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Association rule mining is one of most popular data analysis methods that can discover associations
within data. Association rule mining algorithms have been applied to various datasets, due to their prac-
tical usefulness. Little attention has been paid, however, on how to apply the association mining tech-
niques to analyze questionnaire data. Therefore, this paper first identifies the various data types that
may appear in a questionnaire. Then, we introduce the questionnaire data mining problem and define
the rule patterns that can be mined from questionnaire data. A unified approach is developed based
on fuzzy techniques so that all different data types can be handled in a uniform manner. After that, an
algorithm is developed to discover fuzzy association rules from the questionnaire dataset. Finally, we
evaluate the performance of the proposed algorithm, and the results indicate that our method is capable
of finding interesting association rules that would have never been found by previous mining algorithms.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Association rule mining is an important data mining method
that determines consumer purchasing patterns in transaction dat-
abases [7,15]. Many applications have used association rule mining
techniques to discover useful information, including market basket
analysis, product recommendation, web page pre-fetch, gene regu-
lation pathways identification, medical record analysis, and so on.
Agrawal et al. [1] first introduced the problem, and defined it as
finding all rules from transaction data satisfying the minimum sup-
port and the minimum confidence constraints. Briefly, an associa-
tion rule mining algorithm works in two steps: (1) generate all
frequent itemsets that satisfy minsup and (2) generate all associa-
tion rules that satisfy minconf using the large itemsets.

Due to its great success and widespread usage, many variants of
association rule mining algorithms have been proposed. These
algorithms can be roughly classified into three categories, accord-
ing to the data types they can handle: nominal/Boolean data
[1,7,11,19,26,29], ordinal data [10], and quantitative data
[5,13,16–18,22,31,32]. The first category of algorithms views a
transaction as a set of items with nominal/Boolean values, the sec-
ond as a set of items with ordinal values, and the last as a set of
items with quantitative values. Based on different assumptions
about the underlying data, different methods have been developed
to help discover association rules between items.

A questionnaire is a data collection method that a respondent
completes in written format [23]. Questionnaire surveys are an
important part of marketing [14] and customer relationship man-
ll rights reserved.
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agement [8]. The use of questionnaires is even popular in schools
to collect students’ opinions of teaching performance. According
to Marshall [23], the types of questions in the questionnaires can
be roughly classified into two categories, open-ended and closed-
ended questions. Accordingly, the answers to these two types of
questions constitute open questionnaire data and closed question-
naire data, respectively.

To collect open questionnaire data, structured questions must
be supplemented with open-ended questions to get respondents
to answer the problems in their own words. Researchers have pro-
posed few methods for analyzing open questionnaire data, using
multivariate analysis techniques such as cluster analysis [3] and
correspondence analysis [6]. Furthermore, Yamanishi and Li [35]
calculate associations between word pairs based on their co-occur-
rences in open answers and then visually present the words and
associations on a two-dimensional map.

Text mining is the automated or partially automated processing
of text. It involves imposing structure upon text so that relevant
information can be extracted from it [25,27]. The applications of
text mining include [24,33]: information extraction, topic tracking,
summarization, categorization, clustering, concept linking, and
question answering. Since the responses in open questionnaire
data (i.e. open answers) are expressed in words, like text docu-
ments, text mining techniques could be also applied to analyzing
open answers, such as text clustering techniques [9,21] or the
self-organizing map technique [20].

Web mining refers to the use of data mining techniques to auto-
matically retrieve, extract, and evaluate (generalize/analyze) infor-
mation for knowledge discovery from web documents. Arotaritei
and Mitra [4] consider that web mining can be broadly categorized
as: (1) Web content mining of multimedia documents. (2) Web
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structure mining of inter-document links. (3) Web usage mining of
the data generated by the users’ interactions with the web. Among
them, the web content mining techniques are the most appropriate
for analyzing open questionnaire data (i.e. open answers). As the
same as the text mining techniques, these web content mining
techniques also focus on cluster analysis [28] and correspondence
analysis [30].

The above discussions indicate that there were some previous
researches using ‘‘text mining” and ‘‘web mining” techniques to
discover knowledge from open questionnaire data. However, in re-
gard to closed questionnaire data no systematic mining method
has been proposed so far to discover knowledge from them. There-
fore, an unanswered question still exists, that is, how to extract
knowledge from closed questionnaire data. This motivated us to
study how to discover fuzzy association rules from closed ques-
tionnaire data.

Before we further discuss the potential problems that we may
encounter if we want to discover knowledge from closed question-
naire data, we use Fig. 1 to show how our work can be placed in the
context of previous work.

According to Marshall [23], closed questionnaire data (i.e.
closed answers) includes the following five data types: (1) Cate-
gory where there is a list of mutually exclusive categories; e.g.,
gender is either male or female. (2) List where the respondents
can select more than one response from a list of categories; e.g.,
a user can have several favorite sports. (3) Quantity where the re-
sponse is a number; e.g., how many times have you been examined
during this pregnancy? (4) Ranking/scales, like the Likert scale,
where the respondents choose from a list of values on an ordinal
scale indicating the degree of agreement or disagreement with a
statement; e.g., on a scale of 1–7, how would you rate your level
of satisfaction with the class? (5) Linguistic ranking/scales where
the respondents choose from a list of ranked linguistic terms;
e.g., is he very tall, tall, short, or very short? If we allow users mul-
tiple-choices in types (4) and (5), we will have two additional data
types: (6) Multiple-choice ranks and (7) multiple-choice linguistic
ranks.

In short, users’ response data in questionnaires can be clas-
sified into categories (Nominal), lists (Multiple-choice nominal),
numbers (Quantitative), ranks (Ordinal), linguistic ranks (Fuzzy
ordinal), multiple-ranks (Multiple-choice ordinal), and multiple-
linguistic ranks (Multiple-choice fuzzy ordinal). The following
discussion explains why we cannot apply traditional mining
algorithms to discover association rules from questionnaire
data.

First, the traditional approaches are designed for handling nom-
inal/Boolean data, ordinal data, or quantitative data exclusively.
Currently, no algorithms have been developed to handle these
three data types simultaneously. Questionnaire data may have up
Open-ended answers
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Fig. 1. The taxonomy of que
to seven types of data, four of which are new and have not been
considered by previous research.

Second, in previous approaches, a transaction is a set of items,
each of which is associated with a value. For example, in nomi-
nal/Boolean data, the associated value is a choice from a set of
exclusive categories. Unfortunately, in questionnaire data, it is pos-
sible to assign multiple values to a single item. For instance, a
user’s favorite fruit may include apples, bananas, and grapes. Since
previous algorithms have not addressed the multiple-choice prob-
lem, we must consider this issue in our present research.

Third, although previous algorithms for handling quantitative
data could discover association rules with linguistic terms (fuzzy
rules), these algorithms made the assumption that the underlying
data was purely quantitative. In other words, these algorithms find
fuzzy rules from purely quantitative data, and they cannot deal
with raw data involving linguistic terms. Since linguistic ranking/
scales data are likely to appear in a questionnaire dataset, it is nec-
essary to resolve this issue also.

Therefore, in order to discover rules from a questionnaire data-
set, we need a brand new approach that can deal with different
data types occurring simultaneously, including categories, lists,
numbers, ranks, linguistic ranks, multiple-ranks, and multiple-lin-
guistic ranks. Traditional approaches have only handled categories,
numbers, and ranking/scales individually. Thus, we not only have
to consider how our algorithm can simultaneously handle these
three previous data types, but we must also consider how the other
four new data types can be included.

The goal of this paper is to develop an algorithm that can handle
all seven data types at the same time, allowing us to discover asso-
ciation rules from questionnaire data. Since our raw data may in-
volve linguistic terms, which are expressed by fuzzy sets, we
naturally adopted fuzzy techniques, so that all data types could
be represented and operated from fuzzy points of view. Further-
more, since the linguistic terms in the underlying data may appear
in the rules, we must extend the crisp association rules to fuzzy
association rules. Therefore, the goal of this paper is to mine fuzzy
association rules from questionnaire data.

The rest of this paper is organized as follows. First, we define the
problem in Section 2. The proposed algorithm and an example are
illustrated in Section 3. Section 4 uses questionnaire data regarding
teaching/learning evaluations as a case study, demonstrating that
the proposed algorithm can discover interesting patterns from
questionnaire data. Conclusions and future works are discussed
in Section 5.

2. Problem definition

In this section, we define the problem of mining fuzzy associa-
tion rules from questionnaire data. First, several kinds of items
Questionnaire Data 
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used in the proposed algorithm are introduced. Second, we define
the membership degrees for each kind of item and use them to cal-
culate itemsets’ supports.

Definition 1. Let IT = {it1, it2, . . . , itm} be a set of all items. A q-item
is denoted as (iti, q), where iti 2 IT is the item name and q is the
value of iti. Semantically, (iti, q) means that q is the respondent’s
answer to the ith question in questionnaire.

Seven data types may appear in a questionnaire: categories
(nominal), lists (multiple-choice nominal), numbers (quantitative),
ranks (ordinal), multiple-ranks (multiple-choice ordinal), linguistic
ranks(fuzzy ordinal), and multiple-linguistic ranks (multiple-choice
fuzzy ordinal). Therefore, a q-item could be a category q-item, list
q-item, number q-item, rank q-item, multiple-rank q-item,linguistic
rank q-item, or multiple-linguistic rank q-item.

Example 1. Assume we have a dataset containing 10 transactions,
as shown in Table 1. The values ‘‘blackboard instruction”, ‘‘com-
puter-aided instruction”, and ‘‘audio-visual instruction” are abbre-
viated as BBI, CAI, and AVI, respectively. In this example, there are
five items i1, i2, i3, i4, i5. The q-item could be category q-item (i1,
male), list q-item (i2, (BBI, CAI)), number q-item (i3, 6), rank q-item
(i4, 4), multiple-rank q-item (i4, (1, 2)), linguistic rank q-item (i5,
good), and multiple-linguistic rank q-item (i5, (good, very good)).

Before we detail the various definitions of q-item, q-itemset,
rule q-item, rule q-itemset, and the supports of rule q-itemsets,
we have illustrated the key ideas in Fig. 2. The low level shows
the q-items that may appear in q-itemsets of the questionnaire
dataset, while the middle shows the q-items that may appear in
a rule q-itemset. The arrows between them illustrate how the q-
items in data can be mapped to the q-items in rule q-itemsets.
The upper level indicates that the fuzzy rules are generated from
rule q-itemsets. Since only three types of q-items appear in the rule
q-itemsets, our rules also only contain these three kinds of q-items.

Definition 2. Assume that we have a category q-item ai = (iti, qi)
and a category q-item bj = (icj, fj). Let sup(ai, bj) denote the degree to
which ai matches bj. Then, sup(ai, bj) is given as follows:

supðai; bjÞ ¼
1; if iti ¼ icj and qi ¼ fj

0; otherwise

�

Example 2. Given a category q-item a1 = (it1, male) and a category
q-item b1 = (ic1, male), the degree sup(a1, b1) = sup((it1, male), (ic1,
male)) = 1.0 if it1 = ic1.

Definition 3. Assume that we have a list q-item ai = (iti, qi) and a
list q-item bj = (icj, fj). Let jfjj and jqi \ fjj denote the numbers of val-
ues in fj and qi \ fj, respectively. Then, the degree to which ai

matches bj, sup(ai, bj), can be given as follows:

supðai; bjÞ ¼
jqi\fj j
jfj j

; if iti ¼ icj

0; otherwise

(

Table 1
A questionnaire dataset

TID Itemsets

1 (i1, male), (i2, (BBI, CAI)), (i3, 3), (i4, 3), (i5, average)
2 (i1, male), (i2, (BBI, CAI)), (i3, 5), (i4, 4), (i5, (good, very good))
3 (i1, female), (i2, (BBI, CAI)), (i3, 2), (i4, 2), (i5, poor)
4 (i1, female), (i2, (CAI)), (i3, 2), (i4, (1, 2)), (i5, poor)
5 (i1, male), (i2, (BBI, CAI)), (i3, 5), (i4, (4, 5)), (i5, (good, very good))
6 (i1, male), (i2, (BBI, CAI)), (i3, 5), (i4, 4), (i5, good)
7 (i1, female), (i2, (CAI)), (i3, 2), (i4, 2), (i5, poor)
8 (i1, male), (i2, (BBI)), (i3, 4), (i4, (4, 5)), (i5, (average, good))
9 (i1, female), (i2, (BBI, CAI, AVI)), (i3, 5), (i4, 4), (i5, (good, very good))

10 (i1, male), (i2, (AVI)), (i3, 5), (i4, 4), (i5, good)
Example 3. Suppose we have a list q-item a2 = (it2, (BBI)) and a list
q-item b2 = (ic2, (BBI, CAI)). If it2 = ic2, the degree sup(a2, b2) =
1/2 = 0.5.

Definition 4 (Fuzzification). Suppose we have a universe of dis-
course X in a quantitative domain, where each element x belongs
to X. Then, a fuzzy set F is characterized by a membership function
mF (x), which maps x to a membership degree in interval [0, 1].

Example 4. Assume that we have six membership functions, Rshort,
Rmiddle, Rlong, Slow, Smiddle, and Shigh. The first three are for the review
time and the others are for the scores. From these six membership
functions, we know that Rshort(2) = 0.5, Rmiddle(3) = 1.0, Rlong

(5) = 1.0, Slow(73) = 0.7, Smiddle(81) = 0.9, and Shigh (92) = 1.0.

RshortðqÞ ¼
1; if q 6 1
3�q
3�1 ; if1 6 q 6 3

(
ð1Þ

RmiddleðqÞ ¼

q�1
3�1 ; if 1 6 q 6 3
1; if q ¼ 3
5�q
5�3 ; if 3 6 q 6 5

8><
>: ð2Þ

RlongðqÞ ¼
q�3
5�3 ; if 3 6 q 6 5
1; if 5 6 q

(
ð3Þ

SlowðqÞ ¼
1; if q 6 70
80�q

80�70 ; if 70 6 q 6 80

(
ð4Þ

SmiddleðqÞ ¼

q�70
80�70 ; if 70 6 q 6 80
1; if q ¼ 80
90�q

90�80 ; if 80 6 q 6 90

8><
>: ð5Þ

ShighðqÞ ¼
q�80

90�80 ; if 80 6 q 6 90
1; if 90 6 q

(
ð6Þ

Definition 5. Assume that we have a number q-item ai = (iti, qi), a
linguistic q-item bj = (icj, fj), and a membership function ðFSfj Þ,
where FSfj

ðqiÞ denotes the membership degree to which qi belongs
to fj. Then, the degree to which ai matches bj, sup(ai, bj) can be given
as follows:

supðai; bjÞ ¼
FSfj
ðqiÞ; if iti ¼ icj

0; otherwise

(

Example 5. Suppose we have a number q-item a3 = (it3, 4), a lin-
guistic q-item b3 = (ic3, long), and a membership function (Rlong),
as shown in Example 4. Then, the degree sup(a3, b3) = sup ((it3,4),
(ic3, long)) = Rlong(4) = 0.5, if it3 = ic3.

Definition 6. For rank i and linguistic rank fj, let simRL(i, fj) denote
the similarity between rank i and linguistic rank fj. In this study,
the RL similarity matrix SimRL stores all the similarities between
rank q-items and linguistic rank q-items.

Example 6. Table 2 is an example of RL similarity matrix SimRL.
From this matrix, we know that simRL(1, very poor) = 0.86, simRL(1,
poor) = 0.43, simRL(2, very poor) = 0.43, simRL(2, poor) = 0.86, simRL(2,
average) = 0.43, . . . , simRL(5, very good) = 0.76.

Definition 7. Assume that we have a rank q-item ai = (iti, qi), a lin-
guistic q-item bj = (icj, fj), and an RL similarity matrix SimRL, where
simRL(qi, fj) denotes the similarity between qi and fj. Then, the
degree to which ai matches bj, sup(ai, bj) can be given as follows:

supðai; bjÞ ¼
simRLðqi; fjÞ; if iti ¼ icj

0; otherwise

(
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Fig. 2. The relationships between q-items and rule q-itemsets.

Table 2
An RL similarity matrix SimRL

Very poor Poor Average Good Very good

1 0.86 0.43 0 0 0
2 0.43 0.86 0.43 0 0
3 0 0.5 1 0.5 0
4 0 0 0.43 0.86 0.43
5 0 0 0 0.38 0.76
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Example 7. Suppose we have a rank q-item a4 = (it4, 4), a linguistic
q-item b4 = (ic4, good), and an RL similarity matrix SimRL, as shown
in Table 2. Then, the degree sup(a4, b4) = sup ((it4,4), (ic4,
good)) = 0.86, if it4 = ic4.

Definition 8. Assume that we have a multiple-ranks q-item ai = (iti,
(qi1, qi2)), a linguistic q-item bj = (icj, fj), and an RL similarity matrix
SimRL. Then, the degree to which ai matches bj, sup (ai, bj) can be
given as follows:

supðai; bjÞ ¼
maxðsimRLðqi1; fjÞ; simRLðqi2; fjÞÞ; if iti ¼ icj

0; otherwise

(

Example 8. Suppose we have a multiple-ranks q-item
a5 = (it5,(3,4)), a linguistic q-item b5 = (ic5, good), and an RL similar-
ity matrix SimRL, as shown in Table 2. The degree sup(a5, b5) = sup
((it5,(3,4)), (ic5, good)) = max(simRL(3, good), simRL(4, good)) =
max(0.5, 0.86) = 0.86, if it5 = ic5.

Definition 9. For two linguistic ranks, fi and fj, let simLL(fi, fj) denote
the similarity between the two linguistic ranks fi and fj. Assume
simLL(fi, fj) = simLL(fj,fi). In this study, the LL similarity matrixSimLL

stores the similarity values between linguistic rank q-items.

Example 9. Table 3 is an LL similarity matrix between two linguis-
tic ranks. From this matrix, we know that simLL(very poor, very
poor) = 1.0, simLL(very poor, poor) = 0.5, simLL(poor, poor) = 1.0, simLL

(poor, average) = 0.5, simLL(good, good) = 1.0, . . . , simLL(very good,
very good) = 1.0.
Table 3
A similarity matrix SimLL for 5 linguistic ranks

Very poor Poor Average Good Very good

Very poor 1 0.5 0 0 0
Poor 0.5 1 0.5 0 0
Average 0 0.5 1 0.5 0
Good 0 0 0.5 1 0.5
Very good 0 0 0 0.5 1
Definition 10. Assume that we have a linguistic rank q-item ai = (iti,
fi), a linguistic q-item bj = (icj, fj), and an LL similarity matrix SimLL,
where simLL (fi, fj) denotes the similarity between fi and fj. Then, the
degree to which ai matches bj, sup(ai, bj) can be given as follows:

supðai; bjÞ ¼
simLLðfi; fjÞ; if iti ¼ icj

0; otherwise

(

Example 10. Assume that we have a linguistic rank q-item a6 =
(it6, good), a linguistic q-item b6 = (ic6, good), and an LL similarity
matrix SimLL, as shown in Table 3. Then, the degree sup(a6,
b6) = sup((it6,good), (ic6, good)) = 1.0, if it6 = ic6.

Definition 11. Assume that we have a multiple-linguistic rank
q-item ai = (iti, (fi1, fi2)), a linguistic q-item bj = (icj, fj), and anLL
similarity matrix SimLL. Then, the degree to which ai matches bj,
sup(ai, bj) can be given as follows:

supðai; bjÞ ¼
maxðsimLLðfi1; fjÞ; simLLðfi2; fjÞÞ; if iti ¼ icj

0; otherwise

(

Example 11. Suppose we have a multiple-linguistic rank q-item
a7 = (it7,(average, good)), a linguistic q-item b7 = (ic7, good), and an
LL similarity matrix SimLL, as shown in Table 3. If it7 = ic7, then
the degree sup (a7, b7) = sup((it7,(average, good)), (ic7, good))= max
(simLL(average, good), simLL(good, good)) = max(0.5, 1) = 1.

Definition 12. A rule q-item can be a category q-item, list q-item,
and linguistic q-item. For simplicity, we use bi = (ici, fi) to denote a
rule q-item. A rule q-itemset B is a set of rule q-items, where all
q-items’ items must be distinct. We use B={(ic1, f1), (ic2, f2), . . . ,
(icn, fn)} to denote a rule q-itemset.

Example 12. For example, {(ic1, male), (ic2, (BBI, CAI)), (ic3, long),
(ic5, good)} is a rule q-itemset.

Definition 13. Let a q-itemset be a set of q-items. Assume that we
have a q-itemset A={(it1, q1), (it2, q2), . . . , (itm, qm)}, where ai = (iti, qi)
could be a category q-item, list q-item, number q-item, rank q-item,
multiple-ranks q-item, linguistic rank, and multiple-linguistic ranks q-
item. Also assume that we have a rule q-itemset B={(ic1, f1), (ic2, f2),
. . . , (icn, fn)}, where bj = (icj, fj) is a rule q-item. If we can find
ai1 6 ai2 6 � � � 6 ain in A, such that supðaij ; bjÞ > 0, then sup(A, B)
can be defined as follows:

supðA; BÞ ¼ Aggprodfsupðaij ; bjÞg ¼
Yn

j¼1

supðaij ; bjÞ
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Example 13. Suppose we have a q-itemset A={(it1, male), (it2, BBI),
(it3, 4), (it4, 4), (it5,(average, good))}, a rule q-itemset B = {(ic1, male),
(ic2, (BBI, CAI)), (ic3, long), (ic4, good), (ic5, good)}, an RL similarity
matrix representing the similarity between ranks and linguistic
ranks, an LL similarity matrix representing the similarity between
linguistic ranks and the membership function of long, as shown in
Table 2 and 3, respectively, and expression (3). If iti = ici for
1 6 i 6 7, then the degree sup(A, B) = 1.0 � 0.5 � 0.5 � 0.86 �
1.0 = 0.215.

Definition 14. Assume that we have a database D consisting of
a set of transactions, where the sid-th transaction in D can be
represented as a q-itemset Asid = {(it1, q1), (it2, q2), . . . , (itm,
qm)}. Let B={(ic1, f1), (ic2, f2), . . . , (icn, fn)} be a rule q-itemset.
Then, the support of B occurring in D,supD(B) can be defined
as follows:

supDðBÞ ¼
XjDj
sid¼1

supðAsid;BÞ
 !,

jDj

where jDj is the total number of transactions in database D.

Example 14. Suppose we have a database D containing 10 transac-
tions as shown in Table 1 and a rule q-itemset B = ((i1, male), (i2, (BBI,
CAI)), (i3, long), (i4, good), (i5, good)). Then, the degree supD(B) =
(1� 1� 1� 0.86� 1 + 1� 1� 1� 0.86� 1 + 1� 1� 1� 0.86� 1 +
1 � 0.5 � 0.5 � 0.86 � 1)/10 = (0.86 + 0.86 + 0.86 + 0.215)/10 =
0.2795.

Definition 15. Given a user-specified threshold rs, a rule q-itemset
B is frequent if supD(B) is no less than rs. Let B be a frequent rule q-
itemset, where B = X [ Y and X \ Y = /. Then, the confidence of rule
X) Y, denoted as conf(X) Y), is defined as supD(B)/supD(X). Given
a confidence threshold rc, if conf(X) Y) P rc, X) Y holds in data-
base D.

Example 15. According to Definitions 12 and 15, only category q-
items, list q-items, and linguistic q-items may appear in both sides
of the generated fuzzy rules. Therefore, we may have rules like (i1,
male) ? (i2, (BBI)), (i2, (BBI, CAI)) ? (i4, good), and (i3, mid-
dle) ? (i5, good). We never, however, generate rules like (i2,
(BBI)) ? (i4, (good, very good)), (i3, (short, middle)) ? (i5, good),
(i3, long) ? (i5, 5)), or (i3, 5) ? (i5, good).
Fig. 3. The CLL
3. An algorithm for mining fuzzy association rules from
questionnaire data

In this section, we introduce an Apriori-like algorithm, named
the CLL algorithm, to discover fuzzy association rules from ques-
tionnaire data. The CLL algorithm was developed by modifying
the well-known Apriori algorithm [2] to mine Category, List, and
Linguistic (CLL) patterns. In Section 3.1, we introduce the CLL algo-
rithm, and in Section 3.2 we use an example to illustrate it.

3.1. The proposed algorithm

We now introduce a new algorithm for mining fuzzy associa-
tion rules from questionnaire data. The algorithm is outlined in
Fig. 3. Although the basic structure of the CLL and the Apriori algo-
rithm are similar, they are different in the following respects:

(1) Data types: The Apriori algorithm is designed only for han-
dling nominal/Boolean data. The CLL algorithm, however, is
developed for handling the seven data types that may
appear in questionnaire data.

(2) Similarity functions: In the Apriori algorithm, an item can
only have a 100% or 0% match with another item. Therefore,
the Apriori algorithm does not need a similarity function to
measure the similarity between items. Since partial similar-
ity relationships exist in questionnaire data, however, the
CLL algorithm uses the similarity functions described in Sec-
tion 2 to calculate the similarity between items.

(3) Counting candidates: In the Apriori algorithm, an itemset is
either completely contained in a transaction or not at all.
In the CLL algorithm, however, an itemset can be partly con-
tained in a transaction. As a result, the degree that a transac-
tion contains an itemset is a value between 0 and 1, instead
of either 1 or 0.

The proposed algorithm is composed of three phases. In the first
phase, we apply the similarity matrixes or membership functions
in Section 2 to transform the original database into a new database.
After the transformation, a transaction in the new database stores
the support of every q-item in the corresponding transaction in the
original database. In the second phase, we use a level-wise ap-
proach to iteratively generate candidate rule q-itemsets and then
find frequent rule q-itemsets. In the final phase, we generate fuzzy
algorithm.
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association rules from the frequent rule q-itemsets obtained in the
second phase. In the following, we present and explain in detail the
three subroutines in each phase.

As mentioned above, there are seven data types that exist
in questionnaire data. To discover frequent patterns, we need
to use the similarity matrixes or membership functions to cal-
culate itemsets’ support for different data types. Fig. 4 shows
the pseudocode for the Sup_Transform subroutine, which is
used to calculate its support for each different data type. In
steps 1–10, each q-item ai of each transaction of Database D
will match the corresponding data type and calculate its sup-
port. Finally, all q-item ai will be transformed into (icj,r, lj,r),
where icj,r is a rule q-item and lj,r is its support in this trans-
action, and stored in database DT. Steps 3–9 are used to calcu-
late the support for different data types, such as categories,
lists, numbers, ranks, multiple-ranks, linguistic ranks, and multi-
ple-linguistic ranks. With the help of similarity functions, the
Sup_Transform subroutine can transform the original question-
naire dataset into a new form and store it in database DT. In
the next section, we will introduce a new method, LargeItem-
sets_gen subroutine, for mining Category, List, and Linguistic
(CLL) patterns from database DT.

Unlike the Apriori algorithm, which calculates the counts of
candidate itemsets by adding either a one or a zero, depending
on whether that particular itemset appears in the transaction
or not, the LargeItemsets_gen subroutine in the proposed algo-
rithm can add a fractional value to the counts of itemsets.
Fig. 5 shows the pseudocode for the LargeItemsets_gen subrou-
tine. Step 1 finds the frequent 1-itemsets, L1. In steps 2–10,
Lk�1is used to generate candidates Ck in order to find Lk. The
apriori_gen subroutine [1,2] generates the candidates and then
uses the downward closure property to eliminate those that
have a non-frequent subset (step 3). Once all the candidates
have been generated, the database is scanned (step 4). For
each transaction, a subset function is used to find all subsets
of the transaction that are candidates (step 5), and the count
for each of those candidates is accumulated (steps 6 and 7).
Finally, all those candidates satisfying the minimum support
form the set of frequent itemsets, L. After generating the fre-
Fig. 4. The Sup_Tran
quent patterns, we will use those patterns to generate the Fuz-
zy association rules (FAR). In the next section, we will introduce
a method, named FAR_gen subroutine, to generate Fuzzy associ-
ation rules (FAR)from large itemsets L.

Finally, we generate the fuzzy association rules from the fre-
quent rule q-itemsets obtained in the second phase. Fig. 6
shows the pseudocode for the FAR_gen subroutine. Obviously,
the procedure can generate all the fuzzy rules, satisfying Defini-
tion 15.

3.2. An example

An example is given to illustrate the proposed data mining algo-
rithm. The dataset includes 10 transactions, as shown in Table 1.

STEP 1. Assume that we have an RL similarity matrix (SimRL),
an LL similarity matrix (SimLL), and three membership
functions ðFSfj Þ as shown in Table 2, 3, and expres-
sions (1)–(3). For simplicity, the possible values of
these five attributes are encoded in Table 4. Based
on this encoding scheme, ic1,1 means the value of
Sex is male and ic2,4 means the value of Teaching
Style is {(BBI, CAI)}. After the computation, the results
of DT are shown in Table 5.

STEP 2.1. For each rule q-item icj,r stored in database DT, calculate
its support and check whether the support of each rule
q-item icj,r is larger than or equal to the minimum sup-
port a. If it is, put it in the set of large one-itemsets (L1).
For example, let us set a to 0.5. Then we have L1, as
shown in Table 6.

STEP 2.2. We now generate candidate set C2 from L1. For example,
we obtain C2 as follows: (ic1,1, ic2,1), (ic1,1, ic2,2), (ic1,1,
ic2,4), (ic1,1, ic2,6), (ic1,1, ic2,7), (ic1,1, ic3,3), (ic1,1, ic4,4),
(ic1,1, ic5,3), (ic1,1, ic5,4), . . . , and (ic5,3, ic5,4). After com-
puting their supports, we can determine L2 as shown
in Table 7.

STEP 2.3. Since L2 is not null, we repeat the previous steps to find
L3, as shown in Table 8. In the next turn, we find C4 is
empty after pruning; therefore, we stop the iterations.
sforms function.



Fig. 5. The LargeItemsets_gen function.

52 Y.-L. Chen, C.-H. Weng / Knowledge-Based Systems 22 (2009) 46–56
STEP 3. Construct the association rules from all large q-item-
sets. We can generate fuzzy rules from L2 and L3. For
brevity, we only show the rules generated from L3 in
Table 9.

4. Experiment results

We conducted some experiments to evaluate our approach. Sur-
vey data concerning teaching evaluations of high school and col-
lege courses in Taiwan were used to show the feasibility of the
proposed mining algorithm. A total of 383 survey data responses
were collected. Each transaction shows information about the tea-
cher’s teaching performance and the student’s learning perfor-
mance. The algorithms were implemented using Sun Java
language (J2SDK 1.3.1) and tested on a PC with a single Intel Pen-
tium III 866 MHz processor and 512MB main memory running the
Windows XP operating system. Neither multi-threading technol-
ogy nor parallel computing skills were used in our implemented
programs.

In the past, almost all of the existing papers in fuzzy mining as-
sumed that the fuzzy functions are given by experts, because this
Fig. 6. The FAR_g

Table 4
Encoded values for the attributes

Encoded values Sex style Teaching time

1 Male (BBI)
2 Female (CAI)
3 (AVI)
4 (BBI, CAI)
5 (BBI, AVI)
6 (CAI, AVI)
7 (BBI, CAI, AVI)
can streamline the presentation of the paper [12,34] and enable
us to focus on the design of mining algorithms. Due to the same
reasons, in the experiment, we invited a senior faculty in our
department to set the values of the six membership functions, ma-
trix SimRL, and matrix SimLL, as shown in Section 2.

There are three experiments in this section. In the first experi-
ment, we investigate how the run time of the CLL algorithm
changes as we vary the minimum support value and the database
size. In the second experiment, we compare the performances of
the CLL algorithm and the traditional Apriori algorithm. Since these
two algorithms have different data types, we preprocessed the
questionnaire dataset so that the comparison could be performed
in the same environment. After preprocessing, the two algorithms
were tested by varying the minimum support value and the data-
base size. Finally, the third experiment applies the CLL algorithm to
discover rules from a real questionnaire dataset. Our algorithm’s
usefulness is proven through the discovery of some interesting
rules that would have never been found using the previous
algorithm.

In the first experiment, we wanted to investigate how the run
time changes as we vary the minimum support value and the data-
base size. Therefore, we first fixed the database size at 383 and var-
ied the minimum support. In Fig. 7, it is readily apparent that the
run time increases with a decrease in minimum support value. This
is especially true when the minimum support becomes very small;
the run time increases sharply. These results concur with the re-
sults from previous association mining algorithms [26,31]. Next,
we set the minimum support at 0.5 and varied the number of
transactions by repeatedly duplicating the database until the in-
tended size was reached. From Fig. 8, we find that the run time in-
creases linearly with respect to the database size. This linear
relationship indicates that the proposed algorithm has a good
scalability.

In the second experiment, we wanted to study the performance
differences between the Apriori algorithm and the CLL algorithm.
Since the only data type that both algorithms can handle is cate-
gorical data, we kept the categorical data in the dataset but elimi-
nated the others. Two tests were performed in this experiment.
The first test compared the run times of the two algorithms by
varying the database size and the second by varying the minimum
support.
en function.

Review skill Teaching performance Learning

Short Very poor Very poor
Middle Poor Poor
Long Average Average

Good Good
Very good Very good



Table 5
The constructed temporary set DT

TID Sex Teaching style Review time Teaching skill Learning performance

1 (ic1,1, 1.00) (ic2,1, 1.00) (ic2,4, 1.00) (ic2,6, 0.50) (ic3,2, 1.00) (ic4,2, 0.50) (ic5,2, 0.50)
(ic2,2, 1.00) (ic2,5, 0.50) (ic2,7, 0.66) (ic4,3, 1.00) (ic5,3, 1.00)

(ic4,4, 0.50) (ic5,4, 0.50)

2 (ic1,1, 1.00) (ic2,1, 1.00) (ic2,4, 1.00) (ic2,6, 0.50) (ic3,3, 1.00) (ic4,3, 0.43) (ic5,3, 0.50)
(ic2,2, 1.00) (ic2,5, 0.50) (ic2,7, 0.66) (ic4,4, 0.86) (ic5,4, 1.00)

(ic4,5, 0.43) (ic5,5, 1.00)

3 (ic1,2, 1.00) (ic2,1, 1.00) (ic2,4, 1.00) (ic2,6, 0.50) (ic3,1, 0.50) (ic4,1, 0.43) (ic5,1, 0.50)
(ic2,2, 1.00) (ic2,5, 0.50) (ic2,7, 0.66) (ic3,2, 0.50) (ic4,2, 0.86) (ic5,2, 1.00)

(ic4,3, 0.43) (ic5,3, 0.50)

4 (ic1,2, 1.00) (ic2,2, 1.00) (ic2,6, 0.50) (ic3,1, 0.50) (ic4,1, 0.86) (ic5,1, 0.50)
(ic2,4, 0.50) (ic2,7, 0.33) (ic3,2, 0.50) (ic4,2, 0.86) (ic5,2, 1.00)

(ic4,3, 0.43) (ic5,3, 0.50)

5 (ic1,1, 1.00) (ic2,1, 1.00) (ic2,4, 1.00) (ic2,6, 0.50) (ic3,3, 1.00) (ic4,3, 0.43) (ic5,3, 0.50)
(ic2,2, 1.00) (ic2,5, 0.50) (ic2,7, 0.66) (ic4,4, 0.86) (ic5,4, 1.00)

(ic4,5, 0.76) (ic5,5, 1.00)

6 (ic1,1, 1.00) (ic2,1, 1.00) (ic2,4, 1.00) (ic2,6, 0.50) (ic3,3, 1.00) (ic4,3, 0.43) (ic5,3, 0.50)
(ic2,2, 1.00) (ic2,5, 0.50) (ic2,7, 0.66) (ic4,4, 0.86) (ic5,4, 1.00)

(ic4,5, 0.43) (ic5,5, 0.50)

7 (ic1,2, 1.00) (ic2,2, 1.00) (ic2,6, 0.50) (ic3,1, 0.50) (ic4,1, 0.43) (ic5,1, 0.50)
(ic3,2, 0.50) (ic4,2, 0.86) (ic5,2, 1.00)

(ic2,4, 0.50) (ic2,7, 0.33) (ic4,3, 0.43) (ic5,3, 0.50)

8 (ic1,1, 1.00) (ic2,1, 1.00) (ic2,5, 0.50) (ic3,2, 0.50) (ic4,3, 0.43) (ic5,2, 0.50)
(ic2,4, 0.50) (ic2,7, 0.33) (ic3,3, 0.50) (ic4,4, 0.86) (ic5,3, 1.00)

(ic4,5, 0.76) (ic5,4, 1.00)
(ic5,5, 0.50)

9 (ic1,2, 1.00) (ic2,1, 1.00) (ic2,4, 1.00) (ic2,6, 1.00) (ic3,3, 1.00) (ic4,3, 0.43) (ic5,3, 0.50)
(ic4,4, 0.86) (ic5,4, 1.00)

(ic2,2, 1.00) (ic2,5, 1.00) (ic2,7, 1.00) (ic4,5, 0.43) (ic5,5, 1.00)
(ic2,3, 1.00)

10 (ic1,1, 1.00) (ic2,3, 1.00) (ic2,6, 0.50) (ic3,3, 1.00) (ic4,3, 0.43) (ic5,3, 0.50)
(ic2,5, 0.50) (ic2,7, 0.33) (ic4,4, 0.86) (ic5,4, 1.00)

(ic4,5, 0.43) (ic5,5, 0.50)

Table 6
L1 large itemsets

Itemsets Support Itemsets Support Itemsets Support Itemsets Support

ic1,1 0.600 ic2,1 0.700 ic2,2 0.800 ic2,4 0.750
ic2,6 0.500 ic2,7 0.562 ic3,3 0.550 ic4,4 0.566
ic5,3 0.600 ic5,4 0.650

Table 7
L2 large itemsets

Itemsets Support Itemsets Support Itemsets Support Itemsets Support

(ic1,1, ic2,1) 0.500 (ic1,1, ic5,4) 0.550 (ic2,1, ic2,2) 0.600 (ic2,1, ic2,4) 0.650
(ic2,1, ic5,4) 0.550 (ic2,2, ic2,4) 0.700 (ic2,4, ic5,4) 0.500 (ic3,3, ic5,4) 0.550
(ic4,4, ic5,4) 0.541

Table 8
The L3 large itemsets for this example

Itemsets Support

(ic2,1, ic2,2, ic2,4) 0.600
(ic2,1, ic2,4, ic5,4) 0.500
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In the first test, we set the minimum support at 0.5 and varied
the number of transactions by repeatedly duplicating the database
until the intended size was reached. From the results of Fig. 9, we
find that the Apriori algorithm performs slightly better than the
proposed algorithm. This result is quite logical because although
the two algorithms have a similar structure, the CLL algorithm
deals with more complicated data types and uses fuzzy operators
to compute supports, which require more complicated computa-
tions. In the second test, we set the database size at 100 K and var-
ied the minimum support from 0.01 to 0.5. Fig. 10 indicates that
the Apriori algorithm has a better run time than the CLL algorithm.
The reason for this result is the same as that stated for the first test.
Please note, although the Apriori algorithm is the winner in run
time tests, it cannot be used for mining rules from closed question-
naire data, because it can only handle categorical data.
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Table 9
The association rules generated from the large three-itemsets

No. Rule No. Rule

1 If (ic2,1, ic2,2) then ic2,4; (confidence = 1.00) 2 If ic2,4 then (ic2,1, ic2,2); (confidence = 0.80)
3 If (ic2,1, ic2,4) then ic2,2; (confidence = 0.92) 4 If ic2,2 then (ic2,1, ic2,4); (confidence = 0.75)
5 If (ic2,2, ic2,4) then ic2,1; (confidence = 0.86) 6 If ic2,1 then (ic2,2, ic2,4); (confidence = 0.86)
7 If (ic2,1, ic2,4) then ic5,4; (confidence = 0.77) 8 If ic5,4 then (ic2,1, ic2,4); (confidence = 0.77)
9 If (ic2,1, ic5,4) then ic2,4; (confidence = 0.91) 10 If ic2,4 then (ic2,1, ic5,4); (confidence = 0.67)

11 If (ic2,4, ic5,4) then ic2,1; (confidence = 1.00) 12 If ic2,1 then (ic2,4, ic5,4); (confidence = 0.71)
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The third experiment demonstrated some interesting rules that
could actually be mined from the questionnaire dataset by the CLL
algorithm. Since traditional algorithms suffer from the limitations
that (1) they cannot handle mixed data types, (2) they cannot han-
dle multiple-choice data, and (3) they cannot handle linguistic
terms in the raw data, it is inappropriate to use traditional algo-
rithms to mine questionnaire data. Therefore, in this experiment,
we only show the rules that were discovered by the CLL algorithm.
We also explain why these rules are interesting and why these
rules could not be found by previous algorithms.

In this experiment, we set the minimum support at a = 0.2 and
minimum confidence at k = 0.7. Some rules that were found by the
Fig. 10. Run time vs. minimum support.

Transaction Size=383

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5

Minimum Support

R
un

tim
e(

Se
c)

The Proposed Algorithm

Fig. 7. Run time vs. minimum support.
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Fig. 9. Run time vs. database size.
CLL algorithm are shown in Table 10. All the rules in the table were
derived from raw data involving multiple data types and linguistic
terms. For example, Rule #1 indicates that if a student takes a pro-
gramming course and he or she rates the course’s content as aver-
age, then the student will consider the lecturer’s teaching skill as
average with a confidence of 79.19%. This rule cannot be found
by traditional algorithms because the raw data contains mixed
data types, including categorical data (Course), rank/M-rank data
(Content), and Linguistic/M-linguistic data (Teaching skill). Simi-
larly, Rule #4 cannot be discovered by traditional algorithms
either, since the raw data contains categorical data (Course), Lin-
guistic/M-linguistic data (Learning performance), and rank/M-rank
data (Content).

Furthermore, the CLL algorithm can also handle a special data
type, List, which is composed of multiple-choices in the question-
naire. After setting the minimum support at a = 0.2 and minimum
confidence at k = 0.7, we can see some of the fuzzy association
rules discovered by the proposed algorithm in Table 11.

Take Rule #1 and Rule #3, for example. Rule #1 indicates that if
blackboard instruction and computer-aided instruction are inte-
grated and the course’s content is good, the students’ learning per-
formances will be good with a confidence of 74.95%. Rule #3
means that if blackboard instruction and computer-aided instruc-
tion are integrated and the lecturer’s teaching skill is good, the stu-
dents’ learning performances will be good with a confidence of
74.49%. From the two rules above, we know that if a lecturer pre-
pares good content or has good teaching skills, the students’ learn-
ing performances will improve. These results show that the
proposed CLL algorithm can handle mixed data types, multiple-
choice data, and linguistic terms simultaneously. In addition, more
interesting rules can be found from the closed questionnaire data
set.

5. Conclusion

Association rule mining is one of most popular data mining
techniques that can discover relationships between data. Associa-
tion rule mining algorithms have been applied in various applica-
tions and datasets, due to its practical usefulness; however, no
association mining algorithms have been used to analyze question-
naire data. This is because previous mining algorithms could not



Table 10
Some rules derived from raw data involving multiple data types and linguistic terms

No. Rules Data types in raw data Support (%) Confidence
(%)

Antecedent Consequent

1 {(Course, Programming), (Content, Average)} ? {(Teaching-Skill,
Average)}

(categorical, rank/M-rank) Linguistic/M-
linguistic

20.92 79.19

2 {(Course, Programming), (Teaching-Skill, Average)} ? {(Content,
Average)}

(categorical, linguistic/M-
linguistic)

Rank/M-rank 20.92 88.09

3 {(Course, Programming), (Content, Average)} ? {(Learning-
Performance, Average)}

(categorical, rank/M-rank) Linguistic/M-
linguistic

21.51 81.45

4 {(Course, Programming), (Learning-Performance,
Average)} ? {(Content, Average)}

(categorical, linguistic/M-
linguistic)

Rank/M-rank 21.51 87.31

5 {(Review-Time, Short), (Teaching-Skill, Good)} ? {(Learning-
Performance, Good)}

(quantitative, linguistic/M-
linguistic)

Linguistic/M-
linguistic

29.92 70.05

6 {(Review-Time, Short), (Learning-Performance, Good)} ? {(Teaching-
Skill, Good)}

(quantitative, linguistic/M-
linguistic)

Linguistic/M-
linguistic

29.92 78.71

Table 11
Some rules containing linguistic terms and multiple-choice lists

No. Rules Data type of raw data Support (%) Confidence
(%)

Antecedent Consequent

1 {(Teaching-Method, (BBI, CAI)), (Content, Good)} ? {(Learning-Performance.
Good)}

(list, rank/M-rank) Linguistic/M-
linguistic

25.10 74.95

2 {(Teaching-Method, (BBI, CAI)), (Learning-Performance, Good)} ? {(Content,
Good)}

(list, linguistic/M-
linguistic)

Rank/M-rank 25.10 75.29

3 {(Teaching-Method, (BBI, CAI)), (Teaching-Skill, Good)} ? {(Learning-
Performance, Good)}

(list, linguistic/M-
linguistic)

Linguistic/M-
linguistic

26.74 74.49

4 {(Teaching-Method, (BBI, CAI)), (Learning-Performance,
Good)} ? {(Teaching-Skill, Good)}

(list, linguistic/M-
linguistic)

Linguistic/M-
linguistic

26.74 80.22
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handle the mixed data types that may appear in a questionnaire
dataset.

This paper has made several contributions. First, we identified
the seven data types that may appear simultaneously in a ques-
tionnaire. We then introduced the questionnaire data mining
problem and proposed useful rule patterns that could be mined
from questionnaire data. Second, a unified approach was devel-
oped based on fuzzy techniques, so that all different data types
could be handled in a uniform manner. To this end, various sim-
ilarity measures and membership degrees were defined for all
seven data types, based on fuzzy techniques. Third, an algorithm
was developed to discover fuzzy association rules from a ques-
tionnaire dataset. Finally, to evaluate the performance of the
proposed algorithm, we compared our algorithm with previous
algorithms. The results indicate that our method can find inter-
esting association rules that could never be found with previous
mining algorithms.

Although the proposed method works well, there is still much
work to be done in this field. First, our method assumes that the
membership functions are known in advance. In future research,
we will attempt to automatically infer membership functions from
the raw data, avoiding the bottleneck during the acquisition of
membership functions. Additionally, this work does not consider
open questions that may appear in a questionnaire. In the future,
we will integrate text mining and association mining techniques
to mine questionnaire data, including both open and closed ques-
tions. Finally, if a survey is given many times in a particular time-
frame, an immediate problem that arises is how to analyze
associations among data from mixed data types along the time
dimension. In future work, we will attempt to design efficient algo-
rithms to handle this problem.
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