves to
an earlier slot ofQ than the one that hadu, the previous minimum. Thus
EXTRACT-M IN can always scan upward in the array, taking a total ofO.E/

time for all EXTRACT-M INs.

b. For all .u; �/ 2 E, we havew1.u; �/ 2 f0; 1g, soı1.s; �/ � jV j � 1 � jEj.
Use part (a) to get theO.E/ time bound.

c. To show thatwi .u; �/ D 2wi�1.u; �/ or wi.u; �/ D 2wi�1.u; �/C 1, observe
that thei bits ofwi.u; �/ consist of thei �1 bits ofwi�1.u; �/ followed by one
more bit. If that low-order bit is 0, thenwi .u; �/ D 2wi�1.u; �/; if it is 1, then
wi .u; �/ D 2wi�1.u; �/C 1.

Notice the following two properties of shortest paths:

1. If all edge weights are multiplied by a factor ofc, then all shortest-path
weights are multiplied byc.

2. If all edge weights are increased by at mostc, then all shortest-path weights
are increased by at mostc.jV j � 1/, since all shortest paths have at most
jV j � 1 edges.

The lowest possible value forwi .u; �/ is 2wi�1.u; �/, so by the first observa-
tion, the lowest possible value forıi.s; �/ is 2ıi�1.s; �/.

The highest possible value forwi.u; �/ is 2wi�1.u; �/ C 1. Therefore, us-
ing the two observations together, the highest possible value for ıi.s; �/ is
2ıi�1.s; �/C jV j � 1.

d. We have

ywi .u; �/ D wi.u; �/C 2ıi�1.s; u/ � 2ıi�1.s; �/

� 2wi�1.u; �/C 2ıi�1.s; u/ � 2ıi�1.s; �/

� 0 :

24-24 Solutions for Chapter 24: Single-Source Shortest Paths

The second line follows from part (c), and the third line follows from
Lemma 24.10:ıi�1.s; �/ � ıi�1.s; u/Cwi�1.u; �/.

e. Observe that if we computeywi.p/ for any pathp W u ; �, the termsıi�1.s; t/

cancel for every intermediate vertext on the path. Thus,

ywi.p/ D wi.p/C 2ıi�1.s; u/ � 2ıi�1.s; �/ :

(This relationship will be shown in detail in equation (25.10) within the proof of
Lemma 25.1.) Theıi�1 terms depend only onu, �, ands, but not on the pathp;
therefore the same paths will be of minimumwi weight and of minimumywi

weight betweenu and�. Lettingu D s, we get
yıi.s; �/ D ıi.s; �/C 2ıi�1.s; s/ � 2ıi�1.s; �/

D ıi.s; �/ � 2ıi�1.s; �/ :

Rewriting this result asıi .s; �/ D yıi .s; �/C 2ıi�1.s; �/ and combining it with
ıi.s; �/ � 2ıi�1.s; �/CjV j�1 (from part (c)) gives usyıi .s; �/ � jV j�1 � jEj.

f. To computeıi .s; �/ from ıi�1.s; �/ for all � 2 V in O.E/ time:

1. Compute the weightsywi.u; �/ in O.E/ time, as shown in part (d).

2. By part (e),yıi .s; �/ � jEj, so use part (a) to compute allyıi .s; �/ in O.E/

time.
3. Compute allıi .s; �/ from yıi .s; �/ and ıi�1.s; �/ as shown in part (e), in

O.V / time.

To compute allı.s; �/ in O.E lg W / time:

1. Computeı1.s; �/ for all � 2 V . As shown in part (b), this takesO.E/ time.
2. For eachi D 2; 3; : : : ; k, compute allıi .s; �/ from ıi�1.s; �/ in O.E/

time as shown above. This procedure computesı.s; �/ D ık.u; �/ in time
O.Ek/ D O.E lg W /.

Solution to Problem 24-6

Observe that a bitonic sequence can increase, then decrease, then increase, or it can
decrease, then increase, then decrease. That is, there can be at most two changes of
direction in a bitonic sequence. Any sequence that increases, then decreases, then
increases, then decreases has a bitonic sequence as a subsequence.

Now, let us suppose that we had an even stronger condition than the bitonic prop-
erty given in the problem: for each vertex� 2 V , the weights of the edges along
any shortest path froms to � are increasing. Then we could call INITIALIZE -
SINGLE-SOURCE and then just relax all edges one time, going in increasing order
of weight. Then the edges along every shortest path would be relaxed in order
of their appearance on the path. (We rely on the uniqueness ofedge weights to
ensure that the ordering is correct.) The path-relaxation property (Lemma 24.15)
would guarantee that we would have computed correct shortest paths froms to
each vertex.

Solutions for Chapter 24: Single-Source Shortest Paths 24-25

If we weaken the condition so that the weights of the edges along any shortest path
increase and then decrease, we could relax all edges one time, in increasing order
of weight, and then one more time, in decreasing order of weight. That order, along
with uniqueness of edge weights, would ensure that we had relaxed the edges of
every shortest path in order, and again the path-relaxationproperty would guarantee
that we would have computed correct shortest paths.

To make sure that we handle all bitonic sequences, we do as suggested above. That
is, we perform four passes, relaxing each edge once in each pass. The first and third
passes relax edges in increasing order of weight, and the second and fourth passes
in decreasing order. Again, by the path-relaxation property and the uniqueness of
edge weights, we have computed correct shortest paths.

The total time isO.V CE lg V /, as follows. The time to sortjEj edges by weight
is O.E lg E/ D O.E lg V / (sincejEj D O.V 2/). INITIALIZE -SINGLE-SOURCE

takesO.V / time. Each of the four passes takesO.E/ time. Thus, the total time is
O.E lg V C V CE/ D O.V CE lg V /.

Lecture Notes for Chapter 25:
All-Pairs Shortest Paths

Chapter 25 overview

Given a directed graphG D .V; E/, weight functionw W E ! R, jV j D n.
Assume that we can number the vertices1; 2; : : : ; n.

Goal: create ann � n matrix D D .dij / of shortest-path distances, so that
dij D ı.i; j / for all verticesi andj .

Could run BELLMAN -FORD once from each vertex:

� O.V 2E/—which isO.V 4/ if the graph isdense(E D ‚.V 2/).

If no negative-weight edges, could run Dijkstra’s algorithm once from each vertex:

� O.VE lg V / with binary heap—O.V 3 lg V / if dense,
� O.V 2 lg V C VE/ with Fibonacci heap—O.V 3/ if dense.

We’ll see how to do inO.V 3/ in all cases, with no fancy data structure.

Shortest paths and matrix multiplication

Assume thatG is given as adjacency matrix of weights:W D .wij /, with vertices
numbered1 to n.

wij D

�
0 if i D j ;

weight of.i; j / if i ¤ j , .i; j / 2 E ;

1 if i ¤ j , .i; j / … E :

Won’t worry about predecessors—see book.

Will use dynamic programming at first.

Optimal substructure

Recall: subpaths of shortest paths are shortest paths.

25-2 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Recursive solution

Let l
.m/
ij D weight of shortest pathi ; j that contains� m edges.

� m D 0

) there is a shortest pathi ; j with � m edges if and only ifi D j

) l
.0/
ij D

(

0 if i D j ;

1 if i ¤ j :

� m � 1

) l
.m/
ij D min

�

l
.m�1/
ij min

1�k�n

˚

l
.m�1/

ik
Cwkj

	�

(k ranges over all possible
predecessors ofj)

D min
1�k�n

˚

l
.m�1/

ik
Cwkj

	

(sincewjj D 0 for all j) .

� Observe that whenm D 1, must havel .1/
ij D wij .

Conceptually, when the path is restricted to at most 1 edge, the weight of the
shortest pathi ; j must bewij .

And the math works out, too:
l

.1/
ij D min

1�k�n

˚

l
.0/

ik
C wkj

	

D l
.0/
i i Cwij (l .0/

i i is the only non-1 amongl
.0/

ik
)

D wij :

All simple shortest paths contain� n � 1 edges
) ı.i; j / D l

.n�1/
ij D l

.n/
ij D l

.nC1/
ij D : : :

Compute a solution bottom-up

ComputeL.1/; L.2/; : : : ; L.n�1/.

Start withL.1/ D W , sincel
.1/
ij D wij .

Go fromL.m�1/ to L.m/:

EXTEND.L; W; n/

let L0 D
�

l 0
ij

�

be a newn � n matrix
for i D 1 to n

for j D 1 to n

l 0
ij D 1

for k D 1 to n

l 0
ij D min.l 0

ij ; lik Cwkj /

return L0

Compute eachL.m/:

SLOW-APSP.W; n/

L.1/ D W

for m D 2 to n � 1

let L.m/ be a newn � n matrix
L.m/ D EXTEND.L.m�1/; W; n/

return L.n�1/

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-3

Time
� EXTEND: ‚.n3/.
� SLOW-APSP:‚.n4/.

Observation

EXTEND is like matrix multiplication:

L ! A

W ! B

L0 ! C

min ! C
C ! �
1 ! 0

let C be ann � n matrix
for i D 1 to n

for j D 1 to n

cij D 0

for k D 1 to n

cij D cij C aik � bkj

return C

So, we can view EXTEND as just like matrix multiplication!

Why do we care?

Because our goal is to computeL.n�1/ as fast as we can. Don’t need to compute
all the intermediateL.1/; L.2/; L.3/; : : : ; L.n�2/.

Suppose we had a matrixA and we wanted to computeAn�1 (like calling EXTEND

n � 1 times).

Could computeA; A2; A4; A8; : : :

If we knewAm D An�1 for all m � n� 1, could just finish withAr , wherer is the
smallest power of2 that’s� n � 1. (r D 2dlg.n�1/e)

FASTER-APSP.W; n/

L.1/ D W

m D 1

while m < n � 1

let L.2m/ be a newn � n matrix
L.2m/ D EXTEND.L.m/; L.m/; n/

m D 2m

return L.m/

OK to overshoot, since products don’t change afterL.n�1/.

Time

‚.n3 lg n/.

25-4 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Floyd-Warshall algorithm

A different dynamic-programming approach.

For pathp D h�1; �2; : : : ; �li, anintermediate vertexis any vertex ofp other than
�1 or �l .

Let d
.k/
ij D shortest-path weight of any pathi ; j with all intermediate vertices

in f1; 2; : : : ; kg.
Consider a shortest pathi

p
; j with all intermediate vertices inf1; 2; : : : ; kg:

� If k is not an intermediate vertex, then all intermediate vertices of p are in
f1; 2; : : : ; k � 1g.

� If k is an intermediate vertex:

i k j
p1 p2

all intermediate vertices in {1, 2, ..., k–1}

Recursive formulation

d
.k/
ij D

(

wij if k D 0 ;

min
�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�

if k � 1 :

(Haved
.0/
ij D wij because can’t have intermediate vertices)� 1 edge.)

WantD.n/ D
�

d
.n/
ij

�

, since all vertices numbered� n.

Compute bottom-up

Compute in increasing order ofk:

FLOYD-WARSHALL .W; n/

D.0/ D W

for k D 1 to n

let D.k/ D
�

d
.k/
ij

�

be a newn � n matrix
for i D 1 to n

for j D 1 to n

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�

return D.n/

Can drop superscripts. (See Exercise 25.2-4 in text.)

Time

‚.n3/.

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-5

Transitive closure

GivenG D .V; E/, directed.

ComputeG� D .V; E�/.

� E� D f.i; j / W there is a pathi ; j in Gg.
Could assign weight of1 to each edge, then run FLOYD-WARSHALL .

� If dij < n, then there is a pathi ; j .
� Otherwise,dij D1 and there is no path.

Simpler way

Substitute other values and operators in FLOYD-WARSHALL .

� Use unweighted adjacency matrix
� min! _ (OR)
� C! ^ (AND)

� t
.k/
ij D

(

1 if there is pathi ;j with all intermediate vertices inf1; 2; : : : ; kg ;

0 otherwise:

� t
.0/
ij D

(

0 if i ¤ j and.i; j / … E ;

1 if i D j or .i; j / 2 E :

� t
.k/
ij D t

.k�1/
ij _

�

t
.k�1/

ik
^ t

.k�1/

kj

�

.

TRANSITIVE-CLOSURE.G; n/

n D jG:Vj
let T .0/ D

�

t
.0/
ij

�

be a newn � n matrix
for i D 1 to n

for j D 1 to n

if i == j or .i; j / 2 G:E
t

.0/
ij D 1

elset
.0/
ij D 0

for k D 1 to n

let T .k/ D
�

t
.k/
ij

�

be a newn � n matrix
for i D 1 to n

for j D 1 to n

t
.k/
ij D t

.k�1/
ij _

�

t
.k�1/

ik
^ t

.k�1/

kj

�

return T .n/

Time

‚.n3/, but simpler operations than FLOYD-WARSHALL.

25-6 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Johnson’s algorithm

Idea

If the graph is sparse, it pays to run Dijkstra’s algorithm once from each vertex.

If we use a Fibonacci heap for the priority queue, the runningtime is down
to O.V 2 lg V C VE/, which is better than FLOYD-WARSHALL’s ‚.V 3/ time if
E D o.V 2/.

But Dijkstra’s algorithm requires that all edge weights be nonnegative.

Donald Johnson figured out how to make an equivalent graph that doeshave all
edge weights� 0.

Reweighting

Compute a new weight functionyw such that

1. For allu; � 2 V , p is a shortest pathu ; � usingw if and only if p is a shortest
pathu ; � using yw.

2. For all.u; �/ 2 E; yw.u; �/ � 0.

Property (1) says that it suffices to find shortest paths withyw. Property (2) says we
can do so by running Dijkstra’s algorithm from each vertex.

How to come up withyw?

Lemma shows it’s easy to get property (1):

Lemma (Reweighting doesn’t change shortest paths)
Given a directed, weighted graphG D .V; E/; w W E ! R. Let h be any function
such thath W V ! R. For all.u; �/ 2 E, define

yw.u; �/ D w.u; �/C h.u/ � h.�/ :

Let p D h�0; �1; : : : ; �ki be any path�0 ; �k.

Thenp is a shortest path�0 ; �k with w if and only if p is a shortest path�0 ; �k

with yw. (Formally,w.p/ D ı.�0; �k/ if and only if yw D yı.�0; �k/, whereyı is the
shortest-path weight withyw.)

Also, G has a negative-weight cycle withw if and only if G has a negative-weight
cycle with yw.

Proof First, we’ll show thatyw.p/ D w.p/C h.�0/ � h.�k/:

yw.p/ D
k
X

iD1

yw.�i�1; �i /

D
k
X

iD1

.w.�i�1; �i/C h.�i�1/ � h.�i//

D
k
X

iD1

w.�i�1; �i /C h.�0/ � h.�k/ (sum telescopes)

D w.p/C h.�0/ � h.�k/ :

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-7

Therefore, any path�0
p
; �k has yw.p/ D w.p/ C h.�0/ � h.�k/. Sinceh.�0/

andh.�k/ don’t depend on the path from�0 to �k, if one path�0 ; �k is shorter
than another withw, it’s also shorter withyw.

Now show there exists a negative-weight cycle withw if and only if there exists a
negative-weight cycle withyw:

� Let cyclec D h�0; �1; : : : ; �ki, where�0 D �k.
� Then

yw.c/ D w.c/C h.�0/ � h.�k/

D w.c/ (since�0 D �k) .

Therefore,c has a negative-weight cycle withw if and only if it has a negative-
weight cycle withyw. (lemma)

So, now to get property (2), we just need to come up with a function h W V ! R

such that when we computeyw.u; �/ D w.u; �/C h.u/ � h.�/, it’s � 0.

Do what we did for difference constraints:

� G0 D .V 0; E 0/

� V 0 D V [fsg, wheres is a new vertex.
� E 0 D E [f.s; �/ W � 2 V g.
� w.s; �/ D 0 for all � 2 V .

� Since no edges enters, G0 has the same set of cycles asG. In particular,G0 has
a negative-weight cycle if and only ifG does.

Defineh.�/ D ı.s; �/ for all � 2 V .

Claim
yw.u; �/ D w.u; �/C h.u/ � h.�/ � 0.

Proof By the triangle inequality,

ı.s; �/ � ı.s; u/Cw.u; �/

h.�/ � h.u/Cw.u; �/ :

Therefore,w.u; �/C h.u/ � h.�/ � 0. (claim)

25-8 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Johnson’s algorithm

form G0

run BELLMAN -FORD on G0 to computeı.s; �/ for all � 2 G0:V
if BELLMAN -FORD returnsFALSE

G has a negative-weight cycle
elsecomputeyw.u; �/ D w.u; �/C ı.s; u/ � ı.s; �/ for all .u; �/ 2 E

let D D .du�/ be a newn � n matrix
for each vertexu 2 G:V

run Dijkstra’s algorithm fromu using weight functionyw
to computeyı.u; �/ for all � 2 V

for each vertex� 2 G:V
// Compute entrydu� in matrix D.
du� D yı.u; �/C ı.s; �/ � ı.s; u/

„ ƒ‚ …

because ifp is a pathu ; �, then yw.p/ D w.p/C h.u/ � h.�/
return D

Time
� ‚.V CE/ to computeG0.
� O.VE/ to run BELLMAN -FORD.
� ‚.E/ to computeyw.
� O.V 2 lg V CVE/ to run Dijkstra’s algorithmjV j times (using Fibonacci heap).
� ‚.V 2/ to computeD matrix.

Total: O.V 2 lg V C VE/.

Solutions for Chapter 25:
All-Pairs Shortest Paths

Solution to Exercise 25.1-3
This solution is also posted publicly

The matrixL.0/ corresponds to the identity matrix

I D

�
1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

�
of regular matrix multiplication. Substitute0 (the identity forC) for1 (the iden-
tity for min), and1 (the identity for�) for 0 (the identity forC).

Solution to Exercise 25.1-5
This solution is also posted publicly

The all-pairs shortest-paths algorithm in Section 25.1 computes

L.n�1/ D W n�1 D L.0/ �W n�1 ;

wherel
.n�1/
ij D ı.i; j / and L.0/ is the identity matrix. That is, the entry in the

i th row andj th column of the matrix “product” is the shortest-path distance from
vertexi to vertexj , and rowi of the product is the solution to the single-source
shortest-paths problem for vertexi .

Notice that in a matrix “product”C D A � B, thei th row of C is thei th row of A

“multiplied” by B. Since all we want is thei th row ofC , we never need more than
thei th row ofA.

Thus the solution to the single-source shortest-paths fromvertexi is L
.0/
i �W n�1,

whereL
.0/
i is thei th row of L.0/—a vector whosei th entry is 0 and whose other

entries are1.

Doing the above “multiplications” starting from the left isessentially the same
as the BELLMAN -FORD algorithm. The vector corresponds to thed values in
BELLMAN -FORD—the shortest-path estimates from the source to each vertex.

25-10 Solutions for Chapter 25: All-Pairs Shortest Paths

� The vector is initially 0 for the source and1 for all other vertices, the same as
the values set up ford by INITIALIZE -SINGLE-SOURCE.

� Each “multiplication” of the current vector byW relaxes all edges just as
BELLMAN -FORD does. That is, a distance estimate in the row, say the distance
to �, is updated to a smaller estimate, if any, formed by adding somew.u; �/ to
the current estimate of the distance tou.

� The relaxation/multiplication is donen � 1 times.

Solution to Exercise 25.1-10

Run SLOW-ALL -PAIRS-SHORTEST-PATHS on the graph. Look at the diagonal el-
ements ofL.m/. Return the first value ofm for which one (or more) of the diagonal
elements (l .m/

i i) is negative. Ifm reachesnC 1, then stop and declare that there are
no negative-weight cycles.

Let the number of edges in a minimum-length negative-weightcycle bem�, where
m� D1 if the graph has no negative-weight cycles.

Correctness

Let’s assume that for some valuem� � n and some value ofi , we find that
l

.m�/
i i < 0. Then the graph has a cycle withm� edges that goes from vertexi

to itself, and this cycle has negative weight (stored inl
.m�/
i i). This is the minimum-

length negative-weight cycle because SLOW-ALL -PAIRS-SHORTEST-PATHS com-
putes all paths of1 edge, then all paths of2 edges, and so on, and all cycles shorter
thanm� edges were checked before and did not have negative weight. Now assume
that for all m � n, there is no negativel .m/

i i element. Then, there is no negative-
weight cycle in the graph, because all cycles have length at mostn.

Time

O.n4/. More precisely,‚.n3 �min.n; m�//.

Faster solution

Run FASTER-ALL -PAIRS-SHORTEST-PATHS on the graph until the first time that
the matrixL.m/ has one or more negative values on the diagonal, or until we have
computedL.m/ for somem > n. If we find any negative entries on the diagonal,
we know that the minimum-length negative-weight cycle has more thanm=2 edges
and at mostm edges. We just need to binary search for the value ofm� in the range
m=2 < m� � m. The key observation is that on our way to computingL.m/, we
computedL.1/, L.2/, L.4/, L.8/, . . . ,L.m=2/, and these matrices suffice to compute
every matrix we’ll need. Here’s pseudocode:

Solutions for Chapter 25: All-Pairs Shortest Paths 25-11

FIND-M IN-LENGTH-NEG-WEIGHT-CYCLE.W /

n D W:rows
L.1/ D W

m D 1

while m � n and no diagonal entries ofL.m/ are negative
L.2m/ D EXTEND-SHORTEST-PATHS.L.m/; L.m//

m D 2m

if m > n and no diagonal entries ofL.m/ are negative
return “no negative-weight cycles”

elseifm � 2

return m

else
low D m=2

high D m

d D m=4

while d � 1

s D lowC d

L.s/ D EXTEND-SHORTEST-PATHS.L.low/; L.d//

if L.s/ has any negative entries on the diagonal
high D s

elselow D s

d D d=2

return high

Correctness

If, after the firstwhile loop, m > n and no diagonal entries ofL.m/ are negative,
then there is no negative-weight cycle. Otherwise, ifm � 2, then eitherm D 1 or
m D 2, andL.m/ is the first matrix with a negative entry on the diagonal. Thus, the
correct value to return ism.

If m > 2, then we maintain an interval bracketed by the valueslow andhigh, such
that the correct valuem� is in the rangelow < m� � high. We use the following
loop invariant:

Loop invariant: At the start of each iteration of the “while d � 1” loop,

1. d D 2p for some integerp � �1,
2. d D .high� low/=2,
3. low < m� � high.

Initialization: Initially, m is an integer power of2 andm > 2. Sinced D m=4,
we have thatd is an integer power of2 andd > 1=2, so thatd D 2p for some
integerp � 0. We also have.high� low/=2 D .m � .m=2//=2 D m=4 D d .
Finally, L.m/ has a negative entry on the diagonal andL.m=2/ does not. Since
lowD m=2 andhighD m, we have thatlow < m� � high.

Maintenance: We usehigh, low, andd to denote variable values in a given it-
eration, andhigh0, low0, andd 0 to denote the same variable values in the next
iteration. Thus, we wish to show thatd D 2p for some integerp � �1 im-
plies d 0 D 2p0

for some integerp0 � �1, that d D .high� low/=2 implies
d 0 D .high0 � low0/=2, and thatlow < m� � high implies low0 < m� � high0.

25-12 Solutions for Chapter 25: All-Pairs Shortest Paths

To see thatd 0 D 2p0

, note thatd 0 D d=2, and sod D 2p�1. The condition that
d � 1 implies thatp � 0, and sop0 � �1.

Within each iteration,s is set tolow C d , and one of the following actions
occurs:

� If L.s/ has any negative entries on the diagonal, thenhigh0 is set tos and
d 0 is set tod=2. Upon entering the next iteration,.high0 � low0/=2 D
.s � low0/=2 D ..lowCd/� low/=2 D d=2 D d 0. SinceL.s/ has a negative
diagonal entry, we know thatm� � s. Becausehigh0 D s and low0 D low,
we have thatlow0 < m� � high0.

� If L.s/ has no negative entries on the diagonal, thenlow0 is set tos, and
d 0 is set tod=2. Upon entering the next iteration,.high0 � low0/=2 D
.high0 � s/=2 D .high�.lowCd//=2 D .high� low/=2�d=2 D d�d=2 D
d=2 D d 0. SinceL.s/ has no negative diagonal entries, we know thatm� > s.
Becauselow0 D s andhigh0 D high, we have thatlow0 < m� � high0.

Termination: At termination,d < 1. Sinced D 2p for some integerp � �1,
we must havep D �1, so thatd D 1=2. By the second part of the loop
invariant, if we multiply both sides by2, we get thathigh� low D 2d D 1.
By the third part of the loop invariant, we know thatlow < m� � high. Since
high� low D 2d D 1 andm� > low, the only possible value form� is high,
which the procedure returns.

Time

If there is no negative-weight cycle, the firstwhile loop iterates‚.lg n/ times, and
the total time is‚.n3 lg n/.

Now suppose that there is a negative-weight cycle. We claim that each time we
call EXTEND-SHORTEST-PATHS.L.low/; L.d//, we have already computedL.low/

andL.d/. Initially, since low D m=2, we had already computedL.low/ in the first
while loop. In succeeding iterations of the secondwhile loop, the only way thatlow
changes is when it gets the value ofs, and we have just computedL.s/. As for L.d/,
observe thatd takes on the valuesm=4; m=8; m=16; : : : ; 1, and again, we computed
all of theseL matrices in the firstwhile loop. Thus, the claim is proven. Each of
the twowhile loops iterates‚.lg m�/ times. Since we have already computed the
parameters to each call of EXTEND-SHORTEST-PATHS, each iteration is dominated
by the ‚.n3/-time call to EXTEND-SHORTEST-PATHS. Thus, the total time is
‚.n3 lg m�/.

In general, therefore, the running time is‚.n3 lg min.n; m�//.

Space

The slower algorithm needs to keep only three matrices at anytime, and so its space
requirement is‚.n3/. This faster algorithm needs to maintain‚.lg min.n; m�//

matrices, and so the space requirement increases to‚.n3 lg min.n; m�//.

Solutions for Chapter 25: All-Pairs Shortest Paths 25-13

Solution to Exercise 25.2-4
This solution is also posted publicly

With the superscripts, the computation isd
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�

. If,
having dropped the superscripts, we were to compute and store dik or dkj before
using these values to computedij , we might be computing one of the following:

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k/

ik
C d

.k�1/

kj

�

;

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k/

kj

�

;

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k/

ik
C d

.k/

kj

�

:

In any of these scenarios, we’re computing the weight of a shortest path fromi to j

with all intermediate vertices inf1; 2; : : : ; kg. If we used
.k/

ik
, rather thand .k�1/

ik
,

in the computation, then we’re using a subpath fromi to k with all intermediate
vertices inf1; 2; : : : ; kg. But k cannot be anintermediatevertex on a shortest path
from i to k, since otherwise there would be a cycle on this shortest path. Thus,
d

.k/

ik
D d

.k�1/

ik
. A similar argument applies to show thatd

.k/

kj
D d

.k�1/

kj
. Hence, we

can drop the superscripts in the computation.

Solution to Exercise 25.2-6

Here are two ways to detect negative-weight cycles:

1. Check the main-diagonal entries of the result matrix for anegative value. There
is a negative weight cycle if and only ifd

.n/
i i < 0 for some vertexi :

� d
.n/
i i is a path weight fromi to itself; so if it is negative, there is a path fromi

to itself (i.e., a cycle), with negative weight.
� If there is a negative-weight cycle, consider the one with the fewest vertices.

� If it has just one vertex, then somewi i < 0, sodi i starts out negative, and
sinced values are never increased, it is also negative when the algorithm
terminates.

� If it has at least two vertices, letk be the highest-numbered vertex in the
cycle, and leti be some other vertex in the cycle.d

.k�1/

ik
andd

.k�1/

ki
have

correct shortest-path weights, because they are not based on negative-
weight cycles. (Neitherd .k�1/

ik
nord

.k�1/

ki
can includek as an intermedi-

ate vertex, andi andk are on the negative-weight cycle with the fewest
vertices.) Sincei ; k ; i is a negative-weight cycle, the sum of those
two weights is negative, sod .k/

i i will be set to a negative value. Sinced

values are never increased, it is also negative when the algorithm termi-
nates.

In fact, it suffices to check whetherd
.n�1/
i i < 0 for some vertexi . Here’s why.

A negative-weight cycle containing vertexi either contains vertexn or it does
not. If it does not, then clearlyd .n�1/

i i < 0. If the negative-weight cycle contains

25-14 Solutions for Chapter 25: All-Pairs Shortest Paths

vertexn, then considerd .n�1/
nn . This value must be negative, since the cycle,

starting and ending at vertexn, does not include vertexn as an intermediate
vertex.

2. Alternatively, one could just run the normal FLOYD-WARSHALL algorithm one
extra iteration to see if any of thed values change. If there are negative cycles,
then some shortest-path cost will be cheaper. If there are nosuch cycles, then
nod values will change because the algorithm gives the correct shortest paths.

Solution to Exercise 25.3-4
This solution is also posted publicly

It changes shortest paths. Consider the following graph.V D fs; x; y; ´g, and
there are 4 edges:w.s; x/ D 2, w.x; y/ D 2, w.s; y/ D 5, andw.s; ´/ D �10.
So we’d add 10 to every weight to makeyw. With w, the shortest path froms to y

is s ! x ! y, with weight 4. With yw, the shortest path froms to y is s ! y,
with weight 15. (The paths ! x ! y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize paths withmore edges, even
if their weights are low.

Solution to Exercise 25.3-6

In this solution, we assume that1�1 is undefined; in particular, it’s not0.

Let G D .V; E/, whereV D fs; ug, E D f.u; s/g, andw.u; s/ D 0. There
is only one edge, and it enterss. When we run Bellman-Ford froms, we get
h.s/ D ı.s; s/ D 0 and h.u/ D ı.s; u/ D 1. When we reweight, we get
yw.u; s/ D 0 C 1 � 0 D 1. We computeyı.u; s/ D 1, and so we compute
dus D 1C 0�1 ¤ 0. Sinceı.u; s/ D 0, we get an incorrect answer.

If the graphG is strongly connected, then we geth.�/ D ı.s; �/ < 1 for all
vertices� 2 V . Thus, the triangle inequality says thath.�/ � h.u/Cw.u; �/ for all
edges.u; �/ 2 E, and soyw.u; �/ D w.u; �/Ch.u/�h.�/ � 0. Moreover, all edge
weightsyw.u; �/ used in Lemma 25.1 are finite, and so the lemma holds. Therefore,
the conditions we need in order to use Johnson’s algorithm hold: that reweighting
does not change shortest paths, and that all edge weightsyw.u; �/ are nonnegative.
Again relying onG being strongly connected, we get thatyı.u; �/ < 1 for all
edges.u; �/ 2 E, which means thatdu� D yı.u; �/ C h.�/ � h.u/ is finite and
correct.

Solution to Problem 25-1

a. Let T D .tij / be thejV j � jV j matrix representing the transitive closure, such
that tij is 1 if there is a path fromi to j , and 0 otherwise.

Solutions for Chapter 25: All-Pairs Shortest Paths 25-15

Initialize T (when there are no edges inG) as follows:

tij D
(

1 if i D j ;

0 otherwise:

We updateT as follows when an edge.u; �/ is added toG:

TRANSITIVE-CLOSURE-UPDATE.T; u; �/

let T bejV j � jV j
for i D 1 to jV j

for j D 1 to jV j
if tiu == 1 andt�j == 1

tij D 1

� With this procedure, the effect of adding edge.u; �/ is to create a path (via
the new edge) from every vertex that could already reachu to every vertex
that could already be reached from�.

� Note that the procedure setstu� D 1, because bothtuu andt�� are initialized
to 1.

� This procedure takes‚.V 2/ time because of the two nested loops.

b. Consider inserting the edge.�jV j; �1/ into the straight-line graph�1 ! �2 !
� � � ! �jV j.

Before this edge is inserted, onlyjV j .jV j C 1/=2 entries inT are1 (the entries
on and above the main diagonal). After the edge is inserted, the graph is a cycle
in which every vertex can reach every other vertex, so alljV j2 entries inT are1.
HencejV j2� .jV j .jV jC1/=2/ D ‚.V 2/ entries must be changed inT , so any
algorithm to update the transitive closure must take�.V 2/ time on this graph.

c. The algorithm in part (a) would take‚.V 4/ time to insert all possible‚.V 2/

edges, so we need a more efficient algorithm in order for any sequence of in-
sertions to take onlyO.V 3/ total time.

To improve the algorithm, notice that the loop overj is pointless whenti� D 1.
That is, if there is already a pathi ; �, then adding the edge.u; �/ cannot
make any new vertices reachable fromi . The loop to settij to 1 for j such that
there exists a path� ; j is just setting entries that are already1. Eliminate
this redundant processing as follows:

TRANSITIVE-CLOSURE-UPDATE.T; u; �/

let T bejV j � jV j
for i D 1 to jV j

if tiu == 1 andti� == 0

for j D 1 to jV j
if t�j == 1

tij D 1

We show that this procedure takesO.V 3/ time to update the transitive closure
for any sequence ofn insertions:

� There cannot be more thanjV j2 edges inG, son � jV j2.

25-16 Solutions for Chapter 25: All-Pairs Shortest Paths

� Summed overn insertions, the time for the outerfor loop header and the test
for tiu == 1 andti� == 0 is O.nV / D O.V 3/.

� The last three lines, which take‚.V / time, are executed onlyO.V 2/ times
for n insertions. To see why, notice that the last three lines are executed only
when ti� equals0, and in that case, the last line setsti� D 1. Thus, the
number of0 entries inT is reduced by at least1 each time the last three lines
run. Since there are onlyjV j2 entries inT , these lines can run at mostjV j2
times.

� Hence, the total running time overn insertions isO.V 3/.

Lecture Notes for Chapter 26:
Maximum Flow

Chapter 26 overview

Network flow

[The third edition treats flow networks differently from thefirst two editions. The
concept of net flow is gone, except that we do discuss net flow across a cut. Skew
symmetry is also gone, as is implicit summation notation. The third edition counts
flows on edges directly. We find that although the mathematicsis not quite as slick
as in the first two editions, the approach in the third editionmatches intuition more
closely, and therefore students tend to pick it up more quickly.]

Use a graph to model material that flows through conduits.

Each edge represents one conduit, and has acapacity, which is an upper bound on
theflow rateD units/time.

Can think of edges as pipes of different sizes. But flows don’thave to be of liquids.
Book has an example where a flow is how many trucks per day can ship hockey
pucks between cities.

Want to compute max rate that we can ship material from a designatedsourceto a
designatedsink.

Flow networks

G D .V; E/ directed.

Each edge.u; �/ has acapacityc.u; �/ � 0.

If .u; �/ 62 E, thenc.u; �/ D 0.

If .u; �/ 2 E, then reverse edge.�; u/ 62 E. (Can work around this restriction.)

Sourcevertex s, sink vertex t , assumes ; � ; t for all � 2 V , so that each
vertex lies on a path from source to sink.

Example:[Edges are labeled with capacities.]

26-2 Lecture Notes for Chapter 26: Maximum Flow

3

2

3

2

3

1s t

2

w

y

x

z

3 3

Flow

A function f W V � V ! R satisfying

� Capacity constraint:For allu; � 2 V; 0 � f .u; �/ � c.u; �/,

� Flow conservation:For all u 2 V � fs; tg,
X

�2V

f .�; u/

„ ƒ‚ …

flow into u

D
X

�2V

f .u; �/

„ ƒ‚ …

flow out ofu

.

Equivalently,
X

�2V

f .u; �/ �
X

�2V

f .�; u/ D 0.

[Add flows to previous example. Edges here are labeled as flow/capacity. Leave
on board.]

2/3

1/2

2/3

2/2

1/3

1/1s t

2/2

w

y

x

z

1/3 1/3

� Note that all flows are� capacities.
� Verify flow conservation by adding up flows at a couple of vertices.
� Note that all flowsD 0 is legitimate.

Value of flowf D jf j
D

X

�2V

f .s; �/ �
X

�2V

f .�; s/

D flow out of source� flow into source:

In the example above, value of flowf D jf j D 3.

Maximum-flow problem

GivenG, s, t , andc, find a flow whose value is maximum.

Antiparallel edges

Definition of flow network does not allow both.u; �/ and.�; u/ to be edges. These
edges would beantiparallel.

What if we really need antiparallel edges?

Lecture Notes for Chapter 26: Maximum Flow 26-3

� Choose one of them, say.u; �/.
� Create a new vertex� 0.
� Replace.u; �/ by two new edges.u; � 0/ and.� 0; �/, with c.u; � 0/ D c.� 0; �/ D

c.u; �/.
� Get an equivalent flow network with no antiparallel edges.

Cuts

A cut .S; T / of flow networkG D .V; E/ is a partition ofV into S andT D V �S

such thats 2 S andt 2 T .
� Similar to cut used in minimum spanning trees, except that here the graph is

directed, and we requires 2 S andt 2 T .

For flowf , thenet flowacross cut.S; T / is

f .S; T / D
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/ :

Capacityof cut .S; T / is

c.S; T / D
X

u2S

X

�2T

c.u; �/ :

A minimum cut of G is a cut whose capacity is minimum over all cuts ofG.

Asymmetry between net flow across a cut and capacity of a cut:For capacity,
count only capacities of edges going fromS to T . Ignore edges going in the
reverse direction. For net flow, count flow on all edges acrossthe cut: flow on
edges going fromS to T minus flow on edges going fromT to S .

In previous example, consider the cutS D fs; w; yg ; T D fx; ´; tg.
f .S; T / D f .w; x/C f .y; ´/

„ ƒ‚ …

from S to T

� f .x; y/
„ ƒ‚ …

from T to S

D 2C 2 � 1

D 3 :

c.S; T / D c.w; x/C c.y; ´/
„ ƒ‚ …

from S to T

D 2C 3

D 5 :

Now consider the cutS D fs; w; x; yg ; T D f´; tg.
f .S; T / D f .x; t/C f .y; ´/

„ ƒ‚ …

from S to T

� f .´; x/
„ ƒ‚ …

from T to S

D 2C 2 � 1

D 3 :

c.S; T / D c.x; t/C c.y; ´/
„ ƒ‚ …

from S to T

D 3C 3

D 6 :

Same flow as previous cut, higher capacity.

26-4 Lecture Notes for Chapter 26: Maximum Flow

Lemma
For any cut.S; T /, f .S; T / D jf j.
(Net flow across the cut equals value of the flow.)
[Leave on board.]

[This proof is much more involved than the proof in the first two editions. You
might want to omit it, or just give the intuition that no matter where you cut the
pipes in a network, you’ll see the same flow volume coming out of the openings.]

Proof Rewrite flow conservation: for anyu 2 V � fs; tg,
X

�2V

f .u; �/ �
X

�2V

f .�; u/ D 0 :

Take definition ofjf j and add in left-hand side of above equation, summed over
all vertices inS � fsg. Above equation applies to each vertex inS � fsg (since
t 62 S and obviouslys 62 S � fsg), so just adding in lots of0s:

jf j D
X

�2V

f .s; �/ �
X

�2V

f .�; s/C
X

u2S�fsg

X

�2V

f .u; �/ �
X

�2V

f .�; u/

!

:

Expand right-hand summation and regroup terms:

jf j D
X

�2V

f .s; �/ �
X

�2V

f .�; s/C
X

u2S�fsg

X

�2V

f .u; �/�
X

u2S�fsg

X

�2V

f .�; u/

D
X

�2V

f .s; �/C
X

u2S�fsg
f .u; �/

!

�
X

�2V

f .�; s/C
X

u2S�fsg
f .�; u/

!

D
X

�2V

X

u2S

f .u; �/ �
X

�2V

X

u2S

f .�; u/ :

PartitionV into S [T and split each summation overV into summations overS
andT :

jf j D
X

�2S

X

u2S

f .u; �/C
X

�2T

X

u2S

f .u; �/�
X

�2S

X

u2S

f .�; u/�
X

�2T

X

u2S

f .�; u/

D
X

�2T

X

u2S

f .u; �/ �
X

�2T

X

u2S

f .�; u/

C

X

�2S

X

u2S

f .u; �/ �
X

�2S

X

u2S

f .�; u/

!

:

Summations within parentheses are the same, sincef .x; y/ appears once in each
summation, for anyx; y 2 V . These summations cancel:

jf j D
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/

D f .S; T / : (lemma)

Corollary
The value of any flow� capacity of any cut.
[Leave on board.]

Lecture Notes for Chapter 26: Maximum Flow 26-5

Proof Let .S; T / be any cut,f be any flow.
jf j D f .S; T / (lemma)

D
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/ (definition off .S; T /)

�
X

u2S

X

�2T

f .u; �/ (f .�; u/ � 0)

�
X

u2S

X

�2T

c.u; �/ (capacity constraint)

D c.S; T / : (definition ofc.S; T /) (corollary)

Therefore, maximum flow� capacity of minimum cut.

Will see a little later that this is in fact an equality.

The Ford-Fulkerson method

Residual network

Given a flowf in networkG D .V; E/.

Consider a pair of verticesu; � 2 V .

How much additional flow can we push directly fromu to �?
That’s theresidual capacity,

cf .u; �/ D

�
c.u; �/ � f .u; �/ if .u; �/ 2 E ;

f .�; u/ if .�; u/ 2 E ;

0 otherwise (i.e.,.u; �/; .�; u/ 62 E) :

Theresidual networkis Gf D .V; Ef /, where

Ef D f.u; �/ 2 V � V W cf .u; �/ > 0g :

Each edge of the residual network can admit a positive flow.

For our example:

2

1
1

1

1
2

2

2

2
1

1 2 11 2

Gf

s t

w

y

x

z

Every edge.u; �/ 2 Ef corresponds to an edge.u; �/ 2 E or .�; u/ 2 E (or both).

Therefore,jEf j � 2 jEj.
Residual network is similar to a flow network, except that it may contain antiparal-
lel edges (.u; �/ and.�; u/). Can define a flow in a residual network that satisfies
the definition of a flow, but with respect to capacitiescf in Gf .

Given flowsf in G andf 0 in Gf , define.f " f 0/, theaugmentationof f by f 0,
as a functionV � V ! R:

26-6 Lecture Notes for Chapter 26: Maximum Flow

.f "f 0/.u; �/ D
(

f .u; �/C f 0.u; �/ � f 0.�; u/ if .u; �/ 2 E ;

0 otherwise

for all u; � 2 V .

Intuition: Increase the flow on.u; �/ by f 0.u; �/ but decrease it byf 0.�; u/ be-
cause pushing flow on the reverse edge in the residual networkdecreases the flow
in the original network. Also known ascancellation.

Lemma
Given a flow networkG, a flowf in G, and the residual networkGf , let f 0 be a
flow in Gf . Thenf "f 0 is a flow inG with valuejf "f 0j D jf j C jf 0j.

[See book for proof. It has a lot of summations in it. Probablynot worth writing
on the board.]

Augmenting path

A simple paths ; t in Gf .

� Admits more flow along each edge.
� Like a sequence of pipes through which we can squirt more flow from s to t .

How much more flow can we push froms to t along augmenting pathp?

cf .p/ D minfcf .u; �/ W .u; �/ is onpg :

For our example, consider the augmenting pathp D hs; w; y; ´; x; ti.
Minimum residual capacity is 1.

After we push 1 additional unit alongp: [Continue fromG left on board from
before. Edge.y; w/ hasf .y; w/ D 0, which we omit, showing onlyc.y; w/ D 3.]

3

1

1
3

2

2

1
1

1 22 3

Gf

G

s t

w

y

x

z

3/3

1/2

3/3

2/2

2/3

1/1s t

2/2

w

y

x

z

3 2/3

Observe thatGf now has no augmenting path. Why? No edges cross the cut
.fs; wg ; fx; y; ´; tg/ in the forward direction inGf . So no path can get froms to t .

Claim that the flow shown inG is a maximum flow.

Lecture Notes for Chapter 26: Maximum Flow 26-7

Lemma
Given flow networkG, flow f in G, residual networkGf . Letp be an augmenting
path inGf . Definefp W V � V ! R:

fp.u; �/ D
(

cf .p/ if .u; �/ is onp ;

0 otherwise:

Thenfp is a flow inGf with valuejfpj D cf .p/ > 0.

Corollary
Given flow networkG, flow f in G, and an augmenting pathp in Gf , definefp

as in lemma. Thenf "fp is a flow inG with valuejf "fpj D jf j C jfpj > jf j.

Theorem (Max-flow min-cut theorem)
The following are equivalent:

1. f is a maximum flow.

2. Gf has no augmenting path.

3. jf j D c.S; T / for some cut.S; T /.

Proof

(1)) (2): Show the contrapositive: ifGf has an augmenting path, thenf is not a
maximum flow. IfGf has augmenting pathp, then by the above corollary,f "fp

is a flow inG with valuejf j C jfpj > jf j, so thatf was not a maximum flow.

(2)) (3): SupposeGf has no augmenting path. Define

S D f� 2 V W there exists a paths ; � in Gf g ;

T D V � S :

Must havet 2 T ; otherwise there is an augmenting path.
Therefore,.S; T / is a cut.
Consideru 2 S and� 2 T :

� If .u; �/ 2 E, must havef .u; �/ D c.u; �/; otherwise,.u; �/ 2 Ef) � 2 S .
� If .�; u/ 2 E, must havef .�; u/ D 0; otherwise,cf .u; �/ D f .�; u/ > 0)

.u; �/ 2 Ef) � 2 S .
� If .u; �/; .�; u/ 62 E, must havef .u; �/ D f .�; u/ D 0.

Then,

f .S; T / D
X

u2S

X

�2T

f .u; �/�
X

�2T

X

u2S

f .�; u/

D
X

u2S

X

�2T

c.u; �/ �
X

�2T

X

u2S

0

D c.S; T / :

By lemma,jf j D f .S; T / D c.S; T /.

(3)) (1): By corollary,jf j � c.S; T /.
Therefore,jf j D c.S; T /) f is a max flow. (theorem)

26-8 Lecture Notes for Chapter 26: Maximum Flow

Ford-Fulkerson algorithm

Keep augmenting flow along an augmenting path until there is no augmenting path.

Represent the flow attribute using the usual dot-notation, but on an edge:.u; �/: f .

FORD-FULKERSON.G; s; t/

for all .u; �/ 2 G:E
.u; �/: f D 0

while there is an augmenting pathp in Gf

augmentf by cf .p/

Analysis

If capacities are all integer, then each augmenting path raisesjf j by � 1. If max
flow is f �, then need� jf �j iterations) time isO.E jf �j/.
[Handwaving—see book for better explanation.]

Note that this running time isnot polynomial in input size. It depends onjf �j,
which is not a function ofjV j andjEj.
If capacities are rational, can scale them to integers.

If irrational, FORD-FULKERSON might never terminate!

Edmonds-Karp algorithm

Do FORD-FULKERSON, but compute augmenting paths by BFS ofGf . Augment-
ing paths are shortest pathss ; t in Gf , with all edge weightsD 1.

Edmonds-Karp runs inO.VE2/ time.

To prove, need to look at distances to vertices inGf .

Let ıf .u; �/ D shortest path distanceu to � in Gf , with unit edge weights.

Lemma
For all � 2 V � fs; tg, ıf .s; �/ increases monotonically with each flow augmenta-
tion.

Proof Suppose there exists� 2 V �fs; tg such that some flow augmentation causes
ıf .s; �/ to decrease. Will derive a contradiction.

Let f be the flow before the first augmentation that causes a shortest-path distance
to decrease,f 0 be the flow afterward.

Let � be a vertex with minimumıf 0.s; �/ whose distance was decreased by the
augmentation, soıf 0.s; �/ < ıf .s; �/.

Let a shortest paths to � in Gf 0 be s ; u ! �, so.u; �/ 2 Ef 0 andıf 0.s; �/ D
ıf 0.s; u/C 1. (Or ıf 0.s; u/ D ıf 0.s; �/ � 1.)

Sinceıf 0.s; u/ < ıf 0.s; �/ and how we chose�, we haveıf 0.s; u/ � ıf .s; u/.

Claim
.u; �/ 62 Ef .

Lecture Notes for Chapter 26: Maximum Flow 26-9

Proof If .u; �/ 2 Ef , then

ıf .s; �/ � ıf .s; u/C 1 (triangle inequality)

� ıf 0.s; u/C 1

D ıf 0.s; �/ ;

contradictingıf 0.s; �/ < ıf .s; �/. (claim)

How can.u; �/ 62 Ef and.u; �/ 2 Ef 0?

The augmentation must increase flow� to u.

Since Edmonds-Karp augments along shortest paths, the shortest paths to u in Gf

has.�; u/ as its last edge.

Therefore,

ıf .s; �/ D ıf .s; u/ � 1

� ıf 0.s; u/ � 1

D ıf 0.s; �/ � 2 ;

contradictingıf 0.s; �/ < ıf .s; �/.

Therefore,� cannot exist. (lemma)

Theorem
Edmonds-Karp performsO.VE/ augmentations.

Proof Supposep is an augmenting path andcf .u; �/ D cf .p/. Then call.u; �/ a
critical edge inGf , and it disappears from the residual network after augmenting
alongp.

� 1 edge on any augmenting path is critical.

Will show that each of thejEj edges can become critical� jV j =2 times.

Consideru; � 2 V such that either.u; �/ 2 E or .�; u/ 2 E or both. Since
augmenting paths are shortest paths, when.u; �/ becomes critical first time,
ıf .s; �/ D ıf .s; u/C 1.

Augment flow, so that.u; �/ disppears from the residual network. This edge cannot
reappear in the residual network until flow fromu to � decreases, which happens
only if .�; u/ is on an augmenting path inGf 0 : ıf 0.s; u/ D ıf 0.s; �/ C 1. (f 0 is
flow when this occurs.)

By lemma,ıf .s; �/ � ıf 0.s; �/)
ıf 0.s; u/ D ıf 0.s; �/C 1

� ıf .s; �/C 1

D ıf .s; u/C 2 :

Therefore, from the time.u; �/ becomes critical to the next time, distance ofu

from s increases by� 2. Initially, distance tou is� 0, and augmenting path can’t
haves, u, andt as intermediate vertices.

Therefore, untilu becomes unreachable from source, its distance is� jV j � 2)
after.u; �/ becomes critical the first time, it can become critical� .jV j � 2/=2 D
jV j =2 � 1 times more) .u; �/ can become critical� jV j =2 times.

26-10 Lecture Notes for Chapter 26: Maximum Flow

SinceO.E/ pairs of vertices can have an edge between them in residual network,
total # of critical edges during execution of Edmonds-Karp is O.VE/. Since each
augmenting path has� 1 critical edge, haveO.VE/ augmentations. (theorem)

Use BFS to find each augmenting path inO.E/ time) O.VE2/ time.

Can get better bounds.

Push-relabel algorithms in Sections 26.4–26.5 giveO.V 3/.

Can do even better.

Maximum bipartite matching

Example of a problem that can be solved by turning it into a flowproblem.

G D .V; E/ (undirected) isbipartite if we can partitionV D L [R such that all
edges inE go betweenL andR.

L R

matching maximum matching

L R

A matching is a subset of edgesM � E such that for all� 2 V , � 1 edge ofM
is incident on�. (Vertex� is matchedif an edge ofM is incident on it; otherwise
unmatched).

Maximum matching: a matching of maximum cardinality. (M is a maximum
matching ifjM j � jM 0j for all matchingsM 0.)

Problem

Given a bipartite graph (with the partition), find a maximum matching.

Application

Matching planes to routes.

� L D set of planes.
� R D set of routes.
� .u; �/ 2 E if planeu can fly route�.

Lecture Notes for Chapter 26: Maximum Flow 26-11

� Want maximum # of routes to be served by planes.

GivenG, define flow networkG0 D .V 0; E 0/.

� V 0 D V [fs; tg.
� E 0 D f.s; u/ W u 2 Lg [f.u; �/ W .u; �/ 2 Eg [f.�; t/ W � 2 Rg.
� c.u; �/ D 1 for all .u; �/ 2 E 0.

s t

Each vertex inV has� 1 incident edge) jEj � jV j =2.

Therefore,jEj � jE 0j D jEj C jV j � 3 jEj.
Therefore,jE 0j D ‚.E/.

Find a max flow inG0. Book shows that it will have integer values for all.u; �/.

Use edges that carry flow of 1 in matching.

Book proves that this method produces a maximum matching.

Solutions for Chapter 26:
Maximum Flow

Solution to Exercise 26.1-1

We will prove that for every flow inG D .V; E/, we can construct a flow in
G0 D .V 0; E 0/ that has the same value as that of the flow inG. The required result
follows since a maximum flow inG is also a flow. Letf be a flow inG. By
construction,V 0 D V [fxg andE 0 D .E � f.u; �/g/[f.u; x/; .x; �/g. Construct
f 0 in G0 as follows:

f 0.y; ´/ D
(

f .y; ´/ if .y; ´/ ¤ .u; x/ and.y; ´/ ¤ .x; �/ ;

f .u; �/ if .y; ´/ D .u; x/ or .y; ´/ D .x; �/ :

Informally, f 0 is the same asf , except that the flowf .u; �/ now passes through
an intermediate vertexx. The vertexx has incoming flow (if any) only fromu, and
has outgoing flow (if any) only to vertex�.

We first prove thatf 0 satisfies the required properties of a flow. It is obvious that
the capacity constraint is satisfied for every edge inE 0 and that every vertex in
V 0 � fu; �; xg obeys flow conservation.

To show that edges.u; x/ and.x; �/ obey the capacity constraint, we have

f .u; x/ D f .u; �/ � c.u; �/ D c.u; x/ ;

f .x; �/ D f .u; �/ � c.u; �/ D c.x; �/ :

We now prove flow conservation foru. Assuming thatu 62 fs; tg, we have
X

y2V 0

f 0.u; y/ D
X

y2V 0�fxg
f 0.u; y/C f 0.u; x/

D
X

y2V �f�g
f .u; y/C f .u; �/

D
X

y2V

f .u; y/

D
X

y2V

f .y; u/ (becausef obeys flow conservation)

D
X

y2V 0

f 0.y; u/ :

For vertex�, a symmetric argument proves flow conservation.

Solutions for Chapter 26: Maximum Flow 26-13

For vertexx, we have
X

y2V 0

f 0.y; x/ D f 0.u; x/

D f 0.x; �/

D
X

y2V 0

f 0.x; y/ :

Thus,f 0 is a valid flow inG0.

We now prove that the values of the flow in both cases are equal.If the sources is
not in fu; �g, the proof is trivial, since our construction assigns the same flows to
incoming and outgoing edges ofs. If s D u, then

jf 0j D
X

y2V 0

f 0.u; y/ �
X

y2V 0

f 0.y; u/

D
X

y2V 0�fxg
f 0.u; y/ �

X

y2V 0

f 0.y; u/C f 0.u; x/

D
X

y2V �f�g
f .u; y/ �

X

y2V

f .y; u/C f .u; �/

D
X

y2V

f .u; y/ �
X

y2V

f .y; u/

D jf j :

The case whens D � is symmetric. We conclude thatf 0 is a valid flow inG0 with
jf 0j D jf j.

Solution to Exercise 26.1-3

We show that, given any flowf 0 in the flow networkG D .V; E/, we can construct
a flow f as stated in the exercise. The result will follow whenf 0 is a maximum
flow. The idea is that even if there is a path froms to the connected component
of u, no flow can enter the component, since the flow has no path to reacht . Thus,
all the flow inside the component must be cyclic, which can be made zero without
affecting the net value of the flow.

Two cases are possible: whereu is not connected tot , and whereu is not connected
to s. We only analyze the former case. The analysis for the lattercase is similar.

Let Y be the set of all vertices that have no path tot . Our roadmap will be to first
prove that no flow can leaveY . We use this result and flow conservation to prove
that no flow can enterY . We shall then constuct the flowf , which has the required
properties, and prove thatjf j D jf 0j.
The first step is to prove that there can be no flow from a vertexy 2 Y to a vertex
� 2 V � Y . That is,f 0.y; �/ D 0. This is so, because there are no edges.y; �/

in E. If there were an edge.y; �/ 2 E, then there would be a path fromy to t ,
which contradicts how we defined the setY .

We will now prove thatf 0.�; y/ D 0, too. We will do so by applying flow conser-
vation to each vertex inY and taking the sum overY . By flow conservation, we
have

26-14 Solutions for Chapter 26: Maximum Flow

X

y2Y

X

�2V

f 0.y; �/ D
X

y2Y

X

�2V

f 0.�; y/ :

PartitioningV into Y andV � Y gives
X

y2Y

X

�2V �Y

f 0.y; �/C
X

y2Y

X

�2Y

f 0.y; �/

D
X

y2Y

X

�2V �Y

f 0.�; y/C
X

y2Y

X

�2Y

f 0.�; y/ : (�)

But we also have
X

y2Y

X

�2Y

f 0.y; �/ D
X

y2Y

X

�2Y

f 0.�; y/ ;

since the left-hand side is the same as the right-hand side, except for a change of
variable names� andy. We also have
X

y2Y

X

�2V �Y

f 0.y; �/ D 0 ;

sincef 0.y; �/ D 0 for eachy 2 Y and� 2 V � Y . Thus, equation (�) simplifies
to
X

y2Y

X

�2V �Y

f 0.�; y/ D 0 :

Because the flow function is nonnegative,f .�; y/ D 0 for each� 2 V andy 2 Y .
We conclude that there can be no flow between any vertex inY and any vertex
in V � Y .

The same technique can show that if there is a path fromu to t but not froms to u,
and we defineZ as the set of vertices that do not have have a path froms to u,
then there can be no flow between any vertex inZ and any vertex inV � Z. Let
X D Y [Z. We thus havef 0.�; x/ D f 0.x; �/ D 0 if x 2 X and� 62 X .

We are now ready to construct flowf :

f .u; �/ D
(

f 0.u; �/ if u; � 62 X ;

0 otherwise:

We note thatf satisfies the requirements of the exercise. We now prove thatf

also satisfies the requirements of a flow function.

The capacity constraint is satisfied, since wheneverf .u; �/ D f 0.u; �/, we have
f .u; �/ D f 0.u; �/ � c.u; �/ and wheneverf .u; �/ D 0, we havef .u; �/ D 0 �
c.u; �/.

For flow conservation, letx be some vertex other thans or t . If x 2 X , then from
the construction off , we have
X

�2V

f .x; �/ D
X

�2V

f .�; x/ D 0 :

Solutions for Chapter 26: Maximum Flow 26-15

Otherwise, ifx 62 X , note thatf .x; �/ D f 0.x; �/ andf .�; x/ D f 0.�; x/ for all
vertices� 2 V . Thus,
X

�2V

f .x; �/ D
X

�2V

f 0.x; �/

D
X

�2V

f 0.�; x/ (becausef 0 obeys flow conservation)

D
X

�2V

f .�; x/ :

Finally, we prove that the value of the flow remains the same. Since s 62 X , we
havef .s; �/ D f 0.s; �/ andf .�; x/ D f 0.�; x/ for all vertices� 2 V , and so

jf j D
X

�2V

f .s; �/ �
X

�2V

f .�; s/

D
X

�2V

f 0.s; �/ �
X

�2V

f 0.�; s/

D jf 0j :

Solution to Exercise 26.1-4

To see that the flows form a convex set, we show that iff1 andf2 are flows, then
so is f̨1 C .1� ˛/f2 for all ˛ such that0 � ˛ � 1.

For the capacity constraint, first observe that˛ � 1 implies that1 � ˛ � 0. Thus,
for anyu; � 2 V , we have

f̨1.u; �/C .1 � ˛/f2.u; �/ � 0 � f1.u; �/C 0 � .1 � ˛/f2.u; �/

D 0 :

Sincef1.u; �/ � c.u; �/ andf2.u; �/ � c.u; �/, we also have

f̨1.u; �/C .1 � ˛/f2.u; �/ � ˛c.u; �/C .1� ˛/c.u; �/

D .˛ C .1 � ˛//c.u; �/

D c.u; �/ :

For flow conservation, observe that sincef1 andf2 obey flow conservation, we
have

P

�2V f1.�; u/ D P

�2V f1.u; �/ and
P

�2V f1.�; u/ D P

�2V f1.u; �/ for
anyu 2 V � fs; tg. We need to show that
X

�2V

. f̨1.�; u/C .1 � ˛/f2.�; u// D
X

�2V

. f̨1.u; �/C .1 � ˛/f2.u; �//

for anyu 2 V �fs; tg. We multiply both sides of the equality forf1 by ˛, multiply
both sides of the equality forf2 by 1 � ˛, and add the left-hand and right-hand
sides of the resulting equalities to get

˛
X

�2V

f1.�; u/C .1 � ˛/
X

�2V

f2.�; u/ D ˛
X

�2V

f1.u; �/C .1 � ˛/
X

�2V

f2.u; �/ :

26-16 Solutions for Chapter 26: Maximum Flow

Observing that

˛
X

�2V

f1.�; u/C .1� ˛/
X

�2V

f2.�; u/ D
X

�2V

f̨1.�; u/C
X

�2V

.1� ˛/f2.�; u/

D
X

�2V

. f̨1.�; u/C .1� ˛/f2.�; u//

and, likewise, that

˛
X

�2V

f1.u; �/C .1 � ˛/
X

�2V

f2.u; �/ D
X

�2V

. f̨1.u; �/C .1� ˛/f2.u; �//

completes the proof that flow conservation holds, and thus that flows form a convex
set.

Solution to Exercise 26.1-6

Create a vertex for each corner, and if there is a street between cornersu and�,
create directed edges.u; �/ and.�; u/. Set the capacity of each edge to1. Let the
source be corner on which the professor’s house sits, and letthe sink be the corner
on which the school is located. We wish to find a flow of value2 that also has the
property thatf .u; �/ is an integer for all verticesu and�. Such a flow represents
two edge-disjoint paths from the house to the school.

Solution to Exercise 26.1-7

We will constructG0 by splitting each vertex� of G into two vertices�1; �2, joined
by an edge of capacityl.�/. All incoming edges of� are now incoming edges
to �1. All outgoing edges from� are now outgoing edges from�2.

More formally, constructG0 D .V 0; E 0/ with capacity functionc 0 as follows. For
every� 2 V , create two vertices�1; �2 in V 0. Add an edge.�1; �2/ in E 0 with
c 0.�1; �2/ D l.�/. For every edge.u; �/ 2 E, create an edge.u2; �1/ in E 0 with
capacityc 0.u2; �1/ D c.u; �/. Makes1 andt2 as the new source and target vertices
in G0. Clearly,jV 0j D 2 jV j andjE 0j D jEj C jV j.
Let f be a flow inG that respects vertex capacities. Create a flow functionf 0 in G0

as follows. For each edge.u; �/ 2 G, let f 0.u2; �1/ D f .u; �/. For each vertex
u 2 V � ftg, let f 0.u1; u2/ DP�2V f .u; �/. Let f 0.t1; t2/ DP�2V f .�; t/.

We readily see that there is a one-to-one correspondence between flows that respect
vertex capacities inG and flows inG0. For the capacity constraint, every edge
in G0 of the form .u2; �1/ has a corresponding edge inG with a corresponding
capacity and flow and thus satisfies the capacity constraint.For edges inE 0 of
the form.u1; u2/, the capacities reflect the vertex capacities inG. Therefore, for
u 2 V � fs; tg, we havef 0.u1; u2/ D

P

�2V f .u; �/ � l.u/ D c 0.u1; u2/. We
also havef 0.t1; t2/ D

P

�2V f .�; t/ � l.t/ D c 0.t1; t2/. Note that this constraint
also enforces the vertex capacities inG.

Solutions for Chapter 26: Maximum Flow 26-17

Now, we prove flow conservation. By construction, every vertex of the formu1

in G0 has exactly one outgoing edge.u1; u2/, and every incoming edge tou1 cor-
responds to an incoming edge ofu 2 G. Thus, for all verticesu 2 V � fs; tg, we
have
incoming flow tou1 D

X

�2V 0

f 0.�; u1/

D
X

�2V

f .�; u/

D
X

�2V

f .u; �/ (becausef obeys flow conservation)

D f 0.u1; u2/

D outgoing flow fromu1 :

For t1, we have

incoming flow D
X

�2V 0

f 0.�; t1/

D
X

�2V

f .�; t/

D f 0.t1; t2/

D outgoing flow:

Vertices of the formu2 have exactly one incoming edge.u1; u2/, and every outgo-
ing edge ofu2 corresponds to an outgoing edge ofu 2 G. Thus, foru2 ¤ t2,
incoming flow D f 0.u1; u2/

D
X

�2V

f .u; �/

D
X

�2V 0

f 0.u2; �/

D outgoing flow:

Finally, we prove thatjf 0j D jf j:
jf 0j D

X

�2V 0

f 0.s1; �/

D f 0.s1; s2/ (because there are no other outgoing edges froms1)

D
X

�2V

f .s; �/

D jf j :

Solution to Exercise 26.2-1

Lemma
1. If � 62 V1, thenf .s; �/ D 0.

2. If � 62 V2, thenf .�; s/ D 0.

3. If � 62 V1 [V2, thenf 0.s; �/ D 0.

4. If � 62 V1 [V2, thenf 0.�; s/ D 0.

26-18 Solutions for Chapter 26: Maximum Flow

Proof

1. Let� 62 V1 be some vertex. From the definition ofV1, there is no edge froms
to �. Thus,f .s; �/ D 0.

2. Let� 62 V2 be some vertex. From the definition ofV2, there is no edge from�
to s. Thus,f .�; s/ D 0.

3. Let� 62 V1[V2 be some vertex. From the definition ofV1 andV2, neither.s; �/

nor .�; s/ exists. Therefore, the third condition of the definition of residual
capacity (equation (26.2)) applies, andcf .s; �/ D 0. Thus,f 0.s; �/ D 0.

4. Let� 62 V1 [V2 be some vertex. By equation (26.2), we have thatcf .�; s/ D 0

and thusf 0.�; s/ D 0. (lemma)

We conclude that the summations in equation (26.6) equal thesummations in equa-
tion (26.7).

Solution to Exercise 26.2-8

Let Gf be the residual network just before an iteration of thewhile loop of FORD-
FULKERSON, and letEs be the set of residual edges ofGf into s. We’ll show
that the augmenting pathp chosen by FORD-FULKERSON does not include an
edge inEs. Thus, even if we redefineGf to disallow edges inEs, the pathp still
remains an augmenting path in the redefined network. Sincep remains unchanged,
an iteration of thewhile loop of FORD-FULKERSON updates the flow in the same
way as before the redefinition. Furthermore, by disallowingsome edges, we do
not introduce any new augmenting paths. Thus, FORD-FULKERSON still correctly
computes a maximum flow.

Now, we prove that FORD-FULKERSON never chooses an augmenting pathp that
includes an edge.�; s/ 2 Es. Why? The pathp always starts froms, and if p

included an edge.�; s/, the vertexs would be repeated twice in the path. Thus,p

would no longer be asimplepath. Since FORD-FULKERSON chooses only simple
paths,p cannot include.�; s/.

Solution to Exercise 26.2-9

The augmented flowf " f 0 satisfies the flow conservation property but not the
capacity constraint property.

First, we prove thatf "f 0 satisfies the flow conservation property. We note that
if edge.u; �/ 2 E, then.�; u/ 62 E andf 0.�; u/ D 0. Thus, we can rewrite the
definition of flow augmentation (equation (26.4)), when applied to two flows, as

.f "f 0/.u; �/ D
(

f .u; �/C f 0.u; �/ if .u; �/ 2 E ;

0 otherwise:

The definition implies that the new flow on each edge is simply the sum of the two
flows on that edge. We now prove that inf "f 0, the net incoming flow for each

Solutions for Chapter 26: Maximum Flow 26-19

vertex equals the net outgoing flow. Letu 62 fs; tg be any vertex ofG. We have
X

�2V

.f "f 0/.�; u/

D
X

�2V

.f .�; u/C f 0.�; u//

D
X

�2V

f .�; u/C
X

�2V

f 0.�; u/

D
X

�2V

f .u; �/C
X

�2V

f 0.u; �/ (becausef , f 0 obey flow conservation)

D
X

�2V

.f .u; �/C f 0.u; �//

D
X

�2V

.f "f 0/.u; �/ :

We conclude thatf "f 0 satisfies flow conservation.

We now show thatf "f 0 need not satisfy the capacity constraint by giving a sim-
ple counterexample. Let the flow networkG have just a source and a target vertex,
with a single edge.s; t/ havingc.s; t/ D 1. Define the flowsf andf 0 to have
f .s; t/ D f 0.s; t/ D 1. Then, we have.f "f 0/.s; t/ D 2 > c.s; t/. We conclude
thatf "f 0 need not satisfy the capacity constraint.

Solution to Exercise 26.2-11
This solution is also posted publicly

For any two verticesu and� in G, we can define a flow networkGu� consisting
of the directed version ofG with s D u, t D �, and all edge capacities set to1.
(The flow networkGu� hasV vertices and2 jEj edges, so that it hasO.V / vertices
andO.E/ edges, as required. We want all capacities to be 1 so that the number of
edges ofG crossing a cut equals the capacity of the cut inGu�.) Let fu� denote a
maximum flow inGu�.

We claim that for anyu 2 V , the edge connectivityk equals min
�2V �fug

fjfu�jg. We’ll

show below that this claim holds. Assuming that it holds, we can findk as follows:

EDGE-CONNECTIVITY .G/

k D 1
select any vertexu 2 G:V
for each vertex� 2 G:V � fug

set up the flow networkGu� as described above
find the maximum flowfu� onGu�

k D min.k; jfu�j/
return k

The claim follows from the max-flow min-cut theorem and how wechose capac-
ities so that the capacity of a cut is the number of edges crossing it. We prove

26-20 Solutions for Chapter 26: Maximum Flow

thatk D min
�2V �fug

fjfu�jg, for anyu 2 V by showing separately thatk is at least this

minimum and thatk is at most this minimum.

� Proof thatk � min
�2V �fug

fjfu�jg:

Let m D min
�2V �fug

fjfu�jg. Suppose we remove onlym � 1 edges fromG. For

any vertex�, by the max-flow min-cut theorem,u and� are still connected.
(The max flow fromu to � is at leastm, hence any cut separatingu from � has
capacity at leastm, which means at leastm edges cross any such cut. Thus at
least one edge is left crossing the cut when we removem�1 edges.) Thus every
vertex is connected tou, which implies that the graph is still connected. So at
leastm edges must be removed to disconnect the graph—i.e.,k � min

�2V �fug
fjfu�jg.

� Proof thatk � min
�2V �fug

fjfu�jg:

Consider a vertex� with the minimumjfu�j. By the max-flow min-cut the-
orem, there is a cut of capacityjfu�j separatingu and�. Since all edge ca-
pacities are 1, exactlyjfu�j edges cross this cut. If these edges are removed,
there is no path fromu to �, and so our graph becomes disconnected. Hence
k � min

�2V �fug
fjfu�jg.

� Thus, the claim thatk D min
�2V �fug

fjfu�jg, for anyu 2 V is true.

Solution to Exercise 26.2-12

The idea of the proof is that iff .�; s/ D 1, then there must exist a cycle containing
the edge.�; s/ and for which each edge carries one unit of flow. If we reduce the
flow on each edge in the cycle by one unit, we can reducef .�; s/ to 0 without
affecting the value of the flow.

Given the flow networkG and the flowf , we say that vertexy is flow-connected
to vertex´ if there exists a pathp from y to ´ such that each edge ofp has a
positive flow on it. We also definey to be flow-connected to itself. In particular,s

is flow-connected tos.

We start by proving the following lemma:

Lemma
Let G D .V; E/ be a flow network andf be a flow inG. If s is not flow-connected
to �, thenf .�; s/ D 0.

Proof The idea is that sinces is not flow-connected to�, there cannot be any flow
from s to �. By using flow conservation, we will prove that there cannot be any
flow from � to s either, and thus thatf .�; s/ D 0.

Let Y be the set of all verticesy such thats is flow-connected toy. By applying
flow conservation to vertices inV � Y and taking the sum, we obtain
X

´2V �Y

X

x2V

f .x; ´/ D
X

´2V �Y

X

x2V

f .´; x/ :

Solutions for Chapter 26: Maximum Flow 26-21

PartitioningV into Y andV � Y gives
X

´2V �Y

X

x2V �Y

f .x; ´/C
X

´2V �Y

X

x2Y

f .x; ´/

D
X

´2V �Y

X

x2V �Y

f .´; x/C
X

´2V �Y

X

x2Y

f .´; x/ : (�)

But we have
X

´2V �Y

X

x2V �Y

f .x; ´/ D
X

´2V �Y

X

x2V �Y

f .´; x/ ;

since the left-hand side is the same as the right-hand side, except for a change of
variable namesx and´. We also have
X

´2V �Y

X

x2Y

f .x; ´/ D 0 ;

since the flow from any vertex inY to any vertex inV � Y must be0. Thus,
equation (�) simplifies to
X

´2V �Y

X

x2Y

f .´; x/ D 0 :

The above equation implies thatf .´; x/ D 0 for each´ 2 V � Y andx 2 Y . In
particular, since� 2 V � Y ands 2 Y , we have thatf .�; s/ D 0.

Now, we show how to construct the required flowf 0. By the contrapositive of the
lemma,f .�; s/ > 0 implies thats is flow-connected to� through some pathp.
Let pathp0 be the paths

p
; � ! s. Pathp0 is a cycle that has positive flow

on each edge. Because we assume that all edge capacities are integers, the flow
on each edge ofp0 is at least1. If we subtract1 from each edge of the cycle to
obtain a flowf 0, thenf 0 still satisfies the properties of a flow network and has the
same value asjf j. Because edge.�; s/ is in the cycle, we have thatf 0.�; s/ D
f .�; s/� 1 D 0.

Solution to Exercise 26.2-13

Let .S; T / and.X; Y / be two cuts inG (andG0). Let c 0 be the capacity function
of G0. One way to definec 0 is to add a small amountı to the capacity of each edge
in G. That is, ifu and� are two vertices, we set

c 0.u; �/ D c.u; �/C ı :

Thus, if c.S; T / D c.X; Y / and .S; T / has fewer edges than.X; Y /, then
we would havec 0.S; T / < c 0.X; Y /. We have to be careful and choose a
small ı, lest we change the relative ordering of two unequal capacities. That is,
if c.S; T / < c.X; Y /, then no matter many more edges.S; T / has than.X; Y /, we
still need to havec 0.S; T / < c 0.X; Y /. With this definition ofc 0, a minimum cut
in G0 will be a minimum cut inG that has the minimum number of edges.

How should we choose the value ofı? Letm be the minimum difference between
capacities of two unequal-capacity cuts inG. Chooseı D m=.2 jEj/. For any
cut .S; T /, since the cut can have at mostjEj edges, we can boundc 0.S; T / by

26-22 Solutions for Chapter 26: Maximum Flow

c.S; T / � c 0.S; T / � c.S; T /C jEj � ı :

Let c.S; T / < c.X; Y /. We need to prove thatc 0.S; T / < c 0.X; Y /. We have

c 0.S; T / � c.S; T /C jEj � ı
D c.S; T /Cm=2

< c.X; Y / (sincec.X; Y / � c.S; T / � m)

� c 0.X; Y / :

Because all capacities are integral, we can choosem D 1, obtainingı D 1=2 jEj.
To avoid dealing with fractional values, we can scale all capacities by2 jEj to
obtain

c 0.u; �/ D 2 jEj � c.u; �/C 1 :

Solution to Exercise 26.3-3
This solution is also posted publicly

By definition, an augmenting path is a simple paths ; t in the residual net-
work G0

f
. SinceG has no edges between vertices inL and no edges between

vertices inR, neither does the flow networkG0 and hence neither doesG0
f

. Also,
the only edges involvings or t connects to L andR to t . Note that although edges
in G0 can go only fromL to R, edges inG0

f
can also go fromR to L.

Thus any augmenting path must go

s ! L! R! � � � ! L! R! t ;

crossing back and forth betweenL and R at most as many times as it can do
so without using a vertex twice. It containss, t , and equal numbers of dis-
tinct vertices fromL andR—at most2 C 2 � min.jLj ; jRj/ vertices in all. The
length of an augmenting path (i.e., its number of edges) is thus bounded above by
2 �min.jLj ; jRj/C 1.

Solution to Exercise 26.4-1

We apply the definition of excess flow (equation (26.14)) to the initial preflowf

created by INITIALIZE -PREFLOW (equation (26.15)) to obtain

e.s/ D
X

�2V

f .�; s/ �
X

�2V

f .s; �/

D 0�
X

�2V

c.s; �/

D �
X

�2V

c.s; �/ :

Now,

� jf �j D
X

�2V

f �.�; s/ �
X

�2V

f �.s; �/

Solutions for Chapter 26: Maximum Flow 26-23

� 0 �
X

�2V

c.s; �/ (sincef �.�; s/ � 0 andf �.s; �/ � c.s; �/)

D e.s/ :

Solution to Exercise 26.4-3

Each time we call RELABEL.u/, we examine all edges.u; �/ 2 Ef . Since the
number of relabel operations is at most2 jV j � 1 per vertex, edge.u; �/ will be
examined during relabel operations at most4 jV j � 2 D O.V / times (at most
2 jV j � 1 times during calls to RELABEL.u/ and at most2 jV j � 1 times during
calls to RELABEL.�/). Summing up over all the possible residual edges, of which
there are at most2 jEj D O.E/, we see that the total time spent relabeling vertices
is O.VE/.

Solution to Exercise 26.4-4

We can find a minimum cut, given a maximum flow found inG D .V; E/ by a
push-relabel algorithm, inO.V / time. First, find a heightyh such that0 < yh < jV j
and there is no vertex whose height equalsyh at termination of the algorithm. We
need consider onlyjV j � 2 vertices, sinces:h D jV j andt:h D 0. Becauseyh can
be one of at mostjV j � 1 possible values, we know that for at least one number in
1; 2; : : : ; jV j � 1, there will be no vertex of that height. Hence,yh is well defined,
and it is easy to find inO.V / time by using a simple boolean array indexed by
heights1; 2; : : : ; jV j � 1.

Let S D
˚

u 2 V W u:h > yh
	

andT D
˚

� 2 V W �:h < yh
	

. Because we know that

s:h D jV j > yh, we haves 2 S , and becauset:h D 0 < yh, we havet 2 T , as
required for a cut.

We need to show thatf .u; �/ D c.u; �/, i.e., that.u; �/ 62 Ef , for all u 2 S and
� 2 T . Once we do that, we have thatf .S; T / D c.S; T /, and by Corollary 26.5,
.S; T / is a minimum cut.

Suppose for the purpose of contradiction that there exist verticesu 2 S and� 2 T

such that.u; �/ 2 Ef . Becauseh is always maintained as a height function
(Lemma 26.16), we have thatu:h � �:hC 1. But we also have�:h < yh < u:h,
and because all values are integer,�:h� u:h� 2. Thus, we haveu:h� �:hC 1 �
u:h�2C1 D u:h�1, which gives the contradiction thatu:height� u:height�1.
Thus,.S; T / is a minimum cut.

Solution to Exercise 26.4-7

If we sets:h D jV j � 2, we have to change our definition of a height function to
allow s:h D jV j � 2, rather thans:h D jV j. The only change we need to make to

26-24 Solutions for Chapter 26: Maximum Flow

the proof of correctness is to update the proof of Lemma 26.17. The original proof
derives the contradiction thats:h � k < jV j, which is at odds withs:h D jV j.
Whens:hD jV j � 2, there is no contradiction.

As in the original proof, let us suppose that we have a simple augmenting path
h�0; �1; : : : ; �ki, where�0 D s and�k D t , so thatk < jV j. How could.s; �1/ be
a residual edge? It had been saturated in INITIALIZE -PREFLOW, which means that
we had to have pushed some flow from�1 to s. In order for that to have happened,
we must have had�1:hD s:hC 1. If we sets:hD jV j � 2, then�1:h wasjV j � 1

at the time. Since then,�1:h did not decrease, and so we have�1:h � jV j � 1.
Working backwards over our augmenting path, we have�k�i :h � t:h C i for
i D 0; 1; : : : ; k. As before, because the augmenting path is simple,k < jV j.
Letting i D k � 1, we have�1:h � t:hC k � 1 < 0 C jV j � 1. We now have
the contradiction that�1:h � jV j � 1 and �1:h < jV j � 1, which shows that
Lemma 26.17 still holds.

Nothing in the analysis changes asymptotically.

Solution to Problem 26-2

a. The idea is to use a maximum-flow algorithm to find a maximum bipartite
matching that selects the edges to use in a minimum path cover. We must show
how to formulate the max-flow problem and how to construct thepath cover
from the resulting matching, and we must prove that the algorithm indeed finds
a minimum path cover.

DefineG0 as suggested, with directed edges. MakeG0 into a flow network with
sourcex0 and sinky0 by defining all edge capacities to be 1.G0 is the flow
network corresponding to a bipartite graphG00 in which L D fx1; : : : ; xng,
R D fy1; : : : ; yng, and the edges are the (undirected version of the) subset
of E 0 that doesn’t involvex0 or y0.

The relationship ofG to the bipartite graphG00 is that every vertexi in G is
represented by two vertices,xi andyi , in G00. Edge.i; j / in G corresponds to
edge.xi ; yj / in G00. That is, an edge.xi ; yj / in G00 means that an edge inG
leavesi and entersj . Vertexxi tells us about edges leavingi , andyi tells us
about edges enteringi .

The edges in a bipartite matching inG00 can be used in a path cover ofG, for
the following reasons:

� In a bipartite matching, no vertex is used more than once. In abipartite
matching inG00, since noxi is used more than once, at most one edge in the
matching leaves any vertexi in G. Similarly, since noyj is used more than
once, at most one edge in the matching enters any vertexj in G.

� In a path cover, since no vertex appears in more than one path,at most one
path edge enters each vertex and at most one path edge leaves each vertex.

We can construct a path coverP from any bipartite matchingM (not just a
maximum matching) by moving from somexi to its matchingyj (if any), then
from xj to its matchingyk, and so on, as follows:

Solutions for Chapter 26: Maximum Flow 26-25

1. Start a new path containing a vertexi that has not yet been placed in a path.
2. If xi is unmatched, the path can’t go any farther; just add it toP .
3. If xi is matched to someyj , addj to the current path. Ifj has already been

placed in a path (i.e., though we’ve just enteredj by processingyj , we’ve
already built a path that leavesj by processingxj), combine this path with
that one and go back to step 1. Otherwise go to step 2 to processxj .

This algorithm constructs a path cover, for the following reasons:

� Every vertex is put into some path, because we keep picking anunused vertex
from which to start a path until there are no unused vertices.

� No vertex is put into two paths, because everyxi is matched to at most
one yj , and vice versa. That is, at most one candidate edge leaves each
vertex, and at most one candidate edge enters each vertex. When building a
path, we start or enter a vertex and then leave it, building a single path. If we
ever enter a vertex that was left earlier, it must have been the start of another
path, since there are no cycles, and we combine those paths sothat the vertex
is entered and left on a single path.

Every edge inM is used in some path because we visit everyxi , and we incor-
porate the single edge, if any, from each visitedxi . Thus, there is a one-to-one
correspondence between edges in the matching and edges in the constructed
path cover.

We now show that the path coverP constructed above has the fewest possible
paths when the matching is maximum.

Let f be the flow corresonding to the bipartite matchingM .

jV j D
X

p2P

(# vertices inp) (every vertex is on exactly 1 path)

D
X

p2P

(1 + # edges inp)

D
X

p2P

1C
X

p2P

(# edges inp)

D jP j C jM j (by 1-to-1 correspondence)

D jP j C jf j (by Lemma 26.9) .

Thus, for the fixed setV in our graphG, jP j (the number of paths) is minimized
when the flowf is maximized.

The overall algorithm is as follows:

� Use FORD-FULKERSON to find a maximum flow inG0 and hence a maxi-
mum bipartite matchingM in G00.

� Construct the path cover as described above.

Time

O.VE/ total:

� O.V CE/ to set upG0,
� O.VE/ to find the maximum bipartite matching,

26-26 Solutions for Chapter 26: Maximum Flow

� O.E/ to trace the paths, because each edge2 M is traversed only once and
there areO.E/ edges inM .

b. The algorithm does not work if there are cycles.

Consider a graphG with 4 vertices, consisting of a directed triangle and an
edge pointing to the triangle:

E D f.1; 2/; .2; 3/; .3; 1/; .4; 1/g
G can be covered with a single path:4! 1! 2! 3, but our algorithm might
find only a 2-path cover.

In the bipartite graphG0, the edges.xi ; yj / are

.x1; y2/; .x2; y3/; .x3; y1/; .x4; y1/ :

There are 4 edges from anxi to ayj , but 2 of them lead toy1, so a maximum
bipartite matching can have only 3 edges (and the maximum flowin G0 has
value 3). In fact, there are 2 possible maximum matchings. Itis always pos-
sible to match.x1; y2/ and.x2; y3/, and then either.x3; y1/ or .x4; y1/ can be
chosen, but not both.

The maximum flow found by one of our max-flow algorithms could find the
flow corresponding to either of these matchings, since both are maximal. If
it finds the matching with edge.x3; x1/, then the matching would not con-
tain .x4; x1/; given that matching, our path algorithm is forced to produce 2
paths, one of which contains just the vertex 4.

Solution to Problem 26-3

a. Assume for the sake of contradiction thatAk 62 T for someAk 2 Ri . Since
Ak 62 T , we must haveAk 2 S . On the other hand, we haveJi 2 T . Thus,
the edge.Ak; Ji/ crosses the cut.S; T /. But c.Ak; Ji / D 1 by construction,
which contradicts the assumption that.S; T / is afinite-capacity cut.

b. Let us define aproject-planas a set of jobs to accept and experts to hire. Let
P be a project-plan. We assume thatP has two attributes. The attributeP:J
denotes the set of accepted jobs, andP:A denotes the set of hired experts.

A valid project-plan is one in which we have hired all experts that are required
by the accepted jobs. Specifically, letP be a valid project plan. IfJi 2 P:J,
thenAk 2 P:A for eachAk 2 Ri . Note that Professor Gore might decide to
hire more experts than those that are actually required.

We define therevenueof a project-plan as the total profit from the accepted jobs
minus the total cost of the hired experts. The problem asks usto find a valid
project plan with maximum revenue.

We start by proving the following lemma, which establishes the relationship
between the capacity of a cut in flow networkG and the revenue of a valid
project-plan.

Solutions for Chapter 26: Maximum Flow 26-27

Lemma (Min-cut max-revenue)
There exists a finite-capacity cut.S; T / of G with capacityc.S; T / if and only
if there exists a valid project-plan with net revenue

�P

Ji 2J pi

�

� c.S; T /.

Proof Let .S; T / be a finite-capacity cut ofG with capacityc.S; T /. We prove
one direction of the lemma by constructing the required project-plan.

Construct the project-planP by including Ji in P:J if and only if Ji 2 T

and includingAk in P:A if and only if Ak 2 T . From part (a),P is a valid
project-plan, since, for everyJi 2 P:J, we haveAk 2 P:A for eachAk 2 Ri .

Since the capacity of the cut is finite, there cannot be any edges of the
form .Ak; Ji / crossing the cut, whereAk 2 S andJi 2 T . All edges going
from a vertex inS to a vertex inT must be either of the form.s; Ak/ or of the
form .Ji ; t/. Let EA be the set of edges of the form.s; Ak/ that cross the cut,
and letEJ be the set of edges of the form.Ji ; t/ that cross the cut, so that

c.S; T / D
X

.s;Ak/2EA

c.s; Ak/C
X

.Ji ;t/2EJ

c.Ji ; t/ :

Consider edges of the form.s; Ak/. We have

.s; Ak/ 2 EA if and only if Ak 2 T

if and only if Ak 2 P:A :

By construction,c.s; Ak/ D ck. Taking summations overEA and overP:A, we
obtain
X

.s;Ak/2EA

c.s; Ak/ D
X

Ak2P: A

ck :

Similarly, consider edges of the form.Ji ; t/. We have

.Ji ; t/ 2 EJ if and only if Ji 2 S

if and only if Ji 62 T

if and only if Ji 62 P:J :

By construction,c.Ji ; t/ D pi . Taking summations overEJ and overP:J, we
obtain
X

.Ji ;t/2EJ

c.Ji ; t/ D
X

Ji 62P: J

pi :

Let � be the net revenue ofP . Then, we have

26-28 Solutions for Chapter 26: Maximum Flow

� D
X

Ji 2P: J

pi �
X

Ak2P: A

ck

D

X

Ji 2J

pi �
X

Ji 62P: J

pi

!

�
X

Ak2P: A

ck

D
X

Ji 2J

pi �

X

Ji 62P: J

pi C
X

Ak2P: A

ck

!

D
X

Ji 2J

pi �

X

.Ji ;t/2EJ

c.Ji ; t/C
X

.s;Ak/2EA

c.s; Ak/

!

D

X

Ji 2J

pi

!

� c.S; T / :

Now, we prove the other direction of the lemma by constructing the required
cut from a valid project-plan.

Construct the cut.S; T / as follows. For everyJi 2 P:J, let Ji 2 T . For every
Ak 2 P:A, let Ak 2 T .

First, we prove that the cut.S; T / is a finite-capacity cut. Since edges of the
form .Ak; Ji / are the only infinite-capacity edges, it suffices to prove that there
are no edges.Ak; Ji / such thatAk 2 S andJi 2 T .

For the purpose of contradiction, assume there is an edge.Ak; Ji / such that
Ak 2 S and Ji 2 T . By our constuction, we must haveJi 2 P:J and
Ak 62 P:A. But since the edge.Ak; Ji / exists, we haveAk 2 Ri . SinceP is a
valid project-plan, we derive the contradiction thatAk must have been inP:A.

From here on, the analysis is the same as the previous direction. In particular,
the last equation from the previous analysis holds: the net revenue� equals
�P

Ji 2J pi

�

� c.S; T /.

We conclude that the problem of finding a maximum-revenue project-plan re-
duces to the problem of finding a minimum cut inG. Let .S; T / be a minimum
cut. From the lemma, the maximum net revenue is given by

X

ji 2J

pi

!

� c.S; T / :

c. Construct the flow networkG as shown in the problem statement. Obtain a
minimum cut .S; T / by running any of the maximum-flow algorithms (say,
Edmonds-Karp). Construct the project planP as follows: addJi to P:J if and
only if Ji 2 T . Add Ak to P:A if and only if Ak 2 T .

First, we note that the number of vertices inG is jV j D m C n C 2, and the
number of edges inG is jEj D r C m C n. ConstructingG and recovering
the project-plan from the minimum cut are clearly linear-time operations. The
running time of our algorithm is thus asymptotically the same as the running
time of the algorithm used to find the minimum cut. If we use Edmonds-Karp
to find the minimum cut, the running time isO.VE2/.

Solutions for Chapter 26: Maximum Flow 26-29

Solution to Problem 26-4
This solution is also posted publicly

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge.u; �/ in E

with increased capacity ensures that the edge.u; �/ is in the residual network.
So look for an augmenting path and update the flow if a path is found.

Time

O.V C E/ D O.E/ if we find the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider separately the cases in which
.u; �/ is or is not an edge that crosses a minimum cut. If.u; �/ does not cross a
minimum cut, then increasing its capacity does not change the capacity of any
minimum cut, and hence the value of the maximum flow does not change. If
.u; �/ does cross a minimum cut, then increasing its capacity by 1 increases the
capacity of that minimum cut by 1, and hence possibly the value of the maxi-
mum flow by 1. In this case, there is either no augmenting path (in which case
there was some other minimum cut that.u; �/ does not cross), or the augment-
ing path increases flow by 1. No matter what, one iteration of Ford-Fulkerson
suffices.

b. Let f be the maximum flow before reducingc.u; �/.

If f .u; �/ D 0, we don’t need to do anything.

If f .u; �/ > 0, we will need to update the maximum flow. Assume from now
on thatf .u; �/ > 0, which in turn implies thatf .u; �/ � 1.

Definef 0.x; y/ D f .x; y/ for all x; y 2 V , except thatf 0.u; �/ D f .u; �/�1.
Althoughf 0 obeys all capacity contraints, even afterc.u; �/ has been reduced,
it is not a legal flow, as it violates flow conservation atu (unlessu D s) and�

(unless� D t). f 0 has one more unit of flow enteringu than leavingu, and it
has one more unit of flow leaving� than entering�.

The idea is to try to reroute this unit of flow so that it goes outof u and into�

via some other path. If that is not possible, we must reduce the flow froms to u

and from� to t by one unit.

Look for an augmenting path fromu to � (note:not from s to t).

� If there is such a path, augment the flow along that path.
� If there is no such path, reduce the flow froms to u by augmenting the flow

from u to s. That is, find an augmenting pathu ; s and augment the
flow along that path. (There definitely is such a path, becausethere is flow
from s to u.) Similarly, reduce the flow from� to t by finding an augmenting
patht ; � and augmenting the flow along that path.

Time

O.V CE/ D O.E/ if we find the paths with either DFS or BFS.

26-30 Solutions for Chapter 26: Maximum Flow

Solution to Problem 26-5

a. The capacity of a cut is defined to be the sum of the capacities of the edges
crossing it. Since the number of such edges is at mostjEj, and the capacity of
each edge is at mostC , the capacity ofanycut of G is at mostC jEj.

b. The capacity of an augmenting path is the minimum capacity ofany edge on the
path, so we are looking for an augmenting path whose edgesall have capacity at
leastK. Do a breadth-first search or depth-first-search as usual to find the path,
considering only edges with residual capacity at leastK. (Treat lower-capacity
edges as though they don’t exist.) This search takesO.V CE/ D O.E/ time.
(Note thatjV j D O.E/ in a flow network.)

c. MAX -FLOW-BY-SCALING uses the Ford-Fulkerson method. It repeatedly aug-
ments the flow along an augmenting path until there are no augmenting paths
with capacity at least1. Since all the capacities are integers, and the capacity
of an augmenting path is positive, when there are no augmenting paths with ca-
pacity at least1, there must be no augmenting paths whatsoever in the residual
network. Thus, by the max-flow min-cut theorem, MAX -FLOW-BY-SCALING

returns a maximum flow.

d. � The first time line 4 is executed, the capacity of any edge inGf equals its
capacity inG, and by part (a) the capacity of a minimum cut ofG is at
mostC jEj. Initially K D 2blg C c, and so2K D 2 � 2blg C c D 2blg C cC1 >

2lg C D C . Thus, the capacity of a minimum cut ofGf is initially less than
2K jEj.

� The other times line 4 is executed,K has just been halved, and so the ca-
pacity of a cut ofGf is at most2K jEj at line 4 if and only if that capacity
was at mostK jEj when thewhile loop of lines 5–6 last terminated. Thus,
we want to show that when line 7 is reached, the capacity of a minimum cut
of Gf is at mostK jEj.
Let Gf be the residual network when line 7 is reached. When we reach
line 7,Gf contains no augmenting path with capacity at leastK. Therefore,
a maximum flowf 0 in Gf has valuejf 0j < K jEj. Then, by the max-flow
min-cut theorem, a minimum cut inGf has capacity less thanK jEj.

e. By part (d), when line 4 is reached, the capacity of a minimum cut of Gf is
at most2K jEj, and thus the maximum flow inGf is at most2K jEj. The
following lemma shows that the value of a maximum flow inG equals the
value of the current flowf in G plus the value of a maximum flow inGf .

Lemma
Let f be a flow in flow networkG, andf 0 be a maximum flow in the residual
networkGf . Thenf " f 0 is a maximum flow inG.

Proof By the max-flow min-cut theorem,jf 0j D cf .S; T / for some cut.S; T /

of Gf , which is also a cut ofG. By Lemma 26.4,jf j D f .S; T /. By
Lemma 26.1,f "f 0 is a flow in G with value jf "f 0j D jf j C jf 0j. We

Solutions for Chapter 26: Maximum Flow 26-31

will show thatjf j C jf 0j D c.S; T / which, by the max-flow min-cut theorem,
will prove thatf "f 0 is a maximum flow inG.

We have

jf j C jf 0j D f .S; T /C cf .S; T /

D

X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/

!

C
X

u2S

X

�2T

cf .u; �/

D

X

u2S;�2T

f .u; �/ �
X

u2S;�2T

f .�; u/

!

C

0

B
@

X

u2S;�2T;
.u;�/2E

c.u; �/ �
X

u2S;�2T;
.u;�/2E

f .u; �/C
X

u2S;�2T;
.�;u/2E

f .�; u/

1

C
A :

Noting that.u; �/ 62 E impliesf .u; �/ D 0, we have that
X

u2S;�2T

f .u; �/ D
X

u2S;�2T;
.u;�/2E

f .u; �/ :

Similarly,
X

u2S;�2T

f .�; u/ D
X

u2S;�2T;
.�;u/2E

f .�; u/ :

Thus, the summations off .u; �/ cancel each other out, as do the summations
of f .�; u/. Therefore,

jf j C jf 0j D
X

u2S;�2T;
.u;�/2E

c.u; �/

D
X

u2S

X

�2T

c.u; �/

D c.S; T / : (lemma)

By this lemma, we see that the value of a maximum flow inG is at most2K jEj
more than the value of the current flowf in G. Every time the innerwhile loop
finds an augmenting path of capacity at leastK, the flow inG increases by at
leastK. Since the flow cannot increase by more than2K jEj, the loop executes
at most.2K jEj/=K D 2 jEj times.

f. The time complexity is dominated by thewhile loop of lines 4–7. (The lines
outside the loop takeO.E/ time.) The outerwhile loop executesO.lg C /

times, sinceK is initially O.C / and is halved on each iteration, untilK < 1.
By part (e), the innerwhile loop executesO.E/ times for each value ofK, and
by part (b), each iteration takesO.E/ time. Thus, the total time isO.E2 lg C /.

Solutions for Chapter 27:
Multithreaded Algorithms

Solution to Exercise 27.1-1

There will be no change in the asymptotic work, span, or parallelism of P-FIB

even if we were to spawn the recursive call to P-FIB.n � 2/. The serialization of
P-FIB under consideration would yield the same recurrence as thatfor FIB; we can,
therefore, calculate the work asT1.n/ D ‚.�n/. Similarly, because the spawned
calls to P-FIB.n � 1/ and P-FIB.n � 2/ can run in parallel, we can calculate the
span in exactly the same way as in the text,T1.n/ D ‚.n/, resulting in‚.�n=n/

parallelism.

Solution to Exercise 27.1-5

By the work law forP D 4, we have80 D T4 � T1=4, or T1 � 320. By the span
law for P D 64, we haveT1 � T64 D 10. Now we will use inequality (27.5) from
Exercise 27.1-3 to derive a contradiction. ForP D 10, we have

42 D T10

� 320 � T1

10
C T1

D 32C 9

10
T1

or, equivalently,

T1 � 10

9
� 10

> 10 ;

which contradictsT1 � 10.

Therefore, the running times reported by the professor are suspicious.

27-2 Solutions for Chapter 27: Multithreaded Algorithms

Solution to Exercise 27.1-6

FAST-MAT-VEC.A; x/

n D A:rows
let y be a new vector of lengthn
parallel for i D 1 to n

yi D 0

parallel for i D 1 to n

yi D MAT-SUB-LOOP.A; x; i; 1; n/

return y

MAT-SUB-LOOP.A; x; i; j; j 0/

if j == j 0

return aij xj

elsemid D b.j C j 0/=2c
lhalf D spawnMAT-SUB-LOOP.A; x; i; j; mid/

uhalf D MAT-SUB-LOOP.A; x; i; midC 1; j 0/
sync
return lhalf C uhalf

We calculate the workT1.n/ of FAST-MAT-VEC by computing the running time
of its serialization, i.e., by replacing theparallel for loop by an ordinaryfor loop.
Therefore, we haveT1.n/ D n T 0

1.n/, whereT 0
1.n/ denotes the work of MAT-SUB-

LOOP to compute a given output entryyi . The work of MAT-SUB-LOOP is given
by the recurrence

T 0
1.n/ D 2T 0

1.n=2/C‚.1/ :

By applying case 1 of the master theorem, we haveT 0
1.n/ D ‚.n/. Therefore,

T1.n/ D ‚.n2/.

To calculate the span, we use

T1.n/ D ‚.lg n/C max
1�i�n

iter1.i/ :

Note that each iteration of the secondparallel for loop calls procedure MAT-
SUB-LOOPwith the same parameters, except for the indexi . Because MAT-SUB-
LOOP recursively halves the space between its last two parameters (1 andn), does
constant-time work in the base case, and spawns one of the recursive calls in paral-
lel with the other, it has span‚.lg n/. The procedure FAST-MAT-VEC, therefore,
has a span of‚.lg n/ and‚.n2= lg n/ parallelism.

Solution to Exercise 27.1-7

We analyze the work of P-TRANSPOSE, as usual, by computing the running time
of its serialization, where we replace both theparallel for loops with simplefor

Solutions for Chapter 27: Multithreaded Algorithms 27-3

loops. We can compute the work of P-TRANSPOSEusing the summation

T1.n/ D ‚

n
X

j D2

.j � 1/

!

D ‚

n�1
X

j D1

j

!

D ‚.n2/ :

The span of P-TRANSPOSEis determined by the span of the doubly nestedparallel
for loops. Although the number of iterations of the inner loop depends on the value
of the variablej of the outer loop, each iteration of the inner loop does constant
work. Let iter1.j / denote the span of thej th iteration of the outer loop and
iter0

1.i/ denote the span of thei th iteration of the inner loop. We characterize the
spanT1.n/ of P-TRANSPOSEas

T1.n/ D ‚.lg n/C max
2�j �n

iter1.j / :

The maximum occurs whenj D n, and in this case,

iter1.n/ D ‚.lg n/C max
1�i�n�1

iter0
1.i/ :

As we noted, each iteration of the inner loop does constant work, and therefore
iter0

1.i/ D ‚.1/ for all i . Thus, we have

T1.n/ D ‚.lg n/C‚.lg n/C‚.1/

D ‚.lg n/ :

Since the work P-TRANSPOSEis ‚.n2/ and its span is‚.lg n/, the parallelism of
P-TRANSPOSEis ‚.n2= lg n/.

Solution to Exercise 27.1-8

If we were to replace the innerparallel for loop of P-TRANSPOSEwith an ordinary
for loop, the work would still remain‚.n2/. The span, however, would increase
to ‚.n/ because the last iteration of theparallel for loop, which dominates the
span of the computation, would lead to.n � 1/ iterations of the inner, serialfor
loop. The parallelism, therefore, would reduce to‚.n2/=‚.n/ D ‚.n/.

Solution to Exercise 27.1-9

Based on the values of work and span given for the two versionsof the chess
program, we solve forP using

2048

P
C 1 D 1024

P
C 8 :

The solution givesP between146 and147.

27-4 Solutions for Chapter 27: Multithreaded Algorithms

Solution to Exercise 27.2-3

P-FAST-MATRIX -MULTIPLY .A; B/

n D A:rows
let C be a newn � n matrix
parallel for i D 1 to n

parallel for j D 1 to n

cij D MATRIX -MULT-SUBLOOP.A; B; i; j; 1; n/

return C

MATRIX -MULT-SUBLOOP.A; B; i; j; k; k0/

if k == k0

return aikbkj

elsemid D b.k C k0/=2c
lhalf D spawnMATRIX -MULT-SUBLOOP.A; B; i; j; k; mid/

uhalf D MATRIX -MULT-SUBLOOP.A; B; i; j; midC 1; k0/
sync
return lhalf C uhalf

We calculate the workT1.n/ of P-FAST-MATRIX -MULTIPLY by computing the
running time of its serialization, i.e., by replacing theparallel for loops by ordinary
for loops. Therefore, we haveT1.n/ D n2 T 0

1.n/, whereT 0
1.n/ denotes the work

of MATRIX -MULT-SUBLOOP to compute a given output entrycij . The work of
MATRIX -MULT-SUBLOOP is given by the recurrence

T 0
1.n/ D 2T 0

1.n=2/C‚.1/ :

By applying case 1 of the master theorem, we haveT 0
1.n/ D ‚.n/. Therefore,

T1.n/ D ‚.n3/.
To calculate the span, we use

T1.n/ D ‚.lg n/C max
1�i�n

iter1.i/ :

Note that each iteration of the outerparallel for loop does the same amount of
work: it calls the innerparallel for loop. Similarly, each iteration of the inner
parallel for loop calls procedure MATRIX -MULT-SUBLOOP with the same pa-
rameters, except for the indicesi andj . Because MATRIX -MULT-SUBLOOP re-
cursively halves the space between its last two parameters (1 andn), does constant-
time work in the base case, and spawns one of the recursive calls in parallel with the
other, it has span‚.lg n/. Since each iteration of the innerparallel for loop, which
hasn iterations, has span‚.lg n/, the innerparallel for loop has span‚.lg n/. By
similar logic, the outerparallel for loop, and hence procedure P-FAST-MATRIX -
MULTIPLY , has span‚.lg n/ and‚.n3= lg n/ parallelism.

Solution to Exercise 27.2-4

We can efficiently multiply ap � q matrix by aq � r matrix in parallel by using
the solution to Exercise 27.2-3 as a base. We will replace theupper limits of the

Solutions for Chapter 27: Multithreaded Algorithms 27-5

nestedparallel for loops withp andr respectively and we will passq as the last
argument to the call of MATRIX -MULT-SUBLOOP. We present the pseudocode for
a multithreaded algorithm for multiplying ap�q matrix by aq�r matrix in proce-
dure P-GEN-MATRIX -MULTIPLY below. Because the pseudocode for procedure
MATRIX -MULT-SUBLOOP (which P-GEN-MATRIX -MULTIPLY calls) remains the
same as was presented in the solution to Exercise 27.2-3, we do not repeat it here.

P-GEN-MATRIX -MULTIPLY .A; B/

p D A:rows
q D A:columns
r D B:columns
let C be a newp � r matrix
parallel for i D 1 to p

parallel for j D 1 to r

cij D MATRIX -MULT-SUBLOOP.A; B; i; j; 1; q/

return C

To calculate the work for P-GEN-MATRIX -MULTIPLY , we replace theparallel for
loops with ordinaryfor loops. As before, we can calculate the work of MATRIX -
MULT-SUBLOOP to be‚.q/ (because the input size to the procedure isq here).
Therefore, the work of P-GEN-MATRIX -MULTIPLY is T1 D ‚.pqr/.

We can analyze the span of P-GEN-MATRIX -MULTIPLY as we did in the solution
to Exercise 27.2-3, but we must take into account the different number of loop
iterations. Each of thep iterations of the outerparallel for loop executes the inner
parallel for loop, and each of ther iterations of the innerparallel for loop calls
MATRIX -MULT-SUBLOOP, whose span is given by‚.lg q/. We know that, in
general, the span of aparallel for loop with n iterations, where thei th iteration
has spaniter1.i/ is given by

T1 D ‚.lg n/C max
1�i�n

iter1.i/ :

Based on the above observations, we can calculate the span ofP-GEN-MATRIX -
MULTIPLY as

T1 D ‚.lg p/C‚.lg r/C‚.lg q/

D ‚.lg.pqr// :

The parallelism of the procedure is, therefore, given by‚.pqr= lg.pqr//. To
check whether this analysis is consistent with Exercise 27.2-3, we note that if
p D q D r D n, then the parallelism of P-GEN-MATRIX -MULTIPLY would
be‚.n3= lg n3/ D ‚.n3= lg n/.

27-6 Solutions for Chapter 27: Multithreaded Algorithms

Solution to Exercise 27.2-5

P-MATRIX -TRANSPOSE-RECURSIVE.A; r; c; s/

// Transpose thes � s submatrix starting atarc.
if s == 1

return
elses0 D bs=2c

spawnP-MATRIX -TRANSPOSE-RECURSIVE.A; r; c; s0/
spawnP-MATRIX -TRANSPOSE-RECURSIVE.A; r C s0; c C s0; s � s0/
P-MATRIX -TRANSPOSE-SWAP.A; r; c C s0; r C s0; c; s0; s � s0/
sync

P-MATRIX -TRANSPOSE-SWAP.A; r1; c1; r2; c2; s1; s2/

// Transpose thes1 � s2 submatrix starting atar1c1
with thes2 � s1 submatrix

// starting atar2c2
.

if s1 < s2

P-MATRIX -TRANSPOSE-SWAP.A; r2; c2; r1; c1; s2; s1/

elseifs1 == 1 // sinces1 � s2, must have thats2 equals1
exchangear1;c1

with ar2;c2

elses0 D bs1=2c
spawnP-MATRIX -TRANSPOSE-SWAP.A; r2; c2; r1; c1; s2; s0/
P-MATRIX -TRANSPOSE-SWAP.A; r2; c2 C s0; r1 C s0; c1; s2; s1 � s0/
sync

In order to transpose ann � n matrix A, we call P-MATRIX -TRANSPOSE-
RECURSIVE(A; 1; 1; n).

Let us first calculate the work and span of P-MATRIX -TRANSPOSE-SWAP so that
we can plug in these values into the work and span calculations of P-MATRIX -
TRANSPOSE-RECURSIVE. The workT 0

1.N / of P-MATRIX -TRANSPOSE-SWAP

on anN -element matrix is the running time of its serialization. Wehave the recur-
rence

T 0
1.N / D 2T 0

1.N=2/C‚.1/

D ‚.N / :

The spanT 0
1.N / is similarly described by the recurrence

T 0
1.N / D T 0

1.N=2/C‚.1/

D ‚.lg N / :

In order to calculate the work of P-MATRIX -TRANSPOSE-RECURSIVE, we calcu-
late the running time of its serialization. LetT1.N / be the work of the algorithm
on anN -element matrix, whereN D n2, and assume for simplicity thatn is an
exact power of2. Because the procedure makes two recursive calls with square
submatrices of sizesn=2 � n=2 D N=4 and because it does‚.n2/ D ‚.N / work
to swap all the elements of the other two submatrices of sizen=2 � n=2, its work
is given by the recurrence

T1.N / D 2T1.N=4/C‚.N /

D ‚.N / :

Solutions for Chapter 27: Multithreaded Algorithms 27-7

The two parallel recursive calls in P-MATRIX -TRANSPOSE-RECURSIVE execute
on matrices of sizen=2� n=2. The span of the procedure is given by maximum of
the span of one of these two recursive calls and the‚.lg N / span of P-MATRIX -
TRANSPOSE-SWAP, plus‚.1/. Since the recurrence

T1.N / D T1.N=4/C‚.1/

has the solutionT1.N / D ‚.lg N / by case 2 of Theorem 4.1, the span of the
recursive call is asymptotically the same as the span of P-MATRIX -TRANSPOSE-
SWAP, and hence the span of P-MATRIX -TRANSPOSE-RECURSIVE is ‚.lg N /.

Thus, P-MATRIX -TRANSPOSE-RECURSIVE has parallelism‚.N= lg N / D
‚.n2= lg n/.

Solution to Exercise 27.2-6

P-FLOYD-WARSHALL .W /

n D W:rows
parallel for i D 1 to n

parallel for j D 1 to n

dij D wij

for k D 1 to n

parallel for i D 1 to n

parallel for j D 1 to n

dij D min.dij ; dik C dkj /

return D

By Exercise 25.2-4, we can compute all thedij values in parallel.

The work of P-FLOYD-WARSHALL is the same as the running time of its serializa-
tion, which we computed as‚.n3/ in Section 25.2. The span of the doubly nested
parallel for loops, which do constant work inside, is‚.lg n/. Note, however, that
the second set of doubly nestedparallel for loops is executed within each of then

iterations of the outermost serialfor loop. Therefore, P-FLOYD-WARSHALL has
span‚.n lg n/ and‚.n2= lg n/ parallelism.

Solution to Problem 27-1

a. Similar to MAT-VEC-MAIN -LOOP, the required procedure, which we name
NESTED-SUM-ARRAYS, will take parametersi andj to specify the range of
the array that is being computed in parallel. In order to perform the pairwise
addition of twon-element arraysA andB and store the result into arrayC , we
call NESTED-SUM-ARRAYS(A, B, C , 1, A: length).

27-8 Solutions for Chapter 27: Multithreaded Algorithms

NESTED-SUM-ARRAYS.A; B; C; i; j /

if i == j

C Œi � D AŒi�C BŒi�

elsek D b.i C j /=2c spawnNESTED-SUM-ARRAYS.A; B; C; i; k/

NESTED-SUM-ARRAYS.A; B; C; k C 1; j /

sync

The work of NESTED-SUM-ARRAYS is given by the recurrence
T1.n/ D 2T1.n=2/C‚.1/

D ‚.n/ ;

by case 1 of the master theorem. The span of the procedure is given by the
recurrence
T1.n/ D T1.n=2/C‚.1/

D ‚.lg n/ ;

by case 2 of the master theorem. Therefore, the above algorithm has‚.n= lg n/

parallelism.

b. Because ADD-SUBARRAY is serial, we can calculate both its work and span to
be‚.j � iC1/, which based on the arguments from the call in SUM-ARRAYS0

is ‚.grain-size/, for all but the last call (which isO.grain-size/).

If grain-sizeD 1, the procedure SUM-ARRAYS0 calculatesr to ben, and each
of then iterations of the serialfor loop spawns ADD-SUBARRAY with the same
value,k C 1, for the last two arguments. For example, whenk D 0, the last
two arguments to ADD-SUBARRAY are1, whenk D 1, the last two arguments
are2, and so on. That is, in each call to ADD-SUBARRAY, its for loop iterates
once and calculates a single value in the arrayC . Whengrain-sizeD 1, the
for loop in SUM-ARRAYS0 iteratesn times and each iteration takes‚.1/ time,
resulting in‚.n/ work.

Although thefor loop in SUM-ARRAYS0 looks serial, note that each iteration
spawns the call to ADD-SUBARRAY and the procedure waits for all its spawned
children at the end of thefor loop. That is, all loop iterations of SUM-ARRAYS0

execute in parallel. Therefore, one might be tempted to say that the span of
SUM-ARRAYS0 is equal to the span of a single call to ADD-SUBARRAY plus the
constant work done by the first three lines in SUM-ARRAYS0, giving ‚.1/ span
and‚.n/ parallelism. This calculation of span and parallelism would be wrong,
however, because there arer spawns of ADD-SUBARRAY in SUM-ARRAYS0,
wherer is not a constant. Hence, we must add a‚.r/ term to the span of
SUM-ARRAYS0 in order to account for the overhead of spawningr calls to
ADD-SUBARRAY.

Based on the above discussion, the span of SUM-ARRAYS0 is ‚.r/ C
‚.grain-size/ C ‚.1/. When grain-size D 1, we get r D n; therefore,
SUM-ARRAYS0 has‚.n/ span and‚.1/ parallelism.

c. For a generalgrain-size, each iteration of thefor loop in SUM-ARRAYS0 except
for the last results ingrain-sizeiterations of thefor loop in ADD-SUBARRAY.
In the last iteration of SUM-ARRAYS0, the for loop in ADD-SUBARRAY iter-
atesn modgrain-size times. Therefore, we can claim that the span of ADD-
SUBARRAY is ‚.max.grain-size; n modgrain-size// D ‚.grain-size/.

Solutions for Chapter 27: Multithreaded Algorithms 27-9

SUM-ARRAYS0 achieves maximum parallelism when its span, given by‚.r/C
‚.grain-size/ C ‚.1/, is minimum. Sincer D dn=grain-sizee, the minimum
occurs whenr � grain-size, i.e., whengrain-size� pn.

Solution to Problem 27-2

a. We initialize the output matrixC using doubly nestedparallel for loops and
then call P-MATRIX -MULTIPLY-RECURSIVE0, defined below.

P-MATRIX -MULTIPLY-LESS-MEM.C; A; B/

n D A:rows
parallel for i D 1 to n

parallel for j D 1 to n

cij D 0

P-MATRIX -MULTIPLY-RECURSIVE0.C; A; B/

P-MATRIX -MULTIPLY-RECURSIVE0.C; A; B/

n D A:rows
if n == 1

c11 D c11 C a11b11

elsepartitionA, B, andC into n=2 � n=2 submatrices
A11; A12; A21; A22; B11; B12; B21; B22; andC11; C12; C21; C22

spawnP-MATRIX -MULTIPLY-RECURSIVE0.C11; A11; B11/

spawnP-MATRIX -MULTIPLY-RECURSIVE0.C12; A11; B12/

spawnP-MATRIX -MULTIPLY-RECURSIVE0.C21; A21; B11/

P-MATRIX -MULTIPLY-RECURSIVE0.C22; A21; B12/

sync
spawnP-MATRIX -MULTIPLY-RECURSIVE0.C11; A12; B21/

spawnP-MATRIX -MULTIPLY-RECURSIVE0.C12; A12; B22/

spawnP-MATRIX -MULTIPLY-RECURSIVE0.C21; A22; B21/

P-MATRIX -MULTIPLY-RECURSIVE0.C22; A22; B22/

sync

b. The procedure P-MATRIX -MULTIPLY-LESS-MEM performs‚.n2/ work in
the doubly nestedparallel for loops, and then it calls the procedure
P-MATRIX -MULTIPLY-RECURSIVE0. The recurrence for the workM 0

1.n/ of
P-MATRIX -MULTIPLY-RECURSIVE0 is 8M 0

1.n=2/ C ‚.1/, which gives us
M 0

1.n/ D ‚.n3/. Therefore,T1.n/ D ‚.n3/.

The span of the doubly nestedparallel for loops that initialize the out-
put arrayC is ‚.lg n/. In P-MATRIX -MULTIPLY-RECURSIVE0, there are
two groups of spawned recursive calls; therefore, the spanM 0

1.n/ of
P-MATRIX -MULTIPLY-RECURSIVE0 is given by the recurrenceM 0

1.n/ D
2M 0

1.n=2/ C ‚.1/, which gives usM 0
1.n/ D ‚.n/. Because the span‚.n/

of P-MATRIX -MULTIPLY-RECURSIVE0 dominates, we haveT1.n/ D ‚.n/.

27-10 Solutions for Chapter 27: Multithreaded Algorithms

c. The parallelism of P-MATRIX -MULTIPLY-LESS-MEM is ‚.n3=n/ D ‚.n2/.
Ignoring the constants in the‚-notation, the parallelism for multiplying1000�
1000 matrices is10002 D 106, which is only a factor of10 less than that
of P-MATRIX -MULTIPLY-RECURSIVE. Although the parallelism of the new
procedure is much less than that of P-MATRIX -MULTIPLY-RECURSIVE, the
algorithm still scales well for a large number of processors.

Solution to Problem 27-4

a. Here is a multithreaded̋ -reduction algorithm:

P-REDUCE.x; i; j /

if i == j

return xŒi �

elsemid D b.i C j /=2c
lh D spawnP-REDUCE.x; i; mid/

rh D P-REDUCE.x; midC 1; j /

sync
return lh˝ rh

If we denote the lengthj �iC1 of the subarrayxŒi : : j � by n, then the work for
the above algorithm is given by the recurrenceT1.n/ D 2T1.n=2/ C ‚.1/ D
‚.n/. Because one of the recursive calls to P-REDUCE is spawned and the
procedure does constant work following the recursive callsand in the base case,
the span is given by the recurrenceT1.n/ D T1.n=2/C‚.1/ D ‚.lg n/.

b. The work and span of P-SCAN-1-AUX dominate the work and span of P-
SCAN-1. We can calculate the work of P-SCAN-1-AUX by replacing thepar-
allel for loop with an ordinaryfor loop and noting that in each iteration, the
running time of P-REDUCE will be equal to‚.l/. Since P-SCAN-1 calls P-
SCAN-1-AUX with 1 and n as the last two arguments, the running time of
P-SCAN-1, and hence its work, is‚.1C 2C � � � C n/ D ‚.n2/.

As we noted earlier, theparallel for loop in P-SCAN-1-AUX undergoesn it-
erations; therefore, the span of P-SCAN-1-AUX is given by‚.lg n/ for the
recursive splitting of the loop iterations plus the span of the iteration that has
maximum span. Among the loop iterations, the call to P-REDUCE in the last
iteration (whenl D n) has the maximum span, equal to‚.lg n/. Thus, P-
SCAN-1 has‚.lg n/ span and‚.n2= lg n/ parallelism.

c. In P-SCAN-2-AUX, before theparallel for loop in lines 7 and 8 executes,
the following invariant is satisfied:yŒl� D xŒi � ˝ xŒi C 1� ˝ � � � ˝ xŒl� for
l D i; i C 1; : : : ; k and yŒl� D xŒk C 1� ˝ xŒk C 2� ˝ � � � ˝ xŒl� for l D
kC1; kC2; : : : ; j . Theparallel for loop need not updateyŒi �; : : : ; yŒk�, since
they have the correct values after the call to P-SCAN-2-AUX.x; y; i; k/. For
l D k C 1; k C 2; : : : ; j , theparallel for loop sets

yŒl� D yŒk�˝ yŒl�

D xŒi �˝ � � � ˝ xŒk�˝ xŒk C 1�˝ � � � ˝ xŒl�

Solutions for Chapter 27: Multithreaded Algorithms 27-11

D xŒi �˝ � � � ˝ xŒl� ;

as desired. We can run this loop in parallel because thel th iteration depends
only on the values ofyŒk�, which is the same in all iterations, andyŒl�. There-
fore, when the call to P-SCAN-2-AUX from P-SCAN-2 returns, arrayy repre-
sents the̋ -prefix computation of arrayx.

Because the work and span of P-SCAN-2-AUX dominate the work and span
of P-SCAN-2, we will concentrate on calculating these values for P-SCAN-2-
AUX working on an array of sizen. The workPS2A1.n/ of P-SCAN-2-AUX

is given by the recurrencePS2A1.n/ D 2PS2A1.n=2/C‚.n/, which equals
‚.n lg n/ by case 2 of the master theorem. The spanPS2A1.n/ of P-SCAN-2-
AUX is given by the recurrencePS2A1.n/ D PS2A1.n=2/C‚.lg n/, which
equals‚.lg2 n/ per Exercise 4.6-2. That is, the work, span, and parallelismof
P-SCAN-2 are‚.n lg n/, ‚.lg2 n/, and‚.n= lg n/, respectively.

d. The missing expression in line 8 of P-SCAN-UP is t Œk� ˝ right. The missing
expressions in lines 5 and 6 of P-SCAN-DOWN are� and�˝ t Œk�, respectively.

As suggested in the hint, we will prove that the value� passed to
P-SCAN-DOWN.�; x; t; y; i; j / satisfies� D xŒ1� ˝ xŒ2� ˝ � � � ˝ xŒi � 1�,
so that the value�˝ xŒi � stored intoyŒi � in the base case of P-SCAN-DOWN is
correct.

In order to compute the arguments that are passed to P-SCAN-DOWN, we must
first understand whatt Œk� holds as a result of the call to P-SCAN-UP. A call to
P-SCAN-UP.x; t; i; j / returnsxŒi �˝ � � � ˝ xŒj �; becauset Œk� stores the return
value of P-SCAN-UP.x; t; i; k/, we can say thatt Œk� D xŒi �˝ � � � ˝ xŒk�.

The value� D xŒ1� when P-SCAN-DOWN.xŒ1�; x; t; y; 2; n/ is called from
P-SCAN-3 clearly satisifies� D xŒ1� ˝ � � � ˝ xŒi � 1�. Let us suppose that
� D xŒ1�˝ xŒ2�˝ � � � ˝ xŒi � 1� in a call of P-SCAN-DOWN.�; x; t; y; i; j /.
Therefore,� meets the required condition in the first recursive call, with i

and k as the last two arguments, in P-SCAN-DOWN. If we can prove that
the value�˝ t Œk� passed to the second recursive call in P-SCAN-DOWN equals
xŒ1�˝ xŒ2�˝ � � � ˝ xŒk�, we would have proved the required condition on� for
all calls to P-SCAN-DOWN. Earlier, we proved thatt Œk� D xŒi �˝ � � � ˝ xŒk�;
therefore,

� ˝ t Œk� D xŒ1�˝ xŒ2�˝ � � � ˝ xŒi � 1�˝ xŒi �˝ � � � xŒk�

D xŒ1�˝ xŒ2�˝ � � � ˝ xŒk� :

Thus, the value� passed to P-SCAN-DOWN.�; x; t; y; i; j / satisfies� D xŒ1�˝
xŒ2�˝ � � � ˝ xŒi � 1�.

e. Let PSU1.n/ and PSU1.n/ denote the work and span of P-SCAN-UP and
let PSD1.n/ and PSD1.n/ denote the work and span of P-SCAN-DOWN.
Then the expressionsT1.n/ D PSU1.n/ C PSD1.n/ C ‚.1/ andT1.n/ D
PSU1.n/CPSD1.n/C‚.1/ characterize the work and span of P-SCAN-3.

The workPSU1.n/ of P-SCAN-UP is given by the recurrence

PSU1.n/ D 2PSU1.n=2/C‚.1/ ;

and its span is defined by the recurrence

27-12 Solutions for Chapter 27: Multithreaded Algorithms

PSU1.n/ D PSU1.n=2/C‚.1/ :

Using the master theorem to solve these recurrences, we getPSU1.n/ D ‚.n/

andPSU1.n/ D ‚.lg n/.

Similarly, the recurrences

PSD1.n/ D 2PSD1.n=2/C‚.1/ ; (�)
PSD1.n/ D PSD1.n=2/C‚.1/ (�)

define the work and span of P-SCAN-DOWN, and they evaluate toPSD1.n/ D
‚.n/ andPSD1.n/ D ‚.lg n/.

Applying the results for the work and span of P-SCAN-UP and P-SCAN-DOWN

obtained above in the expressions for the work and span of P-SCAN-3, we
get T1.n/ D ‚.n/ andT1.n/ D ‚.lg n/. Hence, P-SCAN-3 has‚.n= lg n/

parallelism. P-SCAN-3 performs less work than P-SCAN-1, but with the same
span, and it has the same parallelism as P-SCAN-2 with less work and a lower
span.

Solution to Problem 27-5

a. In this part of the problem, we will assume thatn is an exact power of2, so
that in a recursive step, when we divide then� n matrixA into four n=2� n=2

matrices, we will be guaranteed thatn=2 is an integer, for alln � 2. We
make this assumption simply to avoid introducingbn=2c anddn=2e terms in the
pseudocode and the analysis that follow. In the pseudocode below, we assume
that we have a procedure BASE-CASE available to us, which calculates the base
case of the stencil.

SIMPLE-STENCIL.A; i; j; n/

if n == 1

AŒi; j � D BASE-CASE.A; i; j /

else// Calculate submatrixA11.
SIMPLE-STENCIL.A; i; j; n=2/

// Calculate submatricesA12 andA21 in parallel.
spawnSIMPLE-STENCIL.A; i; j C n=2; n=2/

SIMPLE-STENCIL.A; i C n=2; j; n=2/

sync
// Calculate submatrixA22.
SIMPLE-STENCIL.A; i C n=2; j C n=2; n=2/

To perform a simple stencil calculation on ann � n matrix A, we call
SIMPLE-STENCIL.A; 1; 1; n/. The recurrence for the work isT1.n/ D
4T1.n=2/C‚.1/ D ‚.n2/. Of the four recursive calls in the algorithm above,
only two run in parallel. Therefore, the recurrence for the span isT1.n/ D
3T1.n=2/C‚.1/ D ‚.nlg 3/, and the parallelism is‚.n2�lg 3/ � ‚.n0:415/.

b. Similar to SIMPLE-STENCIL of the previous part, we present P-STENCIL-3,
which dividesA into nine submatrices, each of sizen=3�n=3, and solves them

Solutions for Chapter 27: Multithreaded Algorithms 27-13

recursively. To perform a stencil calculation on ann � n matrix A, we call
P-STENCIL-3.A; 1; 1; n/.

P-STENCIL-3.A; i; j; n/

if n == 1

AŒi; j � D BASE-CASE.A; i; j /

else// Group 1: compute submatrixA11.
P-STENCIL-3.A; i; j; n=3/

// Group 2: compute submatricesA12 andA21.
spawnP-STENCIL-3.A; i; j C n=3; n=3/

P-STENCIL-3.A; i C n=3; j; n=3/

sync
// Group 3: compute submatricesA13, A22, andA31.
spawnP-STENCIL-3.A; i; j C 2n=3; n=3/

spawnP-STENCIL-3.A; i C n=3; j C n=3; n=3/

P-STENCIL-3.A; i C 2n=3; j; n=3/

sync
// Group 4: compute submatricesA23 andA32.
spawnP-STENCIL-3.A; i C n=3; j C 2n=3; n=3/

P-STENCIL-3.A; i C 2n=3; j C n=3; n=3/

sync
// Group 5: compute submatrixA33.
P-STENCIL-3.A; i C 2n=3; j C 2n=3; n=3/

From the pseudocode, we can informally say that we can solve the nine sub-
problems in five groups, as shown in the following matrix:�

1 2 3

2 3 4

3 4 5

�
:

Each entry in the above matrix specifies the group of the correspondingn=3 �
n=3 submatrix ofA; we can compute in parallel the entries of all submatrices
that fall in the same group. In general, fori D 2; 3; 4; 5, we can calculate
groupi after completing the computation of groupi � 1.

The recurrence for the work isT1.n/ D 9T1.n=3/ C ‚.1/ D ‚.n2/. The
recurrence for the span isT1.n/ D 5T1.n=3/C‚.1/ D ‚.nlog3 5/. Therefore,
the parallelism is‚.n2�log3 5/ � ‚.n0:535/.

c. Similar to the previous part, we can solve theb2 subproblems in2b� 1 groups:�
1 2 3 � � � b � 2 b � 1 b

2 3 4 � � � b � 1 b b C 1

3 4 5 � � � b b C 1 b C 2
:::

:::
:::

: : :
:::

:::
:::

b � 2 b � 1 b � � � 2b � 5 2b � 4 2b � 3

b � 1 b b C 1 � � � 2b � 4 2b � 3 2b � 2

b b C 1 b C 2 � � � 2b � 3 2b � 2 2b � 1

˘
:

27-14 Solutions for Chapter 27: Multithreaded Algorithms

The recurrence for the work isT1.n/ D b2T1.n=b/ C ‚.1/ D ‚.n2/. The
recurrence for the span isT1.n/ D .2b�1/T1.n=b/C‚.1/ D ‚.nlogb.2b�1//.
The parallelism is‚.n2�logb.2b�1//.

As the hint suggests, in order to show that the parallelism must beo.n/ for any
choice ofb � 2, we need to show that2� logb.2b � 1/, which is the exponent
of n in the parallelism, is strictly less than1 for any choice ofb � 2. Since
b � 2, we know that2b�1 > b, which implies that logb.2b�1/ > logb b D 1.
Hence,2 � logb.2b � 1/ < 2� 1 D 1.

d. The idea behind achieving‚.n= lg n/ parallelism is similar to that presented in
the previous part, except without recursive division. We will computeAŒ1; 1�

serially, which will enable us to compute entriesAŒ1; 2� andAŒ2; 1� in parallel,
after which we can compute entriesAŒ1; 3�, AŒ2; 2� andAŒ3; 1� in parallel, and
so on. Here is the pseudocode:

P-STENCIL.A/

n D A:rows
// Calculate all entries on the antidiagonal and above it.
for i D 1 to n

parallel for j D 1 to i

AŒi � j C 1; j � D BASE-CASE.A; i � j C 1; j /

// Calculate all entries below the antidiagonal.
for i D 2 to n

parallel for j D i to n

AŒnC i � j; j � D BASE-CASE.A; nC i � j; j /

For each value of indexi of the first serialfor loop, the inner loop iteratesi
times, doing constant work in each iteration. Because indexi ranges from1

to n in the first for loop, we require‚.1 C 2 C � � � C n/ D ‚.n2/ work to
calculate all entries on the antidiagonal and above it. For each value of indexi
of the second serialfor loop, the inner loop iteratesn � i C 1 times, doing
constant work in each iteration. Because indexi ranges from2 to n in the
secondfor loop, we require‚..n � 1/ C .n � 2/ C � � � C 1/ D ‚.n2/ work
to calculate all entries on the antidiagonal and above it. Therefore, the work of
P-STENCIL is T1.n/ D ‚.n2/.

Note that bothfor loops in P-STENCIL, which executeparallel for loops
within, are serial. Therefore, in order to calculate the span of P-STENCIL,
we must add the spans of all theparallel for loops. Given that anyparallel for
loop in P-STENCIL does constant work in each iteration, the span of aparallel
for loop withn0 iterations is‚.lg n0/. Hence,

T1.n/ D ‚..lg 1C lg 2C � � � C lg n/C .lg.n � 1/C � � � C 1//

D ‚.lg.nŠ/C lg.n � 1/Š/

D ‚.n lg n/ ;

giving us‚.n= lg n/ parallelism.

Index

This index covers exercises and problems from the textbook that are solved in this
manual. The first page in the manual that has the solution is listed here.

Exercise 2.2-2,2-17
Exercise 2.2-4,2-17
Exercise 2.3-3,2-17
Exercise 2.3-4,2-18
Exercise 2.3-5,2-18
Exercise 2.3-6,2-19
Exercise 2.3-7,2-19
Exercise 3.1-1,3-7
Exercise 3.1-2,3-7
Exercise 3.1-3,3-8
Exercise 3.1-4,3-8
Exercise 3.1-8,3-8
Exercise 3.2-4,3-9
Exercise 3.2-5,3-9
Exercise 3.2-6,3-10
Exercise 3.2-7,3-10
Exercise 4.1-1,4-17
Exercise 4.1-2,4-17
Exercise 4.1-4,4-17
Exercise 4.1-5,4-18
Exercise 4.2-2,4-19
Exercise 4.2-4,4-19
Exercise 4.3-1,4-20
Exercise 4.3-7,4-20
Exercise 4.4-6,4-21
Exercise 4.4-9,4-21
Exercise 4.5-2,4-22
Exercise 5.1-3,5-9
Exercise 5.2-1,5-10
Exercise 5.2-2,5-10
Exercise 5.2-4,5-11
Exercise 5.2-5,5-12
Exercise 5.3-1,5-13
Exercise 5.3-2,5-13

Exercise 5.3-3,5-13
Exercise 5.3-4,5-14
Exercise 5.3-7,5-14
Exercise 5.4-6,5-16
Exercise 6.1-1,6-10
Exercise 6.1-2,6-10
Exercise 6.1-3,6-10
Exercise 6.2-6,6-11
Exercise 6.3-3,6-11
Exercise 6.4-1,6-14
Exercise 6.5-2,6-15
Exercise 6.5-6,6-15
Exercise 7.2-3,7-9
Exercise 7.2-5,7-9
Exercise 7.3-1,7-10
Exercise 7.4-2,7-10
Exercise 8.1-3,8-10
Exercise 8.1-4,8-10
Exercise 8.2-2,8-11
Exercise 8.2-3,8-11
Exercise 8.2-4,8-11
Exercise 8.3-2,8-12
Exercise 8.3-3,8-12
Exercise 8.3-4,8-13
Exercise 8.4-2,8-13
Exercise 9.1-1,9-10
Exercise 9.3-1,9-10
Exercise 9.3-3,9-11
Exercise 9.3-5,9-12
Exercise 9.3-8,9-13
Exercise 9.3-9,9-14
Exercise 11.1-4,11-16
Exercise 11.2-1,11-17
Exercise 11.2-4,11-17

I-2 Index

Exercise 11.2-6,11-18
Exercise 11.3-3,11-19
Exercise 11.3-5,11-20
Exercise 12.1-2,12-15
Exercise 12.2-5,12-15
Exercise 12.2-7,12-16
Exercise 12.3-3,12-17
Exercise 12.4-1,12-12
Exercise 12.4-2,12-17
Exercise 12.4-3,12-9
Exercise 12.4-4,12-18
Exercise 13.1-3,13-13
Exercise 13.1-4,13-13
Exercise 13.1-5,13-13
Exercise 13.2-4,13-14
Exercise 13.3-3,13-14
Exercise 13.3-4,13-15
Exercise 13.4-6,13-16
Exercise 13.4-7,13-16
Exercise 14.1-5,14-9
Exercise 14.1-6,14-9
Exercise 14.1-7,14-9
Exercise 14.2-2,14-10
Exercise 14.3-3,14-13
Exercise 14.3-6,14-14
Exercise 14.3-7,14-15
Exercise 15.1-1,15-21
Exercise 15.1-2,15-21
Exercise 15.1-3,15-22
Exercise 15.1-4,15-22
Exercise 15.1-5,15-23
Exercise 15.2-4,15-23
Exercise 15.2-5,15-24
Exercise 15.3-1,15-25
Exercise 15.3-5,15-26
Exercise 15.3-6,15-27
Exercise 15.4-4,15-28
Exercise 16.1-1,16-9
Exercise 16.1-2,16-10
Exercise 16.1-3,16-11
Exercise 16.1-4,16-11
Exercise 16.1-5,16-13
Exercise 16.2-2,16-14
Exercise 16.2-4,16-16
Exercise 16.2-6,16-16
Exercise 16.2-7,16-17
Exercise 16.3-1,16-17
Exercise 16.4-2,16-17

Exercise 16.4-3,16-18
Exercise 17.1-3,17-14
Exercise 17.2-1,17-15
Exercise 17.2-2,17-15
Exercise 17.2-3,17-16
Exercise 17.3-3,17-17
Exercise 21.2-3,21-6
Exercise 21.2-5,21-7
Exercise 21.2-6,21-7
Exercise 21.3-3,21-7
Exercise 21.3-4,21-8
Exercise 21.3-5,21-8
Exercise 21.4-4,21-9
Exercise 21.4-5,21-9
Exercise 21.4-6,21-9
Exercise 22.1-6,22-13
Exercise 22.1-7,22-15
Exercise 22.2-3,22-15
Exercise 22.2-5,22-15
Exercise 22.2-6,22-15
Exercise 22.2-7,22-16
Exercise 22.3-4,22-16
Exercise 22.3-5,22-16
Exercise 22.3-8,22-17
Exercise 22.3-9,22-17
Exercise 22.3-11,22-17
Exercise 22.3-12,22-18
Exercise 22.4-3,22-19
Exercise 22.4-5,22-20
Exercise 22.5-5,22-21
Exercise 22.5-6,22-22
Exercise 22.5-7,22-23
Exercise 23.1-1,23-8
Exercise 23.1-4,23-8
Exercise 23.1-6,23-8
Exercise 23.1-10,23-9
Exercise 23.2-4,23-9
Exercise 23.2-5,23-10
Exercise 23.2-7,23-10
Exercise 24.1-3,24-13
Exercise 24.2-3,24-13
Exercise 24.3-3,24-14
Exercise 24.3-4,24-14
Exercise 24.3-5,24-15
Exercise 24.3-6,24-15
Exercise 24.3-8,24-16
Exercise 24.3-9,24-17
Exercise 24.4-4,24-17

Index I-3

Exercise 24.4-7,24-18
Exercise 24.4-10,24-18
Exercise 24.5-4,24-19
Exercise 24.5-7,24-19
Exercise 24.5-8,24-19
Exercise 25.1-3,25-9
Exercise 25.1-5,25-9
Exercise 25.1-10,25-10
Exercise 25.2-4,25-13
Exercise 25.2-6,25-13
Exercise 25.3-4,25-14
Exercise 25.3-6,25-14
Exercise 26.1-1,26-12
Exercise 26.1-3,26-13
Exercise 26.1-4,26-15
Exercise 26.1-6,26-16
Exercise 26.1-7,26-16
Exercise 26.2-1,26-17
Exercise 26.2-8,26-18
Exercise 26.2-9,26-18
Exercise 26.2-11,26-19
Exercise 26.2-12,26-20
Exercise 26.2-13,26-21
Exercise 26.3-3,26-22
Exercise 26.4-1,26-22
Exercise 26.4-3,26-23
Exercise 26.4-4,26-23
Exercise 26.4-7,26-23
Exercise 27.1-1,27-1
Exercise 27.1-5,27-1
Exercise 27.1-6,27-2
Exercise 27.1-7,27-2
Exercise 27.1-8,27-3
Exercise 27.1-9,27-3
Exercise 27.2-3,27-4
Exercise 27.2-4,27-4
Exercise 27.2-5,27-6
Exercise 27.2-6,27-7

Problem 2-1,2-20
Problem 2-2,2-21
Problem 2-4,2-22
Problem 3-3,3-10
Problem 4-1,4-22
Problem 4-3,4-24
Problem 5-1,5-17
Problem 6-1,6-15
Problem 6-2,6-16

Problem 7-2,7-11
Problem 7-4,7-12
Problem 8-1,8-13
Problem 8-3,8-16
Problem 8-4,8-17
Problem 8-7,8-20
Problem 9-1,9-15
Problem 9-2,9-16
Problem 9-3,9-19
Problem 9-4,9-21
Problem 11-1,11-21
Problem 11-2,11-22
Problem 11-3,11-24
Problem 12-2,12-19
Problem 12-3,12-20
Problem 13-1,13-16
Problem 14-1,14-15
Problem 14-2,14-17
Problem 15-1,15-29
Problem 15-2,15-31
Problem 15-3,15-34
Problem 15-4,15-36
Problem 15-5,15-39
Problem 15-8,15-42
Problem 15-9,15-45
Problem 15-11,15-47
Problem 15-12,15-50
Problem 16-1,16-20
Problem 16-5,16-23
Problem 17-2,17-19
Problem 17-4,17-20
Problem 21-1,21-10
Problem 21-2,21-11
Problem 22-1,22-24
Problem 22-3,22-24
Problem 22-4,22-27
Problem 23-1,23-12
Problem 24-1,24-20
Problem 24-2,24-21
Problem 24-3,24-22
Problem 24-4,24-23
Problem 24-6,24-24
Problem 25-1,25-14
Problem 26-2,26-24
Problem 26-3,26-26
Problem 26-4,26-29
Problem 26-5,26-30
Problem 27-1,27-7

I-4 Index

Problem 27-2,27-9
Problem 27-4,27-10
Problem 27-5,27-12

